
 

 

 

Abstract 

Peristaltic transport of a conducting 

Bingham fluid in a channel under long 

wavelength and low Reynolds number 

assumptions is studied. This model is 

probably suitable for the blood flow in the 

sense that erythrocytes region and the 

plasma regions may be described as plug 

flow and non-plug flow regions. Further the 

blood is experimentally proved to be a 

conducting fluid in several physiological 

applications. Motivated by this fact, it is 

proposed to study the peristaltic transport 

of a Bingham fluid. It is observed that for a 

Bingham fluid the pressure difference and 

the mechanical efficiency of pumping 

depend on the yield stress and the magnetic 

field. 

1. Introduction 

 Peristaltic pumping is a form of fluid 

transport generally from a region of lower to 

higher pressure, by means of a progressive 

wave of area contraction or expansion, 

which propagates along the length of a tube-

like structure. Peristalsis occurs naturally as 

a means of pumping physiological fluids 

from one place in the body to another. Some 

electro-chemical reactions are held 

responsible for this phenomenon. This 

mechanism occurs in swallowing of food 

through oesophagus, in the ureter, the gastro 

intestinal tract, the bile duct and even in 

small blood vessels. 

2 Nomenclature 

a: Half width of the wave 

B0:   Applied magnetic field 

b: Amplitude of the wave 

c: Wave speed 

E: Mechanical efficiency 

 

 

 

F: Dimensionless friction force 

h: Height of the wave in the 

direction of y 

M: Hartmann number  

P: Pressure 

p: Dimensionless pressure 

ΔP: Pressure rise/drop 

q: Volume flux 

Q: Time averaged flow rate 

Re: Reynold’s number 

t: Time 

U,V: Axial and transverse velocity 

components in laboratory frame 

u,v:  Axial and transverse velocity 

components in wave frame 

up: Velocity in plug flow region  

x,y: Axial and transverse co ordinates 

X,Y: Dimensionless axial and 

transverse co ordinates 

y0: Plug flow region 

λ: wave length 

e: Electrical conductivity 

Ψ: Stream function 

φ: Amplitude ratio (b/a) 

τ0: Yield stress 

 μ: Viscosity index 
3       Mathematical formulation and 

solution 

Consider the peristaltic pumping of a 

conducting Bingham fluid in a channel of 

half-width (a). A longitudinal train of 

progressive sinusoidal waves takes place on 

the upper and lower walls of the channel. 

For simplicity, we restrict our discussion to 

the half width of the channel as shown in 

figure 4.1. The region between Y = 0 and Y 

= y0 is called plug flow region. In this 

region, |y,x|  o. In the region between Y = 
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Y0 and Y = H, |y,x| > o. The wall 

deformation is given by 

H(x, t) = a + b sin  ctx
λ

2π
   (1) 

 

 

Fig. 1 Physical Model 

4.   Equations of Motion 

Under the assumptions that the tube 

length is an integral multiple of the wave 

length  and the pressure difference across 

the ends of the tube is a constant, the flow 

becomes steady in the wave frame (x, y) 

moving with velocity c away from the fixed 

(laboratory) frame (X, Y). The 

transformation between these two frames is 

given by 

x = X-ct,   y = Y  

u (x,y) = U (x-ct, Y) - c  

  

v (x,y) = V (x-ct, Y)   (2) 

 In many physiological situations it is 

proved experimentally that the Reynolds 

number of the flow is very small (for 

example in ureter, Re  1). So, we assume 

that the flow is inertia – free. Further, we 

assume that the wavelength is infinite. So 

the flow is of Poiseuille type at each local 

cross-section. Using the non-dimensional 

quantities, 
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The non-dimensional form of equations 

governing the motion (dropping the bars) is 

  
dx

dp
yMyy

dy

d
 2

0
     

(3) 

y

p
0




          (4)

    

where M = 
µ

aB e

22

o 
, the Hartmann 

number    

The non-dimensional boundary conditions 

are 

 = 0; yy = o at y = 0

   

u= y = -1 at y = h  (5) 

Where h = 1 + φ Sin2πx  (6) 

5.     Solution 

 Solving equation (4) with the 

boundary conditions (5), we obtain the 

velocity as 

u = A1e
My

 + B1e
-My

 + 
2M

p
  (7) 
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 where A1 = a1p+a2,  B1 = a3p + a4

      

 a1 = 
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       a4 = MSinh

eMh

2

10 

 

x

p
p




    (8) 

Taking y = y0 in equation we get  the 

velocity in plug flow region as  

up = A1e
My

0 + B1e
-My

0 + 
2M

p
(0  y  y0) 

   (9)  the 

volume flux q through each cross-section in 

the wave frame is given by 

q =  

y

y

y

0

p

0

0

udydyu  = a5P + a6 (10) 

where  a5 = 

2

31
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11
0

M

h
e

M

a
e

M

a

M
yea

M
yea MhMhMyMy


















   

a6 =

Mh4Mh2My

4

My

2 e
M

a
e

M

a

M

1
1ea

M

1
1ea 00 




















 
From the above equation 

 5

6

a

qa

x

p 






   (11) 

 Averaging equation over one period 

yields the time mean flow (time-averaged 

volume flow rates) Q  as 

 Q   =  

T

0

Qdt
T

1

 

