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Abstract—This paper focuses on the performance evaluation of
three models for video sources. We compare the statistical
characteristics of network traffic of a set of video sources with
those of artificial traffic generated using the models. The results
indicate that the fluid Markov model offers the best
performance and a good tradeoff between accuracy and
simplicity.
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l. INTRODUCTION

Developing mathematical models for network traffic is an
essential tool to understand and predict the network behavior
facing various types of traffic. As the end-user needs grow and
change quantitatively and qualitatively through time, the need
for new models is still present. In the last decade, with the
emergence of wireless networks and mobile devices, operators
and service providers had to give more and more resources to
video traffic. Trend reports [1] show that the various types of
video traffic (IPTV, VoD, mobile video, UHD, etc.) are highly
impacting the traffic characteristics in the networks.

Compared to classical network traffic (web, mail and
chat), the video traffic offers some particular constraints and
challenges: In one hand, it requires more bandwidth than most
of the other network traffic sources. On the other hand, it has
stringent delay and loss requirements. That is why the
transport of video traffic over the networks requires specific
traffic engineering policies and adequate models.

In the literature, we find a large number of contributions
related to modeling video traffic (see [2]-[4], [6] for a survey).
Depending on the mathematical tools used, the models can be
classified into categories: We find auto-regressive (AR),
Markov, self-similar, wavelet and scene-based models. Most
of these models are specific to one particular type of codecs
(MPEG-1 for example). They cannot be applied to other types
of video encoding without important changes. Though, on the
video market we find a large set of video encoding techniques
that are evolving constantly and that can support the different
customers' needs. For this reason, one of the criteria to choose
a suitable model for video source traffic is to support many
encoding technologies and to be able to support new ones
without significant changes.

In [5], we defined a fluid Markov model for video traffic.
This model that we will denote by GBFM (GoP-based fluid
model) is based on classifying video GoPs (Group of Pictures)
in scenes and modeling each scene with a phase-type Markov
process. One of the main advantages of this model is that it
can be applied to various encoded video types. In this paper,
we focus on the performance evaluation of the model and
compare it with other reference models from various
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categories. We chose to compare it with a DAR(1) model
because DAR models are very common in literature and
known for their simplicity. Since our model is based on
Markov processes, we compared it also with one of the most
cited Markov models. In order to have trustworthy results, we
respected the evaluation methodology presented in [6]. We
show that while using classical and well-known tools such as
Markov models, the model predicts accurately the statistical
distributions in network buffer and generates artificial traffic
that has the same statistical properties than the original traffic
trace.

This paper is organized as follows: In section II, we
describe the GBFM model and the other models to be
compared with. In section I11, we detail our evaluation results.
The conclusions are given in section V.

Il. VIDEO TRAFFIC MODELS

In this section, we give a brief description of the models
that will be compared in the next section.

A. The GBFM model

First, we describe the GoP-based Fluid Model as defined
in [5]: A continuous-time Markov process (Xi)0 models the
evolution of the throughput of a video source through time.
The Markov process has n states. The process is fully known
by specifying its infinitesimal generator A = (aj)ijes and its
initial distribution a= (P{Xo =i}, i € S).

The video source is connected to a network buffer with
finite or infinite capacity. The buffer’s output rate evolves
also dynamically with the Markov process (Xi)=0. When the
video source is in the state i € S = {1, ..., n}, it generates
video data at a constant fluid throughput r; and the buffer’s
throughput is denoted ci. The value d; = ri—c; corresponds to
the effective input rate associated to the state i € S. The
buffer content at instant t is denoted Q.. The diagonal matrix
diag(di, i € S) is denoted by D.

The model parameters are then: The infinitesimal
generator A =(ajj)ijes, the drift matrix D and the initial
distribution a= (P{Xo=1i},i € S).

Now, we detail how these parameters are inferred from
the trace of the video source. First, we use the original video
trace to extract the sizes of the video frames. We compute
GoP sizes and then GoPs are classified into m classes using
the global k—means classification algorithm [7]. We associate
to each class of GoPs a macrostate of the process (Xt)so.
These macrostates are denoted M;, ie {1, . . . ,m} A
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macrostate is an intermediate virtual state that will
correspond later to a subset of states of the Markov process.

The GoPs are then regrouped to create scenes. Each scene
is a set of adjacent GoPs belonging to the same class
(associated to the same macrostate). The model assumes that
for all scenes of the same class the video source throughput is
constant and is equal to the average size of all GoPs
belonging to that class. For each macrostate M;, the video
throughput is constant and equal to ri. Knowing the output
rate ¢i (which is generally constant), the drift matrix D is
therefore entirely determined. The transition rates between
the macrostates can be obtained using the transition rate
process. The coefficient pj represents the transition
probability from the macrostate i to the macrostate j. It is
calculated proportionally to the transitions observed in the
trace after regrouping the GoPs into scenes.

