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Abstract- Occurrence of drought events leads to water 

resources imbalance within a river basin. However, 

information on drought episodes for most basins such as Tana 

River basin in Kenya is limited. Due to the critical role of 

drought forecasting in early warning system and water 

resources planning and management, this paper presents the 

performance  of Standardized Precipitation Index (SPI) and 

Effective Drought index (EDI) in drought forecasting using 

the Artificial Neural Networks (ANNs) for upper Tana River 

basin.  The forecasting was conducted using various 

combinations of the past precipitation as input into the SPI 

and EDI functions in the proceeding forecasts. Numerous 

ANNs model architectures of SPI and EDI for 1, 3, 6, 9, 12, 18 

and 24-months lead times were assessed for precipitation data 

from Mwea Irrigation and Agricultural Development 

(MIAD) Centre within  the upper Tana River basin.  The 

models were calibrated and validated using the correlation 

coefficient (R2), Root-Mean Square Error (RMSE) and Mean 

Absolute Error (MAE). It was concluded that the optimum 

models forecast for EDI were found to be superior to SPI 

values with correlation coefficient (R2) values ranging from 

0.821 to 0.51 and 0.795 to 0.57 respectively for a 6- months 

lead time drought forecasting. The resulting forecasts of the 

Indices and ANNs models can be applied for timely drought 

early warning systems, water resources management and 

irrigation scheduling in upper Tana River basin.  

 

Key words: Early warning system, SPI, EDI, Artificial neural 

networks, Lead time, Upper Tana River basin, Water resources 

management 

I. INTRODUCTION 

Drought is a condition on land characterized by recurring 

scarcity of water that falls below normal average or defined 

threshold levels [1]. Drought characteristics are critical in 

design, planning and management of water resources [2].  

The term drought and its characteristics have been defined 

differently in numerous applications [3]. However, it is a 

challenge to quantitatively define the term.  Droughts may 

be expressed in terms of indices using precipitation deficit, 

soil-water deficit, low stream flow, low reservoir levels and  

 

low groundwater level. Different sectors use the 

terminology for different scenarios. For example, a 

hydrological-drought occurs whenever the river or 

groundwater levels are relatively low. In addition, water-

resources drought occurs when basins experience low 

stream flow, reduced water reservoir volume and 

groundwater levels. 

Droughts events cause direct or indirect negative impacts 

on river basins. This may include degradation of water 

resources in terms of quantity and quality, reduced 

agricultural production, increased soil erosion and land 

degradation, and increased plant diseases and insect attacks 

[1, 5]. Severe drought impacts experienced in numerous 

regions of the world lead to food insecurity and general 

increase in world food prices. Due to the mentioned 

problems of drought, river basin managers often have a 

critical role in addressing water risks, conflicts and 

enhancing economic development and simultaneously 

maintaining reliable water resources [6]. 

The water resources drought is influenced by climatic and 

hydrological parameters, characteristics of the water 

resource system and drought management practices. The 

hydrological drought, mainly deals with low stream flows. 

This drought adversely affects various aspects of human 

interest such as food security, water supply and 

hydropower generation [7, 8]. A sequence of droughts may 

lead to desertification of vulnerable areas such as arid, 

semi-arid and sub-humid areas. Within these fragile 

ecosystems, water resources, soil structure and soil fertility 

are critically degraded by drought occurrence [9]. The 

occurrence of any drought in terms of magnitude, duration 

and severity has not been clearly understood for numerous 

river basins in the world. To explicitly quantify, define and 

analyze drought, appropriate methods such as use of 

drought indices in conjunction with artificial neural 

networks can be applied. 
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II. CHARACTERISTICS OF DROUGHT 

Droughts are characterized into numerous aspects. Some of 

the drought elements include drought severity, duration, 

frequency, magnitude and spatial distribution. Although 

these terms may be described differently, the following 

definitions provide their precise meaning.  Drought 

severity refers to the extent of precipitation deficit in terms 

of magnitude or degree of impacts resulting from 

precipitation deficit [10]. In addition, Drought severity can 

be mathematically defined as a product of its magnitude 

and duration.  Drought duration on the other hand refers to 

any continuous period of sequence with deficit of water 

below a defined truncation level. Intensity is the ratio of the 

drought magnitude to its duration. Drought frequency also 

called return period of a drought is the mean time period 

between two consecutive drought events that have the same 

severity either equal or greater than a defined threshold. 

