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Abstract—This paper focuses on the performance evaluation of 

three models for video sources. We compare the statistical 

characteristics of network traffic of a set of video sources with 

those of artificial traffic generated using the models. The results 

indicate that the fluid Markov model offers the best 

performance and a good tradeoff between accuracy and 

simplicity. 
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I.  INTRODUCTION 

 

Developing mathematical models for network traffic is an 

essential tool to understand and predict the network behavior 

facing various types of traffic. As the end-user needs grow and 

change quantitatively and qualitatively through time, the need 

for new models is still present. In the last decade, with the 

emergence of wireless networks and mobile devices, operators 

and service providers had to give more and more resources to 

video traffic. Trend reports [1] show that the various types of 

video traffic (IPTV, VoD, mobile video, UHD, etc.) are highly 

impacting the traffic characteristics in the networks. 

Compared to classical network traffic (web, mail and 

chat), the video traffic offers some particular constraints and 

challenges: In one hand, it requires more bandwidth than most 

of the other network traffic sources. On the other hand, it has 

stringent delay and loss requirements. That is why the 

transport of video traffic over the networks requires specific 

traffic engineering policies and adequate models. 

In the literature, we find a large number of contributions 

related to modeling video traffic (see [2]–[4], [6] for a survey). 

Depending on the mathematical tools used, the models can be 

classified into categories: We find auto-regressive (AR), 

Markov, self-similar, wavelet and scene-based models. Most 

of these models are specific to one particular type of codecs 

(MPEG-1 for example). They cannot be applied to other types 

of video encoding without important changes. Though, on the 

video market we find a large set of video encoding techniques 

that are evolving constantly and that can support the different 

customers' needs. For this reason, one of the criteria to choose 

a suitable model for video source traffic is to support many 

encoding technologies and to be able to support new ones 

without significant changes. 

In [5], we defined a fluid Markov model for video traffic. 

This model that we will denote by GBFM (GoP-based fluid 

model) is based on classifying video GoPs (Group of Pictures) 

in scenes and modeling each scene with a phase-type Markov 

process. One of the main advantages of this model is that it 

can be applied to various encoded video types. In this paper, 

we focus on the performance evaluation of the model and 

compare it with other reference models from various 

categories. We chose to compare it with a DAR(1) model 

because DAR models are very common in literature and 

known for their simplicity. Since our model is based on 

Markov processes, we compared it also with one of the most 

cited Markov models. In order to have trustworthy results, we 

respected the evaluation methodology presented in [6]. We 

show that while using classical and well-known tools such as 

Markov models, the model predicts accurately the statistical 

distributions in network buffer and generates artificial traffic 

that has the same statistical properties than the original traffic 

trace. 

This paper is organized as follows: In section II, we 

describe the GBFM model and the other models to be 

compared with. In section III, we detail our evaluation results. 

The conclusions are given in section IV. 

II. VIDEO TRAFFIC MODELS 

 

In this section, we give a brief description of the models 

that will be compared in the next section. 

A. The GBFM model 

First, we describe the GoP-based Fluid Model as defined 

in [5]: A continuous-time Markov process (Xt)t≥0 models the 

evolution of the throughput of a video source through time. 

The Markov process has n states. The process is fully known 

by specifying its infinitesimal generator A = (aij)i,jS and its 

initial distribution  α= (P{X0 = i}, i  S). 

 

The video source is connected to a network buffer with 

finite or infinite capacity. The buffer’s output rate evolves 

also dynamically with the Markov process (Xt)t≥0. When the 

video source is in the state i  S = {1, . . . , n}, it generates 

video data at a constant fluid throughput ri and the buffer’s 

throughput is denoted ci. The value di = ri−ci corresponds to 

the effective input rate associated to the state i  S. The 

buffer content at instant t is denoted Qt. The diagonal matrix 

diag(di, i  S) is denoted by D. 

 

The model parameters are then: The infinitesimal 

generator A =(aij)i,jS, the drift matrix D and the initial 

distribution  α= (P{X0 = i}, i  S). 

 

Now, we detail how these parameters are inferred from 

the trace of the video source. First, we use the original video 

trace to extract the sizes of the video frames. We compute 

GoP sizes and then GoPs are classified into m classes using 

the global k−means classification algorithm [7]. We associate 

to each class of GoPs a macrostate of the process (Xt)t≥0. 

These macrostates are denoted Mi, i {1, . . . ,m}. A 
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macrostate is an intermediate virtual state that will 

correspond later to a subset of states of the Markov process. 