For each class of scenes, the set of scene lengths is fit
with a phase-type Markov process. The parameters of this
process are obtained via a fitting algorithm. The phase-type
process has p states and an absorbing state denoted state O.
The empirical distribution of scene length is fitted with the
distribution of the time to reach the absorbing state.

The global Markov process combines phase-type
processes with macrostates. It is obtained by replacing the
macrostates in the Markov process with their respective
equivalent phase-type processes built using the fitting
technique. In other terms, the phase-type processes that
capture the statistical properties of the remaining in one class
of scenes are modulated by the macrostates process built
using the observation of scenes in the original trace. The
initial distribution is simple: we suppose that we start always
from the class of the first GoP in the original trace.

Each macrostate M; of a class i has an associated phase-
type process denoted (Y )zo having p states. Each phase-
type process is characterized by an initial distribution

state O corresponds to the absorbing state.

The global Markov process (Xi=o has n=m.p states
denoted (i,j) for the state j; 1<j < p; of the phase-type process
(Yd) where i € {1, ... ,m}. The transition rate from the state
(i,j) to the state (k) is denoted wi. We recall that the
probability matrix between the macrostates is P = (pi)ijes-
We have then Vi, k e {1, ... m}; V), 1 e {1, ..., p}

A)if k =i
A, M if k=i

i

Hij = 1)

Now that all the parameters of the global Markov process
have been specified, the video source is fully characterized by
the infinitesimal generator A =(aj)ijes, the drift matrix D and
the initial distribution a= (P{Xo =i}, i € S).

The artificial traffic generated using this model walks
through the global Markov process and generates random size
GoPs using the Johnson SB distribution. For each state of the
Markov process, the parameters of the distribution are
obtained from the statistics of the original trace. Then For
each GoP, the I,B and P frames are generated with respect to
the ratio I/P and P/B observed in the trace. For more
mathematical details about the GBFM model, see [5].

B. The discrete auto-regressive model DAR(1)

A discrete auto-regressive model of order p, denoted
DAR(p) generates a sequence of values obtained by a
weighted linear combination of past values given by the

expression:
x(n)= Zp:aix(n —i)+e(n)

where ay, ay, ..., @p are the AR coefficients. The sequence
e(n) consists of i.i.d. random variables having an arbitrary
distribution. The residuals e(n) are chosen to match the mean
and the variance of the original data.

When modeling video traffic using a DAR process, x(n)
represents the size of the n" frame of the video. The
parameters a;, i = 1,...,p represent the lag i auto-correlation of
the successive frame sizes.

In this paper, we will use a DAR(1) process as described
in [8]. For each type of frames (I,B and P), a DAR(1) is used
to model frame sizes. A DAR(1) process is equivalent to a
Markov chain with a state space S and a transition matrix: P =
pl+(1-p)Q, where p is the lag-1 auto-correlation coefficient,
and I is the identity matrix.

The Q matrix consists of the Pearson type V probabilities
{fo, f1,..., f, Fk}, where Fy = ik fi and K is the peak rate.
Each k, k < K, corresponds to a possible source rate less than
the peak rate K.

Using the frame statistics obtained from the video trace,
the frame sizes are then generated using a residual with the
Pearson V distribution with parameters (o,8) given below.
The probability distribution function (pdf) of the Pearson V
distribution is:

—(a+1)5-B/x
X S
f(x)="— @)
B y(a)

where Meanzi and Variance =

a-1 (a—l)z(a—Z)
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(a) ARD Talk

(b) Lecture room

(c) N3 Talk

Fig. 1. Delay for original and artificial traffic

The P matrix is then generated using the Q matrix and the
lag-1 auto-correlation coefficient. If the current frame has a
size of i, then the next frame will have the same size i with
probability p + (1 — p)f;, and k cells; k # i, with probability (1
= pfe.

To generate artificial traffic, the model starts from a
random frame size and generates frame sizes while using the
transition probability matrix P until the required number of
frames is generated. The I, P and B frames are generated
separately using their respective transition probability
matrices and then multiplexed according to the required GOP
format.

Modeling video using DAR(1) process is quite simple
since it requires few parameters but the correlation between
frames of the same GoP is not taken into consideration since
the I, B and P frames generation processes are independent.

C. The Markov-modulated GAMMA model

As an example of Markov modulated processes, we will
describe the Markov modulated Gamma model [9]. In this
model, the video GoPs organized in clips. A clip is a set of
GoPs of similar size. When a GoP has a significantly
different size, a new clip begins. The clips are then sorted in n
shots depending on their average GoP size. The sizes of shot
intervals have a geometric progression. Let us denote by a the
size of the smallest GoP and b is the size of the largest GoP.
The shot intervals are [a, ar], [ar, ar?].... , [ar"?, b] where r =
e(In®y-n@)n \which can be simply written as r = ( b/a ). The
whole video is then partitioned into n shots. The authors
recommend using n = 7 for optimal performance.

