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Abstract— The peristaltic motion of a Carreau fluid in an 

asymmetric channel with partial slip is studied under long wave 

length and low Reynolds number assumptions which are also 

used to solve the problem. Applying perturbation technique, the 

expressions for stream function, axial velocity, axial pressure 

gradient, pressure rise, shear stress and frictional forces have 

been obtained. The effects of various emerging parameters on the 

flow characteristics are shown and discussed with the help of 

graphs. The pumping is examined for different wave forms. The 

results of the current paper reveal that the size of the trapping 

bolus increases by Carreau fluid (n=0.398) to Newtonian fluid 

(n=1).  

 

Keywords— peristaltic transport, asymmetric channel, 

Weissenberg number, partial slip, shear stress, trapping, different 

wave forms. 

I.  INTRODUCTION   

 The study of peristaltic transport in fluid mechanics has 

been carried out by many researchers to look for its implication in the 

biological sciences in general and in biomechanics in particular. The 

peristaltic flow occurs due to the contraction and expansion of a 

progressive wave propagating along the length of a distensible tube 

containing fluid. Peristaltic wave causing transportation of the fluid 

through muscular tube is indeed an important biological mechanism 

responsible for various physiological functions of many organs of the 

human body. Such mechanism may be involved in urine transport 

from kidney to bladder through the ureter, swallowing foods through 

the esophagus, the transport of spermatozoa in the cervical canal, the 

movement of chyme in small intestines and in the transport of bile. 

Such a wide occurrence of peristaltic motion should not be surprising 

at all since it results physiologically from neuro-muscular properties 

of any tubular smooth muscle.   

 

Most of the previous works in the literature deals with the 

peristaltic flow in a symmetric channel or tube. Due attention has not 

been given to the peristaltic mechanism in an asymmetric channel. 

Recently, physiologists observed that myometrial contractions may 

occur in both symmetric and asymmetric directions. Eytan and Elad 

[1] have presented a mathematical model of wall induced peristaltic 

fluid flow in a two-dimensional channel with wave trains having a 

phase difference moving independently on the upper and lower walls 

to stimulate intra-uterine fluid motion in a sagittal cross –section of 

the uterus. In another paper, Eytan et al. [2] reported that the width of 

the sagittal cross-section of the uterine cavity increases towards the 

fundus and the cavity is not fully occluded during the contractions.  

Mishra and Rao [3] discussed the peristaltic motion of viscous fluid 

in a two-dimensional asymmetric channel under long wavelength 

assumption. Rao and Mishra [4] also analyzed the curvature effects 

on peristaltic transport in an asymmetric channel. Hayat et al [5] 

studied peristaltic flow of a micropolar fluid in a channel with 

different wave forms. Vajravelu et al. [6] investigated the peristaltic 

transport of a Casson fluid in contact with a Newtonian fluid in a 

circular tube with permeable wall. Ali and Hayat [7] made a detailed 

study as the peristaltic motion of a Carreau fluid in an asymmetric 

channel with impermeable walls.  Vajravelu et al [8] studied 

peristaltic transport of a Williamson fluid in asymmetric channels 

with permeable walls. Nadeem [9] found heat transfer in a peristaltic 

flow of MHD fluid with partial slip. Hayat [10] investigated the 

influence of partial slip on the peristaltic flow in a porous medium. 

Since many biological systems such as blood vessels contain a tissue 

layer it will be interesting to study peristaltic transport of a biofluid 

through asymmetric channel with partial slip. Prasanna et al [11] 

examined the peristaltic transport of non-Newtonian fluid in a 

diverging tube with different wave forms as the peristaltic wave form 

in living organisms is not known. This method has already been used 

for the solutions of several other problems [12–15]. 