 

The GoPs are then regrouped to create scenes. Each scene 

is a set of adjacent GoPs belonging to the same class 

(associated to the same macrostate). The model assumes that 

for all scenes of the same class the video source throughput is 

constant and is equal to the average size of all GoPs 

belonging to that class. For each macrostate Mi, the video 

throughput is constant and equal to ri. Knowing the output 

rate ci (which is generally constant), the drift matrix D is 

therefore entirely determined. The transition rates between 

the macrostates can be obtained using the transition rate 

matrix denoted P = (pij)i,j{1,...,m} associated to the macrostate 

process. The coefficient pij represents the transition 

probability from the macrostate i to the macrostate j. It is 

calculated proportionally to the transitions observed in the 

trace after regrouping the GoPs into scenes. 

 

For each class of scenes, the set of scene lengths is fit 

with a phase-type Markov process. The parameters of this 

process are obtained via a fitting algorithm. The phase-type 

process has p states and an absorbing state denoted state 0. 

The empirical distribution of scene length is fitted with the 

distribution of the time to reach the absorbing state. 

 

The global Markov process combines phase-type 

processes with macrostates. It is obtained by replacing the 

macrostates in the Markov process with their respective 

equivalent phase-type processes built using the fitting 

technique. In other terms, the phase-type processes that 

capture the statistical properties of the remaining in one class 

of scenes are modulated by the macrostates process built 

using the observation of scenes in the original trace. The 

initial distribution is simple: we suppose that we start always 

from the class of the first GoP in the original trace.  

 

Each macrostate Mi of a class i has an associated phase-

type process denoted (Yt
(i) )t≥0 having p states. Each phase-

type process is characterized by an initial distribution  

α(i) and infinitesimal generator Λ(i) = (λ(i)
jk)j,k{0,...,p} where the 

state 0 corresponds to the absorbing state. 

 

The global Markov process (Xt)t≥0 has n=m.p states 

denoted (i,j) for the state j; 1≤ j ≤ p; of the phase-type process 

(Yt
(i)) where i  {1, . . . ,m}. The transition rate from the state 

(i,j) to the state (k,l) is denoted μijkl. We recall that the 

probability matrix between the macrostates is P = (pij)i,jS. 

We have then i, k  {1, . . . ,m}; j, l  {1, . . . , p} 
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Now that all the parameters of the global Markov process 

have been specified, the video source is fully characterized by 

the infinitesimal generator A =(aij)i,jS, the drift matrix D and 

the initial distribution  α= (P{X0 = i}, i  S). 

 

The artificial traffic generated using this model walks 

through the global Markov process and generates random size 

GoPs using the Johnson SB distribution. For each state of the 

Markov process, the parameters of the distribution are 

obtained from the statistics of the original trace. Then For 

each GoP, the I,B and P frames are generated with respect to 

the ratio I/P and P/B observed in the trace. For more 

mathematical details about the GBFM model, see [5]. 

 

B. The discrete auto-regressive model DAR(1) 

A discrete auto-regressive model of order p, denoted 

DAR(p) generates a sequence of values obtained by a 

weighted linear combination of past values given by the 

expression: 
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where a1, a2, ..., ap are the AR coefficients. The sequence 

e(n) consists of i.i.d. random variables having an arbitrary 

distribution. The residuals e(n) are chosen to match the mean 

and the variance of the original data. 

 

When modeling video traffic using a DAR process, x(n) 

represents the size of the nth frame of the video. The 

parameters ai, i = 1,...,p represent the lag i auto-correlation of 

the successive frame sizes. 

 

In this paper, we will use a DAR(1) process as described 

in [8]. For each type of frames (I,B and P), a DAR(1) is used 

to model frame sizes. A DAR(1) process is equivalent to a 

Markov chain with a state space S and a transition matrix: P = 

I+(1−)Q, where  is the lag-1 auto-correlation coefficient, 

and I is the identity matrix. 

 

The Q matrix consists of the Pearson type V probabilities 

{f0, f1,..., fk, FK}, where Fk = Σk>K fk and K is the peak rate. 

Each k, k < K, corresponds to a possible source rate less than 

the peak rate K. 

 

Using the frame statistics obtained from the video trace, 

the frame sizes are then generated using a residual with the 

Pearson V distribution with parameters (α,β) given below. 

The probability distribution function (pdf) of the Pearson V 

distribution is: 
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The P matrix is then generated using the Q matrix and the 

lag-1 auto-correlation coefficient. If the current frame has a 

size of i, then the next frame will have the same size i with 

probability  + (1 − )fi, and k cells; k ≠ i, with probability (1 

− )fk. 

