
 

 

Performance Optimization Of Highly Computational Tasks Using CUDA 

 

Mandar S.Karyakarte 

Department of Information Technology 

Vishwakarma Institute of Information Technology 

Pune, INDIA 

  

Harsh Kundnani 

Department of Information Technology 

Vishwakarma Institute of Information Technology 

Pune, INDIA 

  

 

 

 

 
Abstract—The paper analyses the features and generalized 

optimization methods, on establishing strategies for improving 

software performance when using the Compute Unified Device 

Architecture (CUDA) implemented in the latest generation GPUs. 

The performance for progressively optimizing a matrix 

multiplication, prime number search for a very large data in CUDA 

is evaluated. A particular interest was to investigate how well, does 

CUDA optimizes the speed of computing as compared to a Central 

Processing Unit(CPU).Also the time required for copying of data 

from host to device which is from the Central Processing Unit (CPU) 

to Graphics Processing Unit (GPU) and back when the input is 

significantly large amount of data. 

Keywords— Compute Unified Device Architecture, Parallel 

Processing, General Purpose Graphics Processing Unit, Massively 

Parallel Processing. 

I. INTRODUCTION TO PARALLEL PROCESSING 

The silicon based processor chips are reaching their physical 

limits in processing speed, as they are constrained by the 

speed of electricity, light and certain thermodynamic law. A 

very viable solution to overcome this limitation is to connect 

multiple processors working in co-ordination with each 

other to solve grand challenge problems. Hence high 

performance computing requires the use of the Massively 

Parallel Processing (MPP) systems containing thousands of 

powerful CPUs. Parallel Machines provide a wonderful 

opportunity for applications with large computational 

requirements. 

 

II. SIGNIFICANCE OF USING PARALLEL PROCESSING 

a. Execution Speed: There is an ever-increasing appetite 

among some types of computer users for faster and faster 

machines; this was epitomized in a statement by the late Steve 

Jobs, founder/CEO of Apple and Pixar. For 30 years, one of 

the important methods for the improving the performanceof 

consumer computing devices has been to increase the speed at 

which theprocessor’s clock operated. Starting with the first 

personal computers of the early1980s, consumer CPUs ran 

with internal clocks operating around 1MHz. About 30 years 

later, most desktop processors have clock speeds between 

1GHz and 4GHz, nearly 1,000 times faster than the clock on 

the personal computer of 1980’s [1].A major source of 

speedup is the parallelizing of operations. Parallel operations 

can be either within-processor, such as pipelining or having 

several ALUs within a processor, or between processor, in 

which many processors work on different parts of a problem 

in parallel. 

b. Memory: Parallel processing application often tend to use 

huge amounts of memory, and in many cases the amount of 

memory needed is more than the memory that could be 

allocated on a machine. If many machines are working 

together, then we can accommodate the large memory needs. 

c. Distributed Processing: Apart from the two most famous 

issues in Computer Science –time (speed) and space (memory 

capacity), distributed processing demands for high availability 

and near real time performance to solve the queries. In a 

distributed database, for instance, parts of the database may be 

physically located at the widely dispersed sites; successful 

resolution of queries depends on how fast the server computes 

and gives response. 

III. DIFFERENT APPROACHES FOR PARALLEL PROCESSING 

The different approaches for parallel processing are divided 

into two categories i.e. hardware and software. The talk about 

hardware part, it can further be sub-categorized into many 

different types of approaches. Some of these are discussed 

below. 

a. Multicore Computing: 

A multi-core processor is a single computing 

component with two or more independent with actual 

processing units, which are the units that read and 

execute program instructions.  

b. Massively Parallel Processing: 

A Massively Parallel Processor (MPP) is a single 

computer with many networked processors. MPPs are 

much more similar to the clusters, except they have 

specialized interconnect networks. MPPs also are 

usually larger than clusters, and they havemuch more 

than 100 processors. In a MPP, "each CPU contains 
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its own memory and copy of the operating system 

and application. Each subsystem communicates with 

the others via a high-speed interconnect [2]. 

 

 

c. General Purpose Graphics Processing Unit: 

It is the utilization of the Graphics Processing Unit 

(GPU), which typically handles computation only for 

computer graphics, to perform computation in 

applications traditionally handled by the Central 

Processing Unit. Any GPU providing a functionally 

complete set of operations performed on set of 

arbitrary bits can compute any computable value. 