 

The main objective of the present investigation is to put 

forward the analysis of peristaltic flow of a Carreau fluid in an 

asymmetric channel. The Carreau fluid model is a four parameter 

model and has useful properties of a truncated power law model that 

does not have a discontinuous first derivative. The relevant equations 

for the fluid under consideration have been first modeled and then 

solved. The assumption for the solution is that wavelength of the 

peristaltic wave is long. A regular perturbation technique is employed 

to solve the present problem and solutions are expanded in a power of 

small Weissenberg number. The analysis is made for the stream 

function, axial pressure gradient and pressure drop over a 

wavelength. The influence of emerging parameters is shown on 

pumping, pressure gradient and trapping. 

II.   MATHEMATICAL FORMULATION 

 

Let us consider the peristaltic transport of an 

incompressible Carreau fluid in a two–dimensional channel of width 

21 dd  (Fig. 1). The flow is generated by sinusoidal wave trains 

propagating with constant speed c along the permeable walls of the 

channel. The geometry of the wall surfaces is defined as 
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Fig. 1: Schematic diagram of a two-dimensional asymmetric channel 
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 
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 

 ….        upper wall,               (1) 

   2 2 2

2
, cosh X t d a X ct






 
    

 

……   lower wall.      (2) 

in which 
1a  and 1b are the amplitudes of the waves,   is the wave length, c  is the wave speed,     0  is the 

phase difference, X and Y  are the rectangular coordinates with X measured along the axis of the channel and Y is 

perpendicular to X . Let  VU ,  be the velocity components in fixed frame of reference  YX , . It should be noted that   

corresponding to symmetric channel with waves out of phase and for   the waves are in phase. Furthermore, 

1 2 1 2,  ,  ,  anda a d d   satisfy the condition  

 
2

2 2

1 1 1 1 1 22 cosa b a b d d     .        (3) 

III.   EQUATIONS OF MOTION 

 

The constitutive equation for a Carreau fluid is (Ref. [7]) 

     ,1 2

1
2

 

















n

          (4) 

where  is the extra stress tensor, 
 is the infinite shear  rate viscosity, 0  is the zero shear-rate viscosity,  is the time 

constant, n is the dimensionless power law index and  is defined as 

1 1

2 2
ij ji

i j

      
 .         (5) 

here  is the second invariant of strain- rate tensor. We consider in the constitutive Eq. (4) the case for which 0 , and so 

we can write 

 
1

2 2

0 1 .

n

y y 



    
  

            (6) 

The above model reduces to Newtonian Model for n=1 or 0  . 

The flow is unsteady in the laboratory frame  YX , . However, if observed in a moving coordinate system with the wave speed 

c (wave frame)  yx,  it can be treated as steady. The coordinates and velocities in the two frames are 

,, YytcXx     , ,  ,u x y U c v x y V   ,       (7) 

where u  and v indicate the velocity components in the wave frame. The equations the following of a Carreau fluid are 

given by 

0









y

v

x

u ,            (8) 

x yx xp
u v u

x y x x y




   
     

     

        (9) 

.
x y y yp

u v v
x y y x y

 


    
     

     

        (10) 

The following non-dimension quantities are also defined 
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 1
1

1 1

,  ,   ,   ,   ,   
hx y u v c

x y u v t t h
d c c d 

      , 1

1

a
a

d
 , 2

1

a
b

d
 , 2

1

d
d

d
 , 1d

c


 


 , 1d




 , 

 12 1
2

1 0 0

, , , ,xx xy yyxx x y y y

h dd
h

d c c c


     

  

   
1

c
We

d




,
2

1

0

d
p p

c


, 1

0

e
cd

R





,
2

1

k
Da

d
 .       (11) 

and the stream function  yx, is defined by 

, .u v
y x

 


 
  
 

          (12) 

Using the above non-dimensional quantities given in Eqs. (8) - (10), the resulting equations in terms of stream function can 

be written as  

Re ,
2

xyxxp

y x x y y x x y

   


         
      

         

       (13) 

3 Re .
xy yyp

y x x y x y x y

   
  

        
       

         

      (14)

  

where 

  2
2 2

1
2 1 ,

2
xx

n
We

x y


 

  
   

  

          (15) 

  2 2
2 2 2

2 2

1
1 ,

2
xy

n
We

y x

 
  

