

Performance Optimization Of Highly Computational Tasks Using CUDA

Mandar S.Karyakarte

Department of Information Technology

Vishwakarma Institute of Information Technology

Pune, INDIA

Harsh Kundnani

Department of Information Technology

Vishwakarma Institute of Information Technology

Pune, INDIA

Abstract—The paper analyses the features and generalized

optimization methods, on establishing strategies for improving

software performance when using the Compute Unified Device

Architecture (CUDA) implemented in the latest generation GPUs.

The performance for progressively optimizing a matrix

multiplication, prime number search for a very large data in CUDA

is evaluated. A particular interest was to investigate how well, does

CUDA optimizes the speed of computing as compared to a Central

Processing Unit(CPU).Also the time required for copying of data

from host to device which is from the Central Processing Unit (CPU)

to Graphics Processing Unit (GPU) and back when the input is

significantly large amount of data.

Keywords— Compute Unified Device Architecture, Parallel

Processing, General Purpose Graphics Processing Unit, Massively

Parallel Processing.

I. INTRODUCTION TO PARALLEL PROCESSING

The silicon based processor chips are reaching their physical

limits in processing speed, as they are constrained by the

speed of electricity, light and certain thermodynamic law. A

very viable solution to overcome this limitation is to connect

multiple processors working in co-ordination with each

other to solve grand challenge problems. Hence high

performance computing requires the use of the Massively

Parallel Processing (MPP) systems containing thousands of

powerful CPUs. Parallel Machines provide a wonderful

opportunity for applications with large computational

requirements.

II. SIGNIFICANCE OF USING PARALLEL PROCESSING

a. Execution Speed: There is an ever-increasing appetite

among some types of computer users for faster and faster

machines; this was epitomized in a statement by the late Steve

Jobs, founder/CEO of Apple and Pixar. For 30 years, one of

the important methods for the improving the performanceof

consumer computing devices has been to increase the speed at

which theprocessor’s clock operated. Starting with the first

personal computers of the early1980s, consumer CPUs ran

with internal clocks operating around 1MHz. About 30 years

later, most desktop processors have clock speeds between

1GHz and 4GHz, nearly 1,000 times faster than the clock on

the personal computer of 1980’s [1].A major source of

speedup is the parallelizing of operations. Parallel operations

can be either within-processor, such as pipelining or having

several ALUs within a processor, or between processor, in

which many processors work on different parts of a problem

in parallel.

b. Memory: Parallel processing application often tend to use

huge amounts of memory, and in many cases the amount of

memory needed is more than the memory that could be

allocated on a machine. If many machines are working

together, then we can accommodate the large memory needs.

c. Distributed Processing: Apart from the two most famous

issues in Computer Science –time (speed) and space (memory

capacity), distributed processing demands for high availability

and near real time performance to solve the queries. In a

distributed database, for instance, parts of the database may be

physically located at the widely dispersed sites; successful

resolution of queries depends on how fast the server computes

and gives response.

III. DIFFERENT APPROACHES FOR PARALLEL PROCESSING

The different approaches for parallel processing are divided

into two categories i.e. hardware and software. The talk about

hardware part, it can further be sub-categorized into many

different types of approaches. Some of these are discussed

below.

a. Multicore Computing:

A multi-core processor is a single computing

component with two or more independent with actual

processing units, which are the units that read and

execute program instructions.

b. Massively Parallel Processing:

A Massively Parallel Processor (MPP) is a single

computer with many networked processors. MPPs are

much more similar to the clusters, except they have

specialized interconnect networks. MPPs also are

usually larger than clusters, and they havemuch more

than 100 processors. In a MPP, "each CPU contains

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

its own memory and copy of the operating system

and application. Each subsystem communicates with

the others via a high-speed interconnect [2].

c. General Purpose Graphics Processing Unit:

It is the utilization of the Graphics Processing Unit

(GPU), which typically handles computation only for

computer graphics, to perform computation in

applications traditionally handled by the Central

Processing Unit. Any GPU providing a functionally

complete set of operations performed on set of

arbitrary bits can compute any computable value.