 

Software approaches: 

Concurrent programming languages, libraries, APIs, 

and parallel programming models have been created 

for programming parallel computers. Concurrent 

languages can be defined as one which uses the 

concept of simultaneously executing process or 

threads of execution as a means of structuring a 

program. These can be divided into classes based on 

the underlying memory architecture—shared 

memory, distributed memory, or shared distributed 

memory. Shared memory programming languages 

communicate by manipulating shared memory 

variables. Distributed memory uses message 

passing. POSIX Threads and OpenMP are two of 

most widely used shared memory APIs, 

whereas Message Passing Interface is the most 

widely used message-passing system API. Our focus 

will be on the GPU programming languages and 

especially on the Compute Unified Device 

Architecture (CUDA).  

The different graphics processing unit programming 

languages are: 

a.  Open Computing Language (OpenCL): 

OpenCL is a structure for writing programs that 

executes across a promiscuous platforms 

consisting of Central Processing Unit, Graphics 

Processing Unit and other processors. OpenCL 

has a language for writing kernels which 

arefunctions that execute on OpenCL devices, 

plus application programming interfaces (APIs) 

that are used to define and then control the 

platforms. 

 

b. Open Hybrid Multicore Parallel Programming 

(OpenHMPP): 

The main idea was and is still to let developers 

handle hardware accelerators without the 

complexity associated with GPU programming. 

This approach was based on the decisions to 

enable relationship between an application code 

and the use of hardware accelerators which is not 

very strong i.e. hardware accelerators could 

accelerate the application without use of coding. 

The OpenHMPP directive-based programming 

model offers a powerful syntax to efficiently 

offload computations on hardware accelerators 

and to optimize data movement.  

 

 

c. Compute Unified Device Architecture (CUDA): 

CUDA is a parallel computing platform and 

programming model created by NVIDIA and 

implemented by the graphics processing 

units (GPUs) that they produce [3]. CUDA gives 

developers access to the virtual instruction 

set and memory of the parallel 

computationalelements in CUDA GPUs. Using 

CUDA, the NVIDIA GPUs can be used for 

computation like CPUs. GPUs have a parallel 

architecture which increases the throughput and 

it executes many threads simultaneously and 

unlike CPU it doesn’t execute a single thread 

very quickly. 

 

IV. WHAT IS CUDA AND WHY CUDA? 

Graphics Processing Units have been used for a long time 

solely to accelerate graphics rendering on computers. In 

order to satisfy the increasing need for improved three-

dimensional rendering at a high resolution and a large 

number of frames per second, the GPU has evolved from a 

one-purpose specialized architecture to multiple purposes 

complex architectures, able to do much more than just 

provide video rendering. The acceleration of a broad class 

of applications became possible once with the introduction 

of the NVIDIA Compute Unified Device. 

CUDA is NVIDIA’s parallel computing architecture that 

enables dramatic increases in computing performance by 

harnessing the power of the GPU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

CUDA is a software and hardwarearchitecture that enables 

the NVIDIA graphics processor to execute 

programswritten in C, C++, FORTRAN, OpenCL, Direct 

Compute and other languages. A CUDA program invokes 
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more parallel program kernels. The kernel can process in 

each set of parallel threads in a parallel manner. These 

threads can be grouped into thread blocks which consist of 

more threads and also grids of thread blocks which consist 

of more thread blocks. The GPU processor launches a 

kernelprogram on a grid containing parallel thread blocks. 

Each thread from the block executes a function assigned to 

it by the kernel and each thread has an uniqueID associated 

with it, to its private memory within the thread block.   

The different threads generated by Compute Unified 

Device Architecture are mapped to the different graphics 

processing units’ hardware processor; a GPU does the 

execution of one or more kernel grids whereas a 

multiprocessor does the execution of one or more thread 

blocks. The CUDA cores which are contained in the 

multiprocessor run the threads within blocks [4].  