    
     

   


        (16) 

  2
2 2

1
2 1 ,

2
yy

n
We

x y


  

  
  

  


 (17)    (17) 

1
2 2 22 2 2

2 2
2 2

x y y x x y

   
   


  

         
         

            

 .       (18) 

and , Re and We are the wave, Reynolds and Weisssenberg numbers, respectively. Under the assumptions of long 

wavelength and low Reynolds number, Eqs (13) - (14) after using Eq. (16) become 

 
2

2 2
2

2 2

1
1

2

np
We

x y y y

       
    

      

,              (19) 

0
p

y






.            (20) 

On eliminating the pressure p from Eqs. (19) - (20), we finally get 

 
2

2 2 2
2

2 2 2

1
1 0

2

n
We

y y y

      
   

     

.                 (21) 

 

IV.   RATE OF VOLUME FLOW AND BOUNDARY CONDITIONS 

 

In laboratory frame, the dimensional volume flow rate is 

 
 

 1

2

,

,

, ,

h X t

h X t

Q U X Y t dY 
.          (22) 

in which 
1h and 

2h are functions of X and t , the above expression in the wave frame becomes 

 
 

 



xh

xh

ydyxuq
1

2

,,             (23) 

where 
1h and 

2h are only functions of x , from Eqs. (7), (22) and (23) we can write 

   .21 xhcxhcqQ            (24)

  

The time- averaged flow over a period T at a fixed position X is given as 

0

1
T

Q Qdt
T

 
.   (25)          (25) 

Where 
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1 1

,   ,
F

Q q
cd cd


            

 (26) 

     
 

 

 





xh

xh
xhxhdy

y
F

1

21
2


          (27) 

              Here,  xh1
 and  xh2

represent the dimensionless form of the surfaces of the peristaltic walls 

 1 1 cos2 ,h x a x                                     (28) 

   2 cos 2 .h x d b x              (29) 

On substituting (24) into (25) and performing the integration, we obtain 

1 2F cd cd    ,          (30)

  

Inserting Eq. (26) into Eq. (30), yields  

1Q q d   .            (31)

  

In the wave frame, the boundary conditions in terms of streams function   are (Ref. [10]) 

1( )
2

q
at y h x   ,           (32) 

2 ( )
2

q
at y h x


  ,          (33) 

2

12
1 ( )at y h x

y y

 


 
   

 

,          (34) 

2

22
1 ( )at y h x

y y

 


 
   

 

.         (35) 

V.   PERTURBATION SOLUTION 

 

For perturbation solution, we expand , q and p as 

 2 4

0 ,We O We               (36) 

 2 4

0 ,q q We q O We             (37) 

 2 4

0 .p p We p O We     

             (38) 

 System of order 0We : 
4

0

4
0

y






,           (39)

  
3

0 0

3

p

x y

 


 

,           (40) 

 0
0 1

2

q
at y h x   ,          (41) 

 0
0 2

2

q
at y h x


  ,          (42) 

 
2

0 0
12

1 at y h x
y y

 


 
   

 

,         (43) 

 
2

0 0
22

1 at y h x
y y

 


 
   

 

.         (44) 

 

 System of order 2We  

(replace ψ by ψ1)  
3

24 2

0

4 2 2

1
0

2

n

y y y

     
   

     

,       (45) 

 
3

23

01 1

3 2

1

2

np

y y y y

      
    

      

.         (46) 

 1
1 1

2

q
at y h x   ,          (47) 
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 1
1 2

2

q
at y h x


  ,          (48) 

 
2

1 1
12

0 at y h x
y y

 


 
  

 

,          (49)

  
2

1 1
22

0 ( )at y h x
y y

 


 
  

 
 .        (50)

  

A.   Solution for system of order 0We : 

 

Solving Eq. (39) and then using the boundary conditions given in (41) - (44) we have 
3 2

0 1 2 3 4
3! 2!

y y
A A A y A               (51) 

where 

 0 1 2

1 2

1 2 1 2

12

( ) ( 6 )

q h h
A

h h h h 

  


  
, 

  

 
0 1 2 1 2

2 2

1 2 1 2

6

( ) 6

q h h h h
A

h h h h 

  


  
, 

  
 

0 1 2 1 2 1 2

3 2

1 2 1 2

6 ( )
1

( ) 6

q h h h h h h
A

h h h h 

   
  

  
, 

 

 

3 2

0 1 2 1 1 2 1 1 20
4 1 2

1 2 1 2

6 ( ) 3

2 ( ) 6

q h h h h h h h hq
A h

h h h h





           
   

. 