 

To generate artificial traffic, the model starts from a 

random frame size and generates frame sizes while using the 

transition probability matrix P until the required number of 

frames is generated. The I, P and B frames are generated 

separately using their respective transition probability 

matrices and then multiplexed according to the required GOP 

format. 

 

Modeling video using DAR(1) process is quite simple 

since it requires few parameters but the correlation between 

frames of the same GoP is not taken into consideration since 

the I, B and P frames generation processes are independent. 

 

C. The Markov-modulated GAMMA model 

As an example of Markov modulated processes, we will 

describe the Markov modulated Gamma model [9]. In this 

model, the video GoPs organized in clips. A clip is a set of 

GoPs of similar size. When a GoP has a significantly 

different size, a new clip begins. The clips are then sorted in n 

shots depending on their average GoP size. The sizes of shot 

intervals have a geometric progression. Let us denote by a the 

size of the smallest GoP and b is the size of the largest GoP. 

The shot intervals are [a, ar], [ar, ar2],... , [arn−1, b] where r = 

e(ln(b)−ln(a))/n which can be simply written as r = ( b/a )1/n. The 

whole video is then partitioned into n shots. The authors 

recommend using n = 7 for optimal performance. 

 

A Markov process is defined to model transition between 

shots. The transition probability matrix P is obtained from the 

succession of shots: Pij =(number of times clip j follows a clip 

i)/(number of clips i). After that, a set of 3 × n parameters of a 

gamma distribution are computed to model the I, P and B 

frames in each shot. The durations of clips in one shot follow 

a gamma distribution with specific parameters. 

 

The main advantage of this model is that it combines 

information concerning GoPs and frames but it depends on 

the choice of the threshold values that may affect the 

clustering algorithm. Furthermore, the number of parameters 

that the model requires is important. In addition, the model 

eliminates the 5% of data that are too high or too low. This 

may lead to inaccurate parameters. 

III. COMPARING TRAFFIC MODELS 

In this section, we show the results obtained after 

comparing the models. The video traces used for the 

comparison are taken from [10] [11]. We used four traces 

(ARD talk, fitzek, Mobilkom and N3). These traces were 

used in many other performance evaluation research as in [8]. 

These trace were extracted from high-quality MPEG-4 videos 

having a duration of about 60 minutes and with various 

content (TV talk show, lecture, webcam). The videos were 

encoded using fixed GoP pattern IBBPBBPBBPBB. Other 

video traces of various types (MPEG-1, MPEG-2, MPEG-4 

HD, etc.) were used to confirm the results mentioned in this 

paper but were not mentioned here for the sake of briefness. 

 

For these models, the performance evaluation consists in 

testing how does the artificial traffic generated with each 

model is like the original trace. The artificial data feeds a 

network simulator that sends it through a number of routers 

with or without loss. The simulator measures the end-to-end 

delay, the jitter, the network load and the loss rate. For some 

models, we compare also quantile-quantile (Q-Q) plot for the 

original and the artificial traces. In all figures, we plotted 

confidence intervals but they can be too small to be visible in 

some of them. 

 

For the simulation, the video frames are fragmented into 

IP packets with a maximum transfer unit of 1500 bytes. Each 

packet has a total overhead of 40 bytes for IP, UDP and RTP 

headers. We suppose that the transmission is not subject to 

errors. The packets are then forwarded into a network with 

five routers/servers in tandem. To evaluate delay, jitter and 

load, we supposed that the servers have infinite size buffers 

while for the evaluation of the loss rate, we used servers with 

finite buffer size. The servers processing time is proportional 

to the packet size and inversely proportional to link 

throughput. All links in the network have the same 

throughput. 

 

The results depicted in Fig. 1 show that all models capture 

accurately the end-to-end delay while varying link throughput 

in the network. The accuracy is better for large values of 

throughput. This is explained by the queues in the 

 
 

(a) ARD Talk (c) N3 Talk (b) Lecture room 

Fig. 1. Delay for original and artificial traffic 
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servers/routers that are emptied for large throughput which 

makes packets spending less time in the network and the 

transfer time is no longer dependent on other packets. 

 

The figure shows also that our model GBFM is the closest 

to the original video trace. the DAR(1) model is less accurate. 

All three models under estimate delays for this network 

compared to original data. For all figures, we observe that 

GBFM generates random data with more scatter than other 

models. The standard deviation coefficient for GBFM is 

larger than other models. This explains in part the large size 

of confidence intervals in GBFM plots compared to other 

models. 

 

A possible explanation of this fact is that in DAR(1) 

model data correlation is controlled by the model for each 

frame type I, P or B so that correlation in the artificial traffic 

and in the original trace is the same. As for MMG, a reason 

of its low standard deviation is that the MMG model selects a 

99% percentile interval from the original data and does not 

consider extreme values in the trace. This leads to a more 

homogeneous set of data and smaller confidence intervals but 

may lead to a lower accuracy. 