Software approaches:

Concurrent programming languages, libraries, APIs,

and parallel programming models have been created

for programming parallel computers. Concurrent

languages can be defined as one which uses the

concept of simultaneously executing process or

threads of execution as a means of structuring a

program. These can be divided into classes based on

the underlying memory architecture—shared

memory, distributed memory, or shared distributed

memory. Shared memory programming languages

communicate by manipulating shared memory

variables. Distributed memory uses message

passing. POSIX Threads and OpenMP are two of

most widely used shared memory APIs,

whereas Message Passing Interface is the most

widely used message-passing system API. Our focus

will be on the GPU programming languages and

especially on the Compute Unified Device

Architecture (CUDA).

The different graphics processing unit programming

languages are:

a. Open Computing Language (OpenCL):

OpenCL is a structure for writing programs that

executes across a promiscuous platforms

consisting of Central Processing Unit, Graphics

Processing Unit and other processors. OpenCL

has a language for writing kernels which

arefunctions that execute on OpenCL devices,

plus application programming interfaces (APIs)

that are used to define and then control the

platforms.

b. Open Hybrid Multicore Parallel Programming

(OpenHMPP):

The main idea was and is still to let developers

handle hardware accelerators without the

complexity associated with GPU programming.

This approach was based on the decisions to

enable relationship between an application code

and the use of hardware accelerators which is not

very strong i.e. hardware accelerators could

accelerate the application without use of coding.

The OpenHMPP directive-based programming

model offers a powerful syntax to efficiently

offload computations on hardware accelerators

and to optimize data movement.

c. Compute Unified Device Architecture (CUDA):

CUDA is a parallel computing platform and

programming model created by NVIDIA and

implemented by the graphics processing

units (GPUs) that they produce [3]. CUDA gives

developers access to the virtual instruction

set and memory of the parallel

computationalelements in CUDA GPUs. Using

CUDA, the NVIDIA GPUs can be used for

computation like CPUs. GPUs have a parallel

architecture which increases the throughput and

it executes many threads simultaneously and

unlike CPU it doesn’t execute a single thread

very quickly.

IV. WHAT IS CUDA AND WHY CUDA?

Graphics Processing Units have been used for a long time

solely to accelerate graphics rendering on computers. In

order to satisfy the increasing need for improved three-

dimensional rendering at a high resolution and a large

number of frames per second, the GPU has evolved from a

one-purpose specialized architecture to multiple purposes

complex architectures, able to do much more than just

provide video rendering. The acceleration of a broad class

of applications became possible once with the introduction

of the NVIDIA Compute Unified Device.

CUDA is NVIDIA’s parallel computing architecture that

enables dramatic increases in computing performance by

harnessing the power of the GPU.

Figure 1

CUDA is a software and hardwarearchitecture that enables

the NVIDIA graphics processor to execute

programswritten in C, C++, FORTRAN, OpenCL, Direct

Compute and other languages. A CUDA program invokes

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

more parallel program kernels. The kernel can process in

each set of parallel threads in a parallel manner. These

threads can be grouped into thread blocks which consist of

more threads and also grids of thread blocks which consist

of more thread blocks. The GPU processor launches a

kernelprogram on a grid containing parallel thread blocks.

Each thread from the block executes a function assigned to

it by the kernel and each thread has an uniqueID associated

with it, to its private memory within the thread block.

The different threads generated by Compute Unified

Device Architecture are mapped to the different graphics

processing units’ hardware processor; a GPU does the

execution of one or more kernel grids whereas a

multiprocessor does the execution of one or more thread

blocks. The CUDA cores which are contained in the

multiprocessor run the threads within blocks [4].

The memory hierarchy of each multiprocessor is dived in

such a way that itcontains a set of 32-bit registry with a

zone of shared memory, which can be easily accessby each

core of the multiprocessor but at the same timehidden from

other multi-processors. The number of registry and the size

of shared memory greatly dependon the generation of a

GPU. Besides shared memory, a multiprocessor further

contains two read – only memory caches, one for texture

and another one for constants [5]. In order to improve

software performance byprogramming in CUDA,

programmersneed to optimize the number of

naturallyactive threads and balance each thread’s resources

which are the number of registers and threads per

multiprocessor and also the global memorybandwidth and

the amount of on-chip memory assigned per thread. Using

these techniques,many applications improved their

execution time up to 500X in kernel codes

In the NVIDIA CUDA programming model a system is

comprised of a traditional CPU (representing the host) and

one or more massively data-parallel

coprocessors(representing the devices). The CUDA

runtime has library functions for managing both the device

memory and transfers from the host to the compute

devices.