Magnitude refers to accumulated water deficit in terms of 

precipitation, soil moisture, runoff, stream flow, water 

reservoir levels and ground water below a certain 

truncation or threshold level for a given duration. Spatial 

distribution is the geographical extent in terms of areal 

coverage of drought which is variable during a drought 

event.  These dimensions of drought are illustrated in 

Figure1.
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Fig. 1. Drought characteristics

 

 

III. DROUGHT INDICES 

Drought indices or models are used for assessment of 

occurrence and severity of droughts. The Drought Indices 

(DIs) were developed for specific regions using specific 

structures and forms of data input. Drought indices may be 

categorized into two broad categories; remote-sensing 

based and the data driven drought indices [8]. The remote-

sensing based indices are presented from data obtained 

from remote sensors to map the conditions of land. Data 

driven indices are those calculated using ground based data 

recorded over time [11, 12].  

IV. ARTIFICIAL NEURAL NETWORKS IN 

DROUGHT FORECASTING 

Artificial neural networks may be defined as a 

computational system with numerous processing elements 

whose operation is parallel [13]. These elements are inter-

connected based on specific architecture and have the 

capacity for self-modification of the connection weights 

each time the element parameters are being processed.  The 

ANN model is similar to a biological neuron in that it has 

multiple input channels, data processing unit, and output 

channels called dendrites, cell body and the axon 

respectively as represented in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Fundamental structure of typical neural network 
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The input signals given as (X1, X2, . . . , Xp) are passed to 

the neuron through the dendrites that represent different 

input channels.  Each channel has its own weight referred 

to as connection weight denoted as W1, W2, . . . , Wp.  The 

weights are very critical since they allow for collection and 

processing of signals based on their magnitude and 
effects on input functions. If a weight function gives a non-

zero value at the synapse, it is allowed to pass through the 

cell body. Otherwise, if it has a value of zero, it is not 

allowed to pass the cell body. All the conveyed signals are 

normally integrated by summing up all the input [14]. 

Within the cell body, an activation function is used to 

analyze data input to yield output. ANN can be used to 

model linear and non-linear relationships [15]. Some of the 

networks such as recurrent networks process propagate and 

information in forward and backward directions through 

feedback loops [16, 17]. The study of drought forecasting, 

hydrology, water resource systems and numerous other 

aspects of Engineering and Science have received new 

outlook with invention, development and application of 

ANNs and drought indices [18]. The ANNs provide 

effective method of handling and processing of huge data 

sets in formulating relationships of complex natural and 

artificial systems.  

The main objective of the research presented in this paper 

was to assess and compare the performance of SPI and EDI 

in drought forecasting at different lead times using 

Artificial Neural Networks based precipitation data for 

Mwea Irrigation and Agricultural Development (MIAD) 

station in the upper Tana River basin, Kenya. 

V. MATERIALS AND METHODS 

Description of the study area 

The upper Tana River basin has an area of 17,420 km
2
 and 

is part of the larger Tana River basin, which is the largest 

river system in Kenya with an area of 100,000 km
2 

[19, 

20].  Its forest land resources located along the eastern 

slopes of Mount Kenya and Aberdares range have a critical 

role in regulating the hydrology and hydro-power 

generation within the entire basin [21]. The upper Tana 

River basin lies between latitudes 00
0
 05' and 01

0
 30' south 

and longitudes 36
0
 20' and 37

0
 60' east (Figure 3). The 

basin is fundamental in influencing the ecosystem 

downstream. The focus of the present study is the Mwea 

Irrigation and Agricultural Development (MIAD) Centre 

which is located at latitude 0
0
 39.384' south and longitude 

37
0
 17.402' east at an elevation of 1201 m above mean sea 

level as shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The location of MIAD, Sagana stations and drainage network of the upper Tana River basin 