  = q+1  (12) 

 

6. The Pumping characteristics 

Integrating the equation (10) with 

respect to x over one wavelength, we get the 

pressure rise over one cycle of the wave as  

 P = dx
a

Qa
 












 
1

0 5

6 1
 (13) 

The pressure rise required to 

produce zero average flow rate is denoted 

by P0 and is given by 

 P0 = dx
a

a
 









 
1

0 5

6 1
  (14) 

The dimensionless friction force F at 

the wall across one wave length is given by 

 F = dx
dz

dp
h 










1

0

 

 = dx
a

aQ
h 












 
1

0 5

61
  (15) 

7. Mechanical Efficiency: 

 The mechanical efficiency of pumping 

for one wave length is given by 

 E = 

  


1

0

1 dxhp

pQ

x

 

 = 
  
  43

21

I1QIQ

I1QIQ




  (16) 

Where  I1 = 
1

0 5

6 dx
a

a
 

  I2 = 
1

0 5

1
dx

a
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  I3 = 
1

0 5

6 2 xdxSin
a

a
  

  I4 = 
1

0 5

2
1

dxxSin
a

  

 

8 Discussion of the Results. 

 From the equation 13 we have 

calculated the pressure difference as a 

function of Q  for different values of yield 

stress 0 for a fixed  and shown in Fig. 2. It 

is observed that for a given P the flux Q  

depends on yield stress and it decreases with 

increase in yield stress. For a given flux Q  

the pressure rise P decreases with increase 

in yield stress 0. For free pumping, the flux 

Q  increases with decreasing yield stress. 

 From the variation of pressure rise 

with time averaged flow rate is calculated 

from equation (13) for different amplitude 

ratios and shown in Fig. 3. For given P  

the flux Q  for Bingham fluid  depends on  

and we find that the larger the amplitude  

ratio the greater the pressure rise against 

which the pump works. This observed for 

small values of P (P < 0001) and free 

pumping cases. 

 From equation (13) we have 

calculated the variation of pressure rise with 

time averaged flow rate Q  for different 

magnetic parameters M and is shown in Fig. 

4 we observed that the larger the magnetic  

parameter the greater the pressure rise 

against which the pump works.  For free 

pumping the flux Q  depends on magnetic 

field and it increases with increasing 

magnetic parameter M. 

 From equation (15), we have 

calculated the frictional force as a function 

of Q  for fixed amplitude ratio, and is 

depicted in Fig. 5. It is observed that the 

frictional force ‘F’ has the opposite 

behaviour compared to pressure rise (P). 

As 0 increases the frictional force also 

increases with the flux Q .  For a given Q  

the frictional force increases with decrease 

in yield stress.   

 From equation (16) we have 

calculated the mechanical efficiency as a 

function of Q  and is depicted in Fig. 6 and 

Fig. 7. for different values of magnetic 

parameters M, yield stress and amplitude 

ratio . For the chosen parameter the 

mechanical efficiency is positive for Q  less 

than or equal to 6 and is negative for Q  

greater than 6. Further we observed that the 

pumping efficiency is greater for higher 

values of magnetic parameters. It is also 

found that the mechanical efficiency 

decreases with the increasing yield stress.  

For lower value flux Q , the efficiency 

remains constant and is unaffected  by 

variation in M and 0. 

 From equation (14), we have 

calculated the pressure rise required to 

produce zero average flow rate P0 as a 

function of amplitude ratio  for different 

values of yield stress 0 and is shown in Fig. 

8. It is observed that for a conducting 

Bingham fluid, the value of P0 increases 

with decrease in yield stress 0. It is also 

observed that the increase in the value of 

P0 is more for the amplitude ratio beyond 

0.7. 

From equation (14), we have calculated 

the pressure rise required to produce zero 

average flow rate P0 as a function of 

amplitude ratio  for different values of 

magnetic parameter m and is shown in Fig. 

9. It is observed that for a conducting 
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Bingham fluid, the value of P0 increases 

with increase in magnetic parameter.  

 

 

Fig. 2 The variation of P with averaged 

flow rate Q for different 0 with  = 0.6, 

m = 0.02, y0 = 0.2 

 

Fig. 3 The variation of P with averaged 

flow rate Q  for different , with 0  = 

0.01, m = 0.01,  y0 = 0.2 

 

 

 

 

 

 

 

Fig. 4 The variation of P with averaged 

flow rate Q for different m with 0  = 

0.01,  = 0.6,  y0 = 0.2 

 

Fig. 5 The variation of F with averaged 

flow rate Q for different 0 with  = 0.6, 

m = 0.02,  y0 = 0.2 
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Fig. 6 The variation of Mechanical 

Efficiency E with averaged flow rate Q

for different m with 0 = 0.01,  = 0.6,       

y0 = 0.1 
 

 
 

Fig. 7 The variation of Mechanical 

Efficiency E with averaged flow rate Q

for different 0 with  = 0.6, m = 0.02,      

y0 = 0.1 

 

 

 

 

 

 

 

 

 
Fig. 8 The variation of P0 with 

Amplitude ratio  for different 0   with  

m = 0.02, y0 = 0.2 

 
 

Fig. 9 The variation of P0 with 

Amplitude ratio  for different m with   

0  = 0.01, y0 = 0.2 
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