A Markov process is defined to model transition between
shots. The transition probability matrix P is obtained from the
succession of shots: Pij =(number of times clip j follows a clip
i)/(number of clips i). After that, a set of 3 x n parameters of a
gamma distribution are computed to model the I, P and B
frames in each shot. The durations of clips in one shot follow
a gamma distribution with specific parameters.

The main advantage of this model is that it combines
information concerning GoPs and frames but it depends on
the choice of the threshold values that may affect the
clustering algorithm. Furthermore, the number of parameters

that the model requires is important. In addition, the model
eliminates the 5% of data that are too high or too low. This
may lead to inaccurate parameters.

I1l. COMPARING TRAFFIC MODELS

In this section, we show the results obtained after
comparing the models. The video traces used for the
comparison are taken from [10] [11]. We used four traces
(ARD talk, fitzek, Mobilkom and N3). These traces were
used in many other performance evaluation research as in [8].
These trace were extracted from high-quality MPEG-4 videos
having a duration of about 60 minutes and with various
content (TV talk show, lecture, webcam). The videos were
encoded using fixed GoP pattern IBBPBBPBBPBB. Other
video traces of various types (MPEG-1, MPEG-2, MPEG-4
HD, etc.) were used to confirm the results mentioned in this
paper but were not mentioned here for the sake of briefness.

For these models, the performance evaluation consists in
testing how does the artificial traffic generated with each
model is like the original trace. The artificial data feeds a
network simulator that sends it through a number of routers
with or without loss. The simulator measures the end-to-end
delay, the jitter, the network load and the loss rate. For some
models, we compare also quantile-quantile (Q-Q) plot for the
original and the artificial traces. In all figures, we plotted
confidence intervals but they can be too small to be visible in
some of them.

For the simulation, the video frames are fragmented into
IP packets with a maximum transfer unit of 1500 bytes. Each
packet has a total overhead of 40 bytes for IP, UDP and RTP
headers. We suppose that the transmission is not subject to
errors. The packets are then forwarded into a network with
five routers/servers in tandem. To evaluate delay, jitter and
load, we supposed that the servers have infinite size buffers
while for the evaluation of the loss rate, we used servers with
finite buffer size. The servers processing time is proportional
to the packet size and inversely proportional to link
throughput. All links in the network have the same
throughput.

The results depicted in Fig. 1 show that all models capture
accurately the end-to-end delay while varying link throughput
in the network. The accuracy is better for large values of
throughput. This is explained by the queues in the
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(a) ARD Talk

(b) Lecture room (c) N3 Talk
Fig. 2. Jitter for original and artificial traffic
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Fig. 3. Traffic intensity for original and artificial traffic

servers/routers that are emptied for large throughput which
makes packets spending less time in the network and the
transfer time is no longer dependent on other packets.

The figure shows also that our model GBFM is the closest
to the original video trace. the DAR(1) model is less accurate.
All three models under estimate delays for this network
compared to original data. For all figures, we observe that
GBFM generates random data with more scatter than other
models. The standard deviation coefficient for GBFM is
larger than other models. This explains in part the large size
of confidence intervals in GBFM plots compared to other
models.

A possible explanation of this fact is that in DAR(1)
model data correlation is controlled by the model for each
frame type I, P or B so that correlation in the artificial traffic
and in the original trace is the same. As for MMG, a reason
of its low standard deviation is that the MMG model selects a
99% percentile interval from the original data and does not
consider extreme values in the trace. This leads to a more
homogeneous set of data and smaller confidence intervals but
may lead to a lower accuracy.

The Fig. 2 shows the variation of jitter. The values of
jitter are obtained by computing the average inter-arrival time
for all packets of the trace. In this simulation, we observe that
jitter does not vary significantly when the traffic intensity is
low (for high bitrate values). When traffic intensity is high,

we observe high peaks of jitter for all models. This fact can
be associated to a lower video quality for the receiver. The
average value of jitter is acceptable. We remark that both
Markov models (GBFM and MMG) give accurate prediction
of jitter. The GBFM model is the most accurate but it
underestimates jitter values compared to trace and other
models.

Traffic intensity is depicted in Fig. 3. The value of traffic
intensity measures the amount of time the server is busy
during the whole simulation. The figure shows that MMG
model gives better results than other models. Our model is
also accurate but its confidence intervals are larger than those
of MMG model specially for small bitrates. For N3 talk
video, the GBFM model outperforms other models. This
observation leads us to note that generally, the model
performance does not depend on a specific type of videos.
Videos having the same type of content (tennis match, movie,
cartoon or news for example) can give different performances
when modeled with the same models. The effect of encoding

has more effect than the type of content that is being encoded
in the video.