The expressions for the axial pressure gradient at this order is 

 0 1 20

2

1 2 1 2

12

( ) ( 6 )

q h hp

x h h h h 

  


   
.                                 (52) 

Integrating Eq. (52) over per wavelength we get 
1

0
0

0

dp
P dx

dx
  

           (53) 

 

B.   Solution for system of order 1We (the index should be 2): 

 

Substituting the zeroth-order solution (51) and Eq. (45) and solving the resulting system along with the corresponding 

boundary conditions we obtain  
3 2

5 4

1 1 2 3 4 11 12
3! 2!

y y
C C C y C L y L y       .                           (54) 

where 

   
1 17 1 2

1 2

1 2 1 2

12 ( )

6

q L h h
C

h h h h 

  


  

,       

   
1 18

2 2

1 2 1 2

6

6

q L
C

h h h h 




  

, 

 
   

2

1 2 2 2 19

3 2

1 2 1 2

6 2

6

q h h h L
C

h h h h

 



   


  

, 

   

3 2 2

1 1 1 1 2 2 1 201
4 2

1 2 1 2

(2 3 ) 6 ( 2 )

2 6

q h h h h h h Lq
C

h h h h

 



     
  

  

. 

3

1
11

( 1)

40

n c
L

 
 , 

2

1 2
12

( 1)

8

n c c
L

 
 , 

   3 2

13 11 1 1 12 1 15 4 4 3L L h h L h h     , 

   3 2

14 11 2 2 12 2 25 4 4 3L L h h L h h     , 
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 
14 13

15

1 2 2

L L
L

h h 




 

, 

 
     5 5 4 4

16 11 1 2 12 1 2 13 1 2

1 2

1
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The axial pressure gradient is given by 
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 (55) 

 

Integrating Eq. (55) over are wavelength we get the pressure as 
1

1
1

0

dp
P dx

dx
  

.           (56) 

The perturbation series solution up to second order for stream function , velocity u, pressure gradient dp/dx and pressure 

rise P  may be summarized as  
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 20 1
dp dpdp
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dx dx dx

  ,          (59) 

2

0 1P P We P                 (60) 

The non-dimensional shear stress of the channel reduces to  
 

  

   

   

        12

3 3

0 1 2 1 2 0 1 2 1 22 3 21 17 18
112 6 3 2

1 2 1 2 1 2 1 2 1 2 1 2

6 2 108( 1) 2 6 (1 )
20 12

6 6 6
xy

q h h h h y n q h h h h y q y L y L
We L y L y

h h h h h h h h h h h h


  

             
       

            

. (61) 

By neglecting the terms of orders greater than O ( 2We ), the results given by Eqs.(57)–(61) are therefore 

expressed up to 2We . The frictional force, at y= 1h  and y= 2h  denoted by  

1
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1 1
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 


.          (63) 

 

VI.   RESULTS AND DISCUSSION: 

  

In this section, the results are presented and discussed for 

different physical quantities of interest. The pressure rise is an 

important physical measure in the peristaltic mechanism. The 

perturbation method on Weissenberg number restricted us for 

choosing the parameters for Carreau fluid such that 

Weissenberg number is less than one. According to Bird et al. 

[16] the values of various parameters for Carreau fluid are: n 

= 0.398, 0.496. Fig. 2 is plotted for dimensionless pressure 

rise 𝛥𝑃𝜆  versus the dimensionless flow rate 𝑄  to the effects of 

partial slip β, Weissenberg number We, amplitude ratio Φ. 