VI. PRECIPITATION DATA AND SELECTED 

DROUGHT INDICES 

To quantify drought using the SPI and EDI, monthly 

precipitation data from the MIAD station was used in this 

study. The MIAD station is located in Mwea irrigation 

scheme and it was perceived that drought monitoring 

would provide planning for water resources and irrigation 

scheduling. The data set for the MIAD station was for the 

period from August 2009 to June 2014. The Sagana 

meteorological station has data records for a longer period 

as compared to the MIAD station. The accuracy of the 

rainfall data for both stations was first tested for 

homogeneity and trend using Mann-Kendall trend test 

technique [22, 23]. Since drought estimation requires data 

for a longer period, the MIAD data was correlated with the 

data for the same period as that of the Sagana 

meteorological station. The resulting regression equation 

yielded a correlation coefficient of 0.613 and is expressed 

as: 

481.0107.1032.0 2  SSMIAD PPP       (1) 

Where; PMIAD is average amount of rainfall (mm) for i
th

 

month at the MIAD station while PS is the amount of 
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rainfall at the Sagana station. The function was used to 

estimate the rainfall for the period (1972-2014) and then 

used in computation of the drought indices. The SPI and 

EDI were computed for the MIAD station by applying the 

drought index package software as described by [23]. The 

package utilized numerous equations as described in the 

following sub-sections. The two indices used in the 

quantification of the drought are described below.  

 

VII. COMPUTATION OF SPI 

To calculate the SPI using the software package, the 

rainfall data was first fitted to the gamma distribution 

function. Then the data was transformed into a normal 

distribution to bring the mean SPI to zero [24] .The SPI 

values were computed for short-term (1 and 3 months), 

medium term (6 and 9 months) and long-term (12, 18 and 

24 months) drought forecasting.  For the SPI, the drought 

conditions are partitioned into near normal (0.99>SPI>-

0.99), moderate drought (-1.0>SPI>-1.49), severe drought 

(-1.5>SPI>1.99) and extreme drought (SPI<-2.0). Drought 

was considered to begin when the SPI value reached -1.0 

and the drought ends when it attained a positive value on a 

plot [24].   

 

VIII. COMPUTATION OF EDI 

The EDI was computed as a function rainfall required for a 

return to normal precipitation (RNP). The RNP was based 

on a principle of recovery of the rainfall from the 

accumulated deficit from the start of the drought event. 

Computation of EDI was done in a number of steps. The 

first step involved calculation of effective precipitation 

using the equation: 
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Where; EPp is the effective precipitation parameter (mm), 

N is the duration of the preceding period (months), m is 

total period before the current month (months), PEm is the 

effective precipitation in m-1 months before the current 

month (mm). The computation of EP when N=1, 2, 3 and 4 

for instance were respectively formulated as: 
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Where EP1, EP2, EP3 and EP4 EPN are effective 

precipitation for N=1, 2, 3 4 and n respectively while P1, 

P2, P3 an P4 are precipitation values during the current 

month, previous month, two and three months before 

respectively. 

 

The mean and standard deviation of the resulting EP were 

then computed for every month. The time series of EP were 

then transformed to deviations from mean (DEP). Then the 

return to normal precipitation (PRN) values were 

calculated as a function of DEP using the relation: 
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Where; N is the number of months. Suppose N=2 and N=3, 

then the summation reciprocal term is computed as: 
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The return to normal precipitation parameter was used to 

determine the EDI values using the following relation: 

 PRNStd

PRN
EDI                (11) 

Where; Std (PRN) is the standard deviation of each 

month’s PRN. The resulting values were then used to 

categorize drought conditions. The EDI drought range 

adopted for this study include extreme drought (EDI<-2.5, 

severe drought (-1.5>EDI>2.49), moderate drought (-

0.7>EDI>-1.49) and near normal conditions (-

0.69<EDI<0.69). 