 

The Fig. 2 shows the variation of jitter. The values of 

jitter are obtained by computing the average inter-arrival time 

for all packets of the trace. In this simulation, we observe that 

jitter does not vary significantly when the traffic intensity is 

low (for high bitrate values). When traffic intensity is high, 

we observe high peaks of jitter for all models. This fact can 

be associated to a lower video quality for the receiver. The 

average value of jitter is acceptable. We remark that both 

Markov models (GBFM and MMG) give accurate prediction 

of jitter. The GBFM model is the most accurate but it 

underestimates jitter values compared to trace and other 

models. 

 

Traffic intensity is depicted in Fig. 3. The value of traffic 

intensity measures the amount of time the server is busy 

during the whole simulation. The figure shows that MMG 

model gives better results than other models. Our model is 

also accurate but its confidence intervals are larger than those 

of MMG model specially for small bitrates. For N3 talk 

video, the GBFM model outperforms other models. This 

observation leads us to note that generally, the model 

performance does not depend on a specific type of videos. 

Videos having the same type of content (tennis match, movie, 

cartoon or news for example) can give different performances 

when modeled with the same models. The effect of encoding 

has more effect than the type of content that is being encoded 

in the video. 

 

To evaluate the loss rate, we changed the simulation 

scenario. the network is now reduced to a single hop and the 

source sends video rate to a server that has a limited buffer 

size. When packets reach the server and there is not enough 

space, the packets are rejected. We suppose that there are no 

Quality of Service (QoS) mechanisms to manage loss. We 

 

 
 

(a) ARD Talk (b) Lecture room 

Fig. 2. Jitter for original and artificial traffic 

(c) N3 Talk 

(a) ARD Talk (b) Lecture room 

Fig. 3. Traffic intensity for original and artificial traffic 

(c) N3 Talk 
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suppose also that there is no other traffic in the network. The 

loss rate ratio is calculated by dividing the number of lost 

packets to the total number of packets sent in the network. 

 

The Fig. 4 shows the loss rate for the original trace and 

the three models. Loss rate is plotted in log-scale to 

emphasize on the differences between models. These 

differences cannot be shown in normal scale because loss 

rates are small values. Results show that GBFM gives the 

most accurate results among the models. The DAR(1) model 

underestimates loss rate in most of the cases. Markov models 

give better results for low buffer sizes. The GBFM model 

trend is to overestimate loss rates comparing to MMG. 

 

In Fig. 5, we plotted the quantile-quantile (QQ) 

information for artificial traffic of each model with the 

original trace. Each QQ plot is obtained by processing 100 

artificial traces for each model and shows how close is the 

GoP size distribution to the original GoP trace which is 

represented by the reference line y = x. We observe that for 

the three videos, the curves are closer to the first bisector for 

small GoP sizes. All models fail relatively to capture well the 

highest percentiles of data. Nevertheless, we observe that 

GBFM model is the most accurate globally. The DAR(1) plot 

shows lower accuracy for intermediate to high percentiles. 

 

For the lecture room video showing a webcam in an office 

(Fig. 5b), all models were not able to generate data in the 

highest 3% percentiles. These percentiles are located far from 

the other data points. Extreme high and extreme low 

percentiles show scattered data points and models trend is to 

generate lower frame sizes except for GBFM model in ARD 

video. 

 

Numerical considerations 

In order to compare the performance of the models, it is 

also important to consider numerical aspects to choose the 

most adequate model. We consider here space and time 

complexity and numerical stability of computation. 

 

The DAR(1) model has the lowest time complexity 

among the models since it has a simple algorithm. It has also 

a small set of parameters: The auto-correlation parameter  

and the Pearson type V probabilities with parameters  

α and β. Though, the generation of random traffic is based on 

the Pearson distribution: 
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The expression of f(x) is numerically unstable specially 

for high values of α and β that are common in high quality 

traces. For example for webcam video, we have α ≃ 944.62 

and β ≃ 8.58×106. In such cases, the computation of the pdf 

generates an indeterminate form and requires specific 

computational attention to compute the random frame sizes. 

This may be a handicap if the model is to be implemented in 

an embedded system for admission control and QoS 

provisioning. 

 

For the MMG model, it is necessary to create the GoPs, 

then the clips then the shots and the P matrix. Then, we need 

to compute the 3(n + 1) parameters for each frame type of 

each shot and for the clip duration. For the artificial traffic 

generation, we generate gamma distributed