All concurrent threads are based on the samecode even if

they may follow different paths of execution because each

CUDA device processor supports the Single-Program

Multiple Data (SPMD) model and each thread resides in

the same global addressspace. The parallel functions called

kernels and other data structures which corresponds to the

compute devices, are programmed using the standard C

language with some extended keywords.A kernel is coded

in a way such that it invokes thousands of threads at a time

but they synchronize in such a way that they describe the

work of a single thread. Threads synchronize themselves

through use of built in primitives and share data among

each other. The CUDA programming model is designed in

such a way that it enables the components of a program,

which are to be performed using data parallelism are

separated and executed on a specialized massive data

parallelism coprocessor. The programmer has to very

efficiently divide the resources among threads so that

every CUDA core can process a large number of threads

and if performed correctly then this flexibility offers a very

high degree of control over an application performance

and it also has a great impact on optimizing the

performance of applications.

V. OPTIMIZING PERFORMANCE USING CUDA:

To optimize the performance of anapplication using CUDA,

the program has been written in C language using CUDA

libraries which uses the GPU for the maximum calculation

purpose and uses CPU for initialization and other purposes.

Analgorithm is developed in such a way in CUDA

programming model that the work is dividedin small

fragments which can be processed by any number of thread

blocks, each containing n threads. For optimum performance,

it is recommended that the number of thread blocks match the

number of processors, although the threads within a block will

be executed by more cores within a streaming multiprocessor.

Two programs have been developed one using multithreading

in C and second using CUDA. Then both the programs are

tested for the time complexity i.e. the time taken for complete

execution of the program by passing large amount of data to it.

To perform these tests CUDA toolkit has been installed on a

system with specifications as mentioned below:

Processor: Intel® Core™ i3-3110 CPU multi core with

Processor Speed of 2.40GHz, Installed Memory (RAM) of 4

GB, Hard Disk space of 500GB.,Graphics Processing Unit

GeFORCE GT 630M with 96 CUDA cores Graphics Clock

800 MHz’s.

a. Matrix Multiplication:

Two n x n matrix has been initialized with random

values and with the use of multithreading its value

has been calculated. The value of n which is

considered by me is large and takes considerate

amount of time by a CPU to calculate its value. The

same data is been tested with the CUDA and the

results are compared. I have just considered the time

complexity i.e. the time taken to move the data from

CPU to GPU then time taken to process the data and

then time taken to copy the data back to the CPU

from GPU.

In the CUDA program the kernel part separates the

functions performed by CPU and functions

performed by GPU. A large number of threads are

created depending on number of cores of the GPU,

but in my program we have limited the program to

around 200 threads for each block and we have

considered 32 blocks. Each thread created has a

unique identity and it performs an individual number

multiplication.

The results generated are following as shown in the

table below and a graphical representation is also

shown along with it to give a clear idea about the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

time complexity of the two codes performing the

same computation on two different platforms.

Matrix CPU (8 threads) GPU

1000 x 1000 4.7022925s 0.2649s

2000 x 2000 40.101659s 2.0442s

4000 x 4000 367.137450s 16.0987s

6000 x 6000 1406.453598s 55.7108s

8000 x 8000 4432.138453s 129.0358s

Table 1: Matrix Multiplication

Figure 2: Graph representing the time variations

The graph shows clearly the difference in time taken to

compute the matrix multiplication on CPU and GPU and how

fast CUDA can perform computation.

Another table shows the time taken to copy the contents from

Host to Device i.e. CPU to GPU for the 1000 x 1000 Matrix.

The things which can be noticed from the given table are that

most time is spent in copying the data from the CPU memory

to the GPU memory for computation and again copying the

results back from GPU memory to CPU memory for printing it.

The important strategy that should be applied while computing

using CUDA is too copy less data between host and device and

perform more computation on the data that is copied. The

important thing while working with CUDA is not the latency

but the throughput which is the amount of transactions per unit

time.