 

IX. ARTIFICIAL NEURAL NETWORKS (ANN) 

The precipitation data was selected as the main input to the 

network for the two drought indices. The ANN was 

designed to model the relationship between the 

precipitation input and the outputs in form of drought 

indices. A Multi-Layer Perceptron (MLP) which is widely 

used for hydrological studies was adopted as the training 

algorithm. In the MLP structure, neurons were organized in 

interconnected layers. The three layers applied in the MLP 

structure are: 

Input layer:  this is a group of neurons where data input 

was introduced into the network. 

Hidden layer:  this is the set of neurons where the data is 

processed before being transmitted to the output layer. 

Output layer: it consists of neuron where the results are 

displayed. 

 

The above combinations of neurons were used to compute 

output response based on the weighted sum of all the inputs 

as per the activation function. 
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X. FORECASTING OF SPI AND EDI 

All the input and output values were first standardized to 

range between 0.1 and 0.95 using the standardization 

equation:  
 

 minmax

minmax

min
min XX

xx

xX
XX o

n 





            

(12)

 

Where;  Xo is original variable value, Xn is the standardized 

value, xmin is minimum value present in the original data 

set, xmax is maximum value present in the original data set, 

Xmin is the selected minimum value for standardization 

(=0.1) and Xmax is  the selected maximum value for 

standardization (=0.95).  

Then SPI and EDI were forecasted by representing 

different combinations of their present and past values at 

different lead times calculated using past precipitation 

values. The forecasting was achieved within the ANN tool 

box of the MATLAB 2013a. The drought forecasting was 

achieved by constructing appropriate ANN models 

following numerous stages as shown in the following flow 

chart (Figure 4). To formulate the appropriate ANN 

architecture, the number of neurons and hidden layers were 

established. Various combinations of hidden layers and 
neurons were tested against R, RMSE and MAE criterion 

and the results summarized in Tables 1 and 2.

 

 

XI.

 

RESULTS AND DISCUSSIONS

 

a)

 

Time series

 

drought conditions based on SPI and

 

EDI.

  

The two indices exhibit the capacity to detect drought 

conditions ranging from extreme drought (SPI<-2.0, EDI<-

2.5) to extremely wet conditions (SPI>2.0, EDI>2.5). From 

the time series plot of the observed and forecasted drought 

indices, the EDI generally respond gradually in detecting 

drought conditions compared to rapid response of SPI 

(Figures 5; c1

 

and c2). Considering the 6-months lead time,

 

the EDI forecasts over-estimate the drought condition 

within the first 72 months. Within for the same period,

 

the 

SPI forecasting accuracy is poor compared to the observed 

values. However the forecasting accuracy of both indices 

increases with time. The low accuracy at the beginning is 

attributed to the less data input into

 

the models. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Selection of input parameters

 

Identification of suitable ANN 
and network architecture

 

Calibration of the network through trial 
and error to get lowest error

 

Validation of models via computation of 
performance measures; R2, RMSE and MAE

 

Selection of the best model from the 
optimum network parameters and plots

 

END

 

 

Fig.

 

4.

 

Flow chart showing the summary of steps adopted for the 
ANN methodology
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Figure 3.1 (a to g) : Comparison of observed and forecasted SPI and EDI at the MIAD station for 1,3,6,9, 12, 18 and 24-months lead time for the period 1972-

2014 

 
The statistics for model performance are summarized in the Table 2.1. The optimum model for 6-months lead time drought forecasting is trial 

8 whose R2 values for both calibration and validation are 0.79 and 0.70 respectively. Model 8 has also shown superior performance in 

forecasting drought for the 1, 3, 9, 12, 18 and 24-months lead times. The other lead model trials 4 and 2 performed better in forecasting 

drought with R2 values of 0.57and 0.48 respectively for SPI calibration.  