To evaluate the loss rate, we changed the simulation
scenario. the network is now reduced to a single hop and the
source sends video rate to a server that has a limited buffer
size. When packets reach the server and there is not enough
space, the packets are rejected. We suppose that there are no
Quality of Service (QoS) mechanisms to manage loss. We
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suppose also that there is no other traffic in the network. The
loss rate ratio is calculated by dividing the number of lost
packets to the total number of packets sent in the network.

P

(2) ARD Talk (b)

a and B. Though, the generation of random traffic is based on
the Pearson distribution:

a0 @

Buffor size(

(c) N3 Talk

B

Lecture room

Fig. 4. Loss rate for original and artificial traffic

The Fig. 4 shows the loss rate for the original trace and
the three models. Loss rate is plotted in log-scale to
emphasize on the differences between models. These
differences cannot be shown in normal scale because loss
rates are small values. Results show that GBFM gives the
most accurate results among the models. The DAR(1) model
underestimates loss rate in most of the cases. Markov models
give better results for low buffer sizes. The GBFM model
trend is to overestimate loss rates comparing to MMG.

In Fig. 5 we plotted the quantile-quantile (QQ)
information for artificial traffic of each model with the
original trace. Each QQ plot is obtained by processing 100
artificial traces for each model and shows how close is the
GoP size distribution to the original GoP trace which is
represented by the reference line y = x. We observe that for
the three videos, the curves are closer to the first bisector for
small GoP sizes. All models fail relatively to capture well the
highest percentiles of data. Nevertheless, we observe that
GBFM model is the most accurate globally. The DAR(1) plot
shows lower accuracy for intermediate to high percentiles.

For the lecture room video showing a webcam in an office
(Fig. 5b), all models were not able to generate data in the
highest 3% percentiles. These percentiles are located far from
the other data points. Extreme high and extreme low
percentiles show scattered data points and models trend is to
generate lower frame sizes except for GBFM model in ARD
video.

Numerical considerations

In order to compare the performance of the models, it is
also important to consider numerical aspects to choose the
most adequate model. We consider here space and time
complexity and numerical stability of computation.

The DAR(1) model has the lowest time complexity
among the models since it has a simple algorithm. It has also
a small set of parameters: The auto-correlation parameter p
and the Pearson type V probabilities with parameters

X—(a+1)e—ﬂ/x

fix)=————
=@

The expression of f(x) is numerically unstable specially
for high values of o and B that are common in high quality
traces. For example for webcam video, we have o =~ 944.62
and B =~ 8.58x108. In such cases, the computation of the pdf
generates an indeterminate form and requires specific
computational attention to compute the random frame sizes.
This may be a handicap if the model is to be implemented in
an embedded system for admission control and QoS
provisioning.

For the MMG model, it is necessary to create the GoPs,
then the clips then the shots and the P matrix. Then, we need
to compute the 3(n + 1) parameters for each frame type of
each shot and for the clip duration. For the artificial traffic
generation, we generate gamma distributed random numbers.
While the computational complexity is not very high, the
number of parameters is relatively important.

For the GBFM model, after creating the GoPs, a
classification algorithm is run to group GoPs into classes and
to create scenes. The generation of the P matrix is the same
than the MMG model but the creation of the phase-type
distribution and the global Markov process is much more
time-consuming. The generation of the random GoP sizes is
based on random exponentially distributed sojourn time in
each state and the use of Johnson distribution for the GoP
size. The computation of frame size is obtained by simple
divisions. The GBFM has a higher time complexity but
requires fewer parameters (the A matrix and the drift vector
D. In [9], the authors affirmed that the optimal results are
obtained for n = 7 while for the GBFM model, the optimal
dimension of the A matrix is n = 3 for a 2-state phase type
processes [5].

IV. CONCLUSION
In this paper, we compared the performance of the fluid

model with reference models and showed that while the three
models capture well the trace statistics, the GBFM model is
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Fig. 5. Quantile-Quantile plots

the most accurate among them. DAR(1) model captures well
auto-correlation between frame sizes but is not suitable for
loss estimation. The GBFM has a large standard deviation
compared to other models. The MMG model does not show
such a dispersion because of 99% selection done in MMG.
Quantile-quantile plots shows that most model fail to capture
accurately the statistical characteristics of the highest
percentiles of frame sizes.

While DAR(1) model captures well frame size statistics
according to [8], the analysis of GoP size distribution shows a
lower performance because frames of different types in the
same GoP are modeled independently and do not reflect the
fact that P and B frames are generated using | frames. For
MMG and GBFM models, the model focuses on the
generation of frame sizes according to their context in the
video (scenes or clips) but the generation of intra-GoP
information is based on simple linear models.

As a conclusion, the results show that there is no model
that outperforms the others clearly but we can say objectively
that GBFM is the most accurate without a significant
additional complexity.
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