Name Start

Time

Duration Size Throughput

Memcpy

HtoD

68.655ms 985.603

micro

seconds

3.815MB 3.78GB/s

Memcpy

DtoH

500.109

ms

1.62 ms 3.815MB 2.29GB/s

Table 2: Time Variation in copying Data from Host

to Device and Device to Host for Matrix

Multiplication Problem

b. Prime Number Search

Searching for prime numbers between a given ranges

has been performed as the next program to test that

CUDA optimizes the speed of computation as

compared to the CPU. A large range of 8000

numbers have been considered as input for the

program and the same has been written with

multithreading in C to run on CPU and using CUDA

libraries to run on GPU. In this program the time

complexity i.e. the time taken to move the data from

CPU to GPU then time taken to process the data and

then time taken to copy the data back to the CPU

from GPU is considered.

In the CPU version of this program the range is

divided according to the slices and this program also

uses 8 threads. Each thread is assigned a task to

compute the different slices of numbers depending on

the range entered. When each thread has finished

searching for prime numbers within its slices it stops

working.

In the CUDA version of the program also the range is

divided and accordingly the number of threads are

passed which checks for itself if they are prime or not

and if they are prime the numbers are stored in the

output array.

Tables below and figure 3 shows the results.

Range of Numbers CPU (8 threads) GPU

1000 63.005960s 0.0009s

2000 125.011815s 0.002s

4000 250.022927s 0.0067s

6000 375.031079s 0.0144s

8000 500.043820s 0.0259s

Table 3: Prime Number Search

Figure 3: Graph representing the time variations

0

1000

2000

3000

4000

5000

Matrix

Ti
m

in
g

in
 S

e
co

n
d

s

Time Chart of Matrix Multiplication

CPU(8
threads)
GPU

0

100

200

300

400

500

600

1
0

0
0

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

0

0.05

0.1

0.15

0.2

0.25

0.3

C
P

U
 T

im
in

g
in

 S
e

co
n

d
s

Range of Prime Numbers

G
P

U
 T

im
in

g
in

 S
e

co
n

d
s

Time Graph of Prime Number Search

GPU

CPU(8thre
ads)

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

The graph here shows the time variation of the GPU which

maximum reaches till 0.25s whereas the time variation of the

CPU which reaches maximum till 500s. It clearly depicts the

difference in time taken to compute the Prime number search

on CPU and GPU and how fast CUDA can perform

computation.

Another table shows the time taken to copy the 1000 numbers

from Host to Device. The things which can be noticed from the

given table are same as that from the above Matrix

Multiplication Memory table.

Name Start

Time

Duration Size Throughput

Memcpy

HtoD

65.398ms 8.288

micro

seconds

31.26KB 3.6GB/s

Memcpy

D to H

91.28ms 7.073

micro

seconds

31.25KB 4.21GB/s

Table 4: Time Variation in copying Data from Host

to Device and Device to Host for Prime Number

Search Problem

VI. CONCLUSION

In this paper we have analysed several aspects regarding

the improvement of performance of applications written using

CUDA. We addressed two problems Matrix Multiplication and

Prime Number Search using the both multithreading in C and

using CUDA and analysed various time complexities based on

the amount of data given to each problem at a given time. We

also addressed the problem of time consumption during the

copying of data from host to device and device to host. The

time taken by the GPU for computation can be optimized much

more by defining the correct number of threads and maintain

the ratio of creation of thread to work done by each thread.

The computation results can vary to a great deal if a much

higher core CPU processor and GPU processor is used for

computation of the same problem and can result in a much

more higher results. The possibilities of CUDA are endless and

with more and more research many new applications are

developed for scientific and domestic uses.

VII. REFERENCES

1. CUDA by Example: An Introduction to General-

Purpose GPU Programming.

http://books.google.co.in/books?id=49OmnOmTEtQC

2. NVIDIA CUDA

http://www.nvidia.com/object/cuda_home_new.html

3. Programming on Parallel Machines written by Norm

Matloff

heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBoo

k.pdf

4. Improving Software Performance in the Compute

Unified Device Architecture by Alexander PIRJAN

5. http://www.readperiodicals.com/201010/2281802401.

html

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