The pumping regions are peristaltic pumping (𝑄 >0, 𝛥𝑃𝜆>0), 

augment pumping (𝑄 <0, 𝛥𝑃𝜆<0), retrograde pumping (𝑄 <0, 

𝛥𝑃𝜆>0), copumping (𝑄 >0, 𝛥𝑃𝜆<0) and free pumping (𝑄 =0, 

𝛥𝑃𝜆=0). The variation of the pressure rise 𝛥𝑃𝜆with mean flux 

𝑄  is calculated from Eq. (60) and drawn in Fig. 2. at different 

parameters values. Figs. 2(a) and (2b) illustrate the pressure 

rise of the Carreau fluid (n=0.398) and Newtonian fluid (n=1) 

for various values of the partial slip parameter β. It is shown 

in Fig. 2(a), that there is an inversely nonlinear relation 

between the pressure rise 𝛥𝑃𝜆  and the time mean volume flow 

rate 𝑄 , i.e. the pressure rise decreases with increasing the 

2859

Vol. 3 Issue 2, February - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20236



partial slip parameter β in peristaltic pumping region (𝑄 >0, 

𝛥𝑃𝜆>0). Also, the behavior of the Newtonian fluid (linear, 

n=1) is as Carreau fluid in peristaltic pumping region (𝑄 >0, 

𝛥𝑃𝜆>0). Figs. 2(c) and 2(d) represents the several values of 

Weissenberg number (We < 1) for pressure rise with volume 

flow rate, where it is observed that there is a Nonlinear 

relation in Carreau fluid and a linear relation in Newtonian 

fluid and the pressure rise increases with increasing 

Weissenberg number We in peristaltic pumping region (𝑄 >0, 

𝛥𝑃𝜆>0) for both fluids [Carreau (n=0.398) and Newtonian 

fluid (n=1)]. Also we found that the pumping curves are 

intersecting at retrograde pumping region (𝑄 <0, 𝛥𝑃𝜆>0) for 

Carreau fluid and the pumping curves are intersecting at 

copumping region (𝑄 >0, 𝛥𝑃𝜆<0).  It is observed that the 

pressure rise decreases with increasing the amplitude ratio Φ 

in the peristaltic pumping region (𝑄 >0, 𝛥𝑃𝜆>0) and the 

pumping curves are coinciding in the copumping region 

(𝑄 >0, 𝛥𝑃𝜆<0) from Fig. 2(e).  Fig. 2(f) shows a comparison of 

the Carreau fluid and Newtonian fluid; it is observed that the 

pumping curves are intersecting in the peristaltic pumping 

region (𝑄 >0, 𝛥𝑃𝜆>0), it is also found that the pressure rise 

decrease with increasing Carreau fluid (n=0.398, 0. 498) to 

Newtonian fluid (n=1) in retrograde pumping region (𝑄 <0, 

𝛥𝑃𝜆>0). However, the curves for Carreau fluid tend to 

approach the curve for the Newtonian fluid as n→1 and 

opposite behavior in copumping region (𝑄 >0, 𝛥𝑃𝜆<0). 

 

The velocity profiles for different values of volume flow rate, 

partial slip parameter β and Weissenberg number are 

discussed in Fig. 3. It is observed from Fig. 3(a) that the 

velocity profiles increases with increase volume flow rate. 

Fig. 3(b) shows the influence of the partial slip parameter β 

on the axial velocity, it is found that the magnitude of the 

axial velocity decreases in the center and increases nearer at 

the walls of the channel with increasing partial slip parameter 

β. Fig. 3(b) shows the effect of the Weissenberg number We 

on the magnitudes of the velocity, it is observed that the 

profiles decrease with increasing Weissenberg number We. It 

is also observed in Fig. 3(d) that the velocity deceases from 

Carreau fluid (n=0.398, 0.498) to Newtonian fluid (n=1). Fig. 