 

 

 

 

 

 

 
 

Fig. 5. Comparison of observed and forecasted SPI and EDI for 1, 3, 6, 9, 12, 18 and 24-months lead times at the MIAD station 

 

Optimum drought forecasting was obtained for the EDI 

with model 6 whose architecture is the same as that of 8 in 

the SPI forecasting. Model 6 generated R
2
 values of 0.82 

and 0.75 for calibration and validation respectively. The 

results of the observed and the forecasted drought index 

values were plotted on regression graphs whose correlation 

equations are summarized in Table 3. Results indicate that 

the correlation coefficient decrease with forecasting lead 

time meaning that the models performance in forecasting 

ability decline with lead time which is in agreement with  

results given by other researchers for other river basins 

[23]. Thus the highest models forecasting capability is for 

short-term, followed by medium-term and lastly long-term 

drought with R
2
 values for SPI as 0.865, 0.795 and 0.472 

respectively. Similar trend is presented for the EDI. 

However, the EDI performed better than the SPI forecasts 

with R
2
 values ranging from 0.887 to 0.496 compared to 

0.865 to 0.472 respectively (Table 3).   

 
Table 1. Results of SPI forecasting for 6-months lead time at MIAD station 

Input trial

 
ANN 

Architecture*

 Calibration

 

Validation

 

R2

 

RMSE 

 

MAE 

 

R2

 

RMSE 

 

MAE 

 

1

 

6-2-1

 

0.35

 

0.84

 

0.66

 

0.16

 

1.32

 

0.89

 

2

 

6-3-1

 

0.48

 

0.48

 

0.74

 

0.38

 

0.78

 

0.65

 

3

 

5-2-1

 

0.45

 

0.91

 

0.73

 

0.19

 

1.36

 

0.73

 

5

 

6-2-1

 

0.39

 

0.88

 

0.92

 

0.17

 

1.02

 

0.76

 

4

 

5-3-1

 

0.57

 

0.43

 

0.61

 

0.47

 

0.66

 

0.45

 

6

 

6-4-1

 

0.47

 

0.93

 

0.75

 

0.34

 

0.77

 

0.61

 

7

 

4-3-1

 

0.32

 

0.89

 

0.56

 

0.15

 

1.06

 

0.87

 

8

 

5-6-1

 

0.79

 

0.37

 

0.19

 

0.70

 

0.49

 

0.32

 

9

 

5-4-1

 

0.31

 

0.88

 

0.54

 

0.35

 

0.69

 

0.59

 

10

 

6-3-1

 

0.44

 

0.90

 

0.74

 

0.28

 

1.58

 

1.13

 

*The three digits for architecture refer to number of neurons in input, hidden and output layers respectively. For instance the architecture 6-2-1 

means six neurons in the input layer, two neurons in the hidden layer and one neuron in the output layer.
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The SPI regression equations for the 1,3,9,12,18 and 24-

months lead time 

are 14.07594.0  xy , 0112.0797.0  xy , 

2183.09053.0  xy , 

2321.08801.0  xy , 2319.09025.0  xy  

and 2246.0899.0  xy . On the other hand EDI 

Regression equations for the lead times 

are 1185.09411.0  xy , 1141.09501.0  xy , 

2231.09202.0  xy , 222.09616.0  xy ,

2244.09793.0  xy  and 

2253.09574.0  xy respectively.  

 

The correlation coefficient for both indices declined with 

lead time (Table 3). The R
2
 values of the observed and 

forecasted SPI and EDI are 0.795 and 0.821 respectively 

for the 6-months lead time (Figure 5). 