The memory hierarchy of each multiprocessor is dived in 

such a way that itcontains a set of 32-bit registry with a 

zone of shared memory, which can be easily accessby each 

core of the multiprocessor but at the same timehidden from 

other multi-processors. The number of registry and the size 

of shared memory greatly dependon the generation of a 

GPU. Besides shared memory, a multiprocessor further 

contains two read – only memory caches, one for texture 

and another one for constants [5]. In order to improve 

software performance byprogramming in CUDA, 

programmersneed to optimize the number of 

naturallyactive threads and balance each thread’s resources 

which are the number of registers and threads per 

multiprocessor and also the global memorybandwidth and 

the amount of on-chip memory assigned per thread. Using 

these techniques,many applications improved their 

execution time up to 500X in kernel codes  

In the NVIDIA CUDA programming model a system is 

comprised of a traditional CPU (representing the host) and 

one or more massively data-parallel 

coprocessors(representing the devices). The CUDA 

runtime has library functions for managing both the device 

memory and transfers from the host to the compute 

devices.  

All concurrent threads are based on the samecode even if 

they may follow different paths of execution because each 

CUDA device processor supports the Single-Program 

Multiple Data (SPMD) model and each thread resides in 

the same global addressspace. The parallel functions called 

kernels and other data structures which corresponds to the 

compute devices, are programmed using the standard C 

language with some extended keywords.A kernel is coded 

in a way such that it invokes thousands of threads at a time 

but they synchronize in such a way that they describe the 

work of a single thread. Threads synchronize themselves 

through use of built in primitives and share data among 

each other. The CUDA programming model is designed in 

such a way that it enables the components of a program, 

which are to be performed using data parallelism are 

separated and executed on a specialized massive data 

parallelism coprocessor. The programmer has to very 

efficiently divide the resources among threads so that 

every CUDA core can process a large number of threads 

and if performed correctly then this flexibility offers a very 

high degree of control over an application performance 

and it also has a great impact on optimizing the 

performance of applications. 

V. OPTIMIZING PERFORMANCE USING CUDA: 

 

To optimize the performance of anapplication using CUDA, 

the program has been written in C language using CUDA 

libraries which uses the GPU for the maximum calculation 

purpose and uses CPU for initialization and other purposes. 

Analgorithm is developed in such a way in CUDA 

programming model that the work is dividedin small 

fragments which can be processed by any number of thread 

blocks, each containing n threads. For optimum performance, 

it is recommended that the number of thread blocks match the 

number of processors, although the threads within a block will 

be executed by more cores within a streaming multiprocessor. 

Two programs have been developed one using multithreading 

in C and second using CUDA. Then both the programs are 

tested for the time complexity i.e. the time taken for complete 

execution of the program by passing large amount of data to it. 

To perform these tests CUDA toolkit has been installed on a 

system with specifications as mentioned below: 

Processor: Intel® Core™ i3-3110 CPU multi core with 

Processor Speed of 2.40GHz, Installed Memory (RAM) of 4 

GB, Hard Disk space of 500GB.,Graphics Processing Unit 

GeFORCE GT 630M with 96 CUDA cores Graphics Clock 

800 MHz’s.  

 

a. Matrix Multiplication: 

Two n x n matrix has been initialized with random 

values and with the use of multithreading its value 

has been calculated. The value of n which is 

considered by me is large and takes considerate 

amount of time by a CPU to calculate its value. The 

same data is been tested with the CUDA and the 

results are compared. I have just considered the time 

complexity i.e. the time taken to move the data from 

CPU to GPU then time taken to process the data and 

then time taken to copy the data back to the CPU 

from GPU. 

In the CUDA program the kernel part separates the 

functions performed by CPU and functions 

performed by GPU. A large number of threads are 

created depending on number of cores of the GPU, 

but in my program we have limited the program to 

around 200 threads for each block and we have 

considered 32 blocks. Each thread created has a 

unique identity and it performs an individual number 

multiplication.   

The results generated are following as shown in the 

table below and a graphical representation is also 

shown along with it to give a clear idea about the 
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time complexity of the two codes performing the 

same computation on two different platforms. 

 

 

Matrix CPU (8 threads) GPU 

1000 x 1000 4.7022925s 0.2649s 

2000 x 2000 40.101659s 2.0442s 

4000 x 4000 367.137450s 16.0987s 

6000 x 6000 1406.453598s 55.7108s 

8000 x 8000 4432.138453s 129.0358s 

Table 1: Matrix Multiplication 

 

 

Figure 2: Graph representing the time variations 

 

The graph shows clearly the difference in time taken to 

compute the matrix multiplication on CPU and GPU and how 

fast CUDA can perform computation.  

Another table shows the time taken to copy the contents from  

Host to Device i.e. CPU to GPU for the 1000 x 1000 Matrix. 

The things which can be noticed from the given table are that 

most time is spent in copying the data from the CPU memory 

to the GPU memory for computation and again copying the 

results back from GPU memory to CPU memory for printing it. 

The important strategy that should be applied while computing 

using CUDA is too copy less data between host and device and 

perform more computation on the data that is copied. The 

important thing while working with CUDA is not the latency 

but the throughput which is the amount of transactions per unit 

time.  

 

Name Start 

Time 

Duration Size Throughput 

Memcpy 

HtoD 

68.655ms 985.603 

micro 

seconds 

3.815MB 3.78GB/s 

Memcpy 

DtoH 

500.109

ms 

1.62 ms 3.815MB 2.29GB/s 

Table 2: Time Variation in copying Data from Host 

to Device and Device to Host for Matrix 

Multiplication Problem 

 

 

 

b. Prime Number Search 

 

Searching for prime numbers between a given ranges 

has been performed as the next program to test that 

CUDA optimizes the speed of computation as 

compared to the CPU. A large range of 8000 

numbers have been considered as input for the 

program and the same has been written with 

multithreading in C to run on CPU and using CUDA 

libraries to run on GPU. In this program the time 

complexity i.e. the time taken to move the data from 

CPU to GPU then time taken to process the data and 

then time taken to copy the data back to the CPU 

from GPU is considered. 

In the CPU version of this program the range is 

divided according to the slices and this program also 

uses 8 threads. Each thread is assigned a task to 

compute the different slices of numbers depending on 

the range entered. When each thread has finished 

searching for prime numbers within its slices it stops 

working. 

In the CUDA version of the program also the range is 

divided and accordingly the number of threads are 

passed which checks for itself if they are prime or not 

and if they are prime the numbers are stored in the 

output array.  

Tables below and figure 3 shows the results.  

 

Range of Numbers CPU (8 threads) GPU 

1000 63.005960s 0.0009s 

2000 125.011815s 0.002s 

4000 250.022927s 0.0067s 

6000 375.031079s 0.0144s 

8000 500.043820s 0.0259s 

Table 3: Prime Number Search 

 

 

Figure 3: Graph representing the time variations 
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The graph here shows the time variation of the GPU which 

maximum reaches till 0.25s whereas the time variation of the 

CPU which reaches maximum till 500s. It clearly depicts the 

difference in time taken to compute the Prime number search 

on CPU and GPU and how fast CUDA can perform 

computation. 

Another table shows the time taken to copy the 1000 numbers 

from Host to Device. The things which can be noticed from the 

given table are same as that from the above Matrix 

Multiplication Memory table.  

 

Name Start 

Time 

Duration Size Throughput 

Memcpy 

HtoD 

65.398ms 8.288 

micro 

seconds 

31.26KB 3.6GB/s 

Memcpy 

D to H 

91.28ms 7.073 

micro 

seconds 

31.25KB 4.21GB/s 

Table 4: Time Variation in copying Data from Host 

to Device and Device to Host for Prime Number 

Search Problem 

 

VI. CONCLUSION 

In this paper we have analysed several aspects regarding 

the improvement of performance of applications written using 

CUDA. We addressed two problems Matrix Multiplication and 

Prime Number Search using the both multithreading in C and 

using CUDA and analysed various time complexities based on 

the amount of data given to each problem at a given time. We 

also addressed the problem of time consumption during the 

copying of data from host to device and device to host. The 

time taken by the GPU for computation can be optimized much 

more by defining the correct number of threads and maintain 

the ratio of creation of thread to work done by each thread. 

The computation results can vary to a great deal if a much 

higher core CPU processor and GPU processor is used for 

computation of the same problem and can result in a much 

more higher results. The possibilities of CUDA are endless and 

with more and more research many new applications are 

developed for scientific and domestic uses. 
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