4 is plotted to see the effect of the parameters 𝑄 , β, and We 

on the pressure gradient 𝑑𝑝 𝑑𝑥 . Figs. 4(a)-4(c) show that the 

pressure gradient  𝑑𝑝 𝑑𝑥  decreases with increasing the 

volume flow rate, partial slip parameter β and Weissenberg 

number We. Fig. 4(d) indicates that the pressure gradient 

increases from Carreau fluid (n=0.398, 0.498) to Newtonian 

fluid (n=1). The variation of the axial shear stress 𝜏𝑥𝑦with y  

is calculated from Eq. (61) and is shown in Fig.5 for different 

physical parameters. In Figs. 5(a) and 5(c) we observe that 

the curves intersect at origin and the axial shear stress 𝜏𝑥𝑦  

increases with increasing the volume flow and Weissenberg 

number We  in the upper wall and an opposite behavior is 

observed in the lower wall of the channel. The relation 

between the shear stress 𝜏𝑥𝑦  and y at different values the 

partial slip parameter β is depicted in Fig. 5 (b). We observe 

that the curves intersect at the origin and the shear stress 𝜏𝑥𝑦  

decreases with increasing the partial slip parameter β above 

the origin while an opposite behavior is observed below the 

origin and no effect at the walls. It is observed from Fig. 5(d) 

that the shear stress  𝜏𝑥𝑦  decreases from Carreau fluid 

(n=0.398, 0.498) to Newtonian fluid (n=1).  

 

Trapping phenomena  

 Another interesting phenomenon in peristaltic motion 

is the trapping. It is basically the formation of an internally 

circulating bolus of fluid by closed stream lines. The trapped 

bolus will be pushed ahead along the peristaltic waves. The 

stream lines are calculated form Eq. (57) and plotted in Figs. 

6-10.  Fig. 6 shows the effects of the amplitude ratio Φ on the 

stream lines, it is found that the bolus moves from the central 

region towards left and decrease with increasing the 

amplitude ratio Φ.  It is shown in Fig. 7 that the size of bolus 

increases with increasing the volume flow rate while the 

bolus disappears for 𝑄 =0.5. Fig.8 is depicted for various 

values of the partial slip parameter β, It is found that the 

volume of the trapping bolus decreases as the partial slip 

parameter β increases, moreover, the bolus disappear at 

β=0.06. The stream lines are drawn in Fig.9 for different 

values of Weissenberg number We, it is found that the size of 

the trapping bolus increases with as Weissenberg number We 

increases. Figs. 9-10 compare for different wave forms like 

sinusoidal wave, triangular wave, trapezoidal wave, square 

wave and sawtooth wave,  it is finally observed that the 

volume of trapping bolus increases from Carreau 

fluid(n=0.398) to Newtonian fluid(n=1). 

 

VII.   CONCLUSION 

In the present note, we have discussed the peristaltic 

motion of a Carreau fluid in an asymmetric channel with 

partial slip β. The two-dimensional governing equations have 

been modeled and then simplified using the long wave length 

approximation and then solved by using the perturbation 

technique. The results are discussed through graphs. We have 

concluded the following observations: 

 The magnitude of the velocity field increases near the walls 

and decreases at the center of the channel with increasing the 

partial slip parameter β. 

 The pressure gradient decreases with increasing the partial 

slip parameter β, Weissenberg number We and the volume 

flow rate𝑄 . 

 In the peristaltic pumping region the pressure rise increases 

with increasing Weissenberg number We and decreases as the 

partial slip parameter β increases.  

 The shear stress distribution increases in the upper wall and 

decreases in the lower wall with decreasing β and decreasing 

Weissenberg We.   

 The size of tapping bolus decreases with increasing the 

partial slip β while it disappears at β=0.06. 

 The size of the trapping bolus increases from Carreau fluid 

(n=0.398) to Newtonian fluid (n=1). 
 