 

b) Comparison of SPI and EDI forecasts 

The results show that the validation statistics used for 1, 3, 

6, 9, 12, 18 and 24-months lead time such as R
2
, RMSE 

and MAE are superior for the EDI compared to the SPI 

(Figure 6.  This is linked to the difference in response of 

the SPI and EDI to rainfall as illustrated in (Figure 6). The 

SPI peaks have immediate fluctuations while the EDI 

peaks are slow. The dawdling response may be attributed 

to the EP parameter which is an indicator of antecedent 

precipitation event for smooth response of the EDI to time 

series precipitation fluctuations. 

 
 

Table 2. Results of EDI forecasting for 6-months lead time at MIAD station 

Input trial 

ANN 

Architecture 

Calibration Validation 

R2 RMSE  MAE  R2 RMSE  MAE  

1 5-3-1 0.51 0.39 0.56 0.48 0.59 0.44 

2 6-3-1 0.43 0.74 0.58 0.34 0.76 0.65 

3 5-2-1 0.35 0.85 0.68 0.19 1.37 0.74 

4 4-3-1 0.59 0.52 0.25 0.46 0.64 0.57 

5 6-2-1 0.47 0.48 0.37 0.34 0.71 0.61 

6 5-6-1 0.82 0.32 0.211 0.75 0.53 0.36 

7 4-3-1 0.38 0.83 0.88 0.44 0.68 0.34 

8 5-4-1 0.41 0.77 0.89 0.36 0.79 0.64 

9 6-4-1 0.48 0.49 0.35 0.26 1.48 1.12 

10 6-2-1 0.32 0.86 0.52 0.37 0.74 0.65 

*The three digits for architecture refer to number of neurons in input, hidden and output layers respectively. For instance the architecture 5-3-1 means five 

neurons in the input layer, three neurons in the hidden layer and one neuron in the output layer. 
 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 5. Regression between the observed and the forecasted 6-months SPI and EDI for MIAD Station based on the ANN toolbox 
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Table 3. Summary of correlation coefficients of SPI and EDI for different lead times 

Lead time (months) 
 

Correlation coefficient  (R2) 
 Drought forecasting period 

SPI EDI 

1 0.865 0.887 
Short-term 

3 0.816 0.854 
Short-term 

6 0.795 0.821 
Medium-term 

9 0.671 0.744 
Medium-term 

12 0.587 0.627 
Long-term 

18 0.519 0.594 
Long-term 

24 0.472 0.496 
Long-term 

 

 

 

Fig. 6. Comparison of the SPI and EDI forecast at different lead times 

 

XII. CONCLUSION 

Results show that as the forecast lead time is increased, the 

correlation between observed and predicted values decrease 

as determined by decrease in the R
2
 and increase in RMSE 

values. In addition, there is a reduced sensitivity to changes 

in monthly precipitation for the EDI time series forecasts 

compared to those of the SPI. Reduction in sensitivity is 

more prominent in long-term EDI as they are less sensitive 

to monthly precipitation than the short-term EDI. 

Different network models were tested for the SPI and EDI 

at the MIAD rainfall station in the upper Tana River basin. 

The optimum ANN models for both the SPI and EDI 

exhibit simple network architecture. Generally three layer 

networks were explored for their forecasting capability. 

The network with six neurons of the hidden layer was 

found to be optimum for MIAD station and the 1, 3, 6, 9, 

12, 18 and 24 months lead times. The best models 

developed in the present findings gave R
2
 values of 0.79 

and 0.82 for SPI and EDI respectively. This indicates that 

EDI has a higher drought forecasting accuracy than the 

SPI. 

Based on the statistical principles used in study (R
2
, RMSE 

and MAE), the EDI is more effective in drought 

forecasting than the SPI for different lead times. In 

addition, the EDI presented a gradual response to drought 

on-set, development and cessation, while at the same time 

accurately forecasting patterns of drought classes. It is 

paramount to apply the findings of the drought forecasting 

and build it into drought early warning systems and water 

resources planning and management at the Mwea Irrigation 

and Agricultural Development (MIAD) centre.  
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