APPENDIX: EXPRESSIONS FOR WAVE SHAPES 

 

 The non-dimensional expressions for the five considered wave 

forms are given by the following equations: 
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I. Sinusoidal wave: 

   1 1 sinh x a x  ,         (A.1) 

   2 sinh x d b x     ,         (A.2) 

II. Triangular wave: 
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III. Square wave: 
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IV. Trapezoidal wave: 
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V. Sawtooth wave: 
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Fig. 2: Variation of 𝑄  with 𝛥𝑃𝜆for a=0.5, b=0.5, d=1; (a) Φ=π/6, n=0.398, We=0.01; (b) Φ=π/6, n=1, We=0.01; (c) Φ=π/6, n=0.398, β=0.01; (d) 
Φ=π/6, n=1, β=0.01; (e) n=.398, We=0.01,  β=0.01; (f) Φ=π/6, β=0.01, We=0.01. 
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Fig. 3: The velocity profiles for a=0.5, b=0.5, d=1.25, x=1, Φ=π/6; (a) β=0.01, n=0.398, We=0.01; (b) 𝑄 =1,       n=0.398,We=0.01; (c) 𝑄 =1, 

β=0.01, n=0.398; (d) ) 𝑄 =1,  β=0.01, We=0.01. 
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Fig. 4: Pressure distribution for a=0.5, b=0.5, d=1.25, Φ=0; (a) n=0.398, β=0.01, We =0.01; (b) 𝑄 =-1, n=0.398, We=0.01; (c) 𝑄 =-1, n=0.398, β=0.01; 

(d) 𝑄 =-1,  β=0.01, We=0.01
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Fig. 5:  The axial shear stress distributions 𝜏𝑥𝑦  with y for a=0.5, b=0.5, d=1, Φ=π/6; (a) 𝑄 =1, We=0.01, n=0.398; (b) 𝑄 =1, β=0.01, 

n=0.398;(c) 𝑄 =1, β=0.01, n=0.398; (d) 𝑊𝑒 =

0.01, β=0.01, 𝑄 =1. 

   
(a)                                                       (b)                    (c) 

Fig. 6: Stream lines for different values of mean flow rate a=0.5, b=0.5, d=1, 𝑄 =1.6. Φ=0, n=0.398, 𝑊𝑒 = 0.01, β=0.01; (a) Φ=π/6; b) Φ=π/3; 
(c) Φ=π/2. 
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(a)                                                          (b)                                                        (c) 

Fig. 7: Stream lines for different values of mean flow rate a=0.5, b=0.5, d=1, Φ=0, n=0.398, 𝑊𝑒 = 0.01; (𝑎) 𝑄 =0.5, (b) 𝑄 =1; (c) 𝑄 =1.5. 

                    

                     (a)                                (b).              (c) 
Fig. 8: Stream lines for different values of mean flow rate a=0.5, b=0.5, d=1, Φ=0, n=0.398, 𝑊𝑒 = 0.01 ,  𝑄 =1;          (a)β=0.00; (b)β=0.02; (c) 

β=0.06. 

 
(a)                        (b)               (c) 

Fig. 9: Stream lines for different values of mean flow rate a=0.5, b=0.5, d=1, Φ=0, n=0.398, β = 0.01 ,  𝑄 =1;          (a) We=0.00; (b) We=0.04; 
(c)We=0.08. 

 
                                     (a)                                                       (b).                                                         (c)  
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                                                          (d)                                                                       (e)                                                  

Fig. 10: Stream lines for five different wave forms of Carreau fluid (n=0.398) (a) sinusoidal wave, (b) triangular wave (c) trapezoidal wave 

(d) square wave (e) sawtooth wave with a=0.5, b=0.5, d=1, Φ=0,  𝑄 =1, β=0.01 andWe  =0.01. 

 
                      (a)            (b).                                                    (c) 

      
(d)                                                                       (e) 

Fig. 11: Stream lines for five different wave forms of Newtonian fluid( n=1); (a) sinusoidal wave; (b) triangular wave; (c) trapezoidal wave; 

(d) square wave; (e) sawtooth wave with a=0.5, b=0.5, d=1, Φ=0,  𝑄 =1, β=0.01 and We =0.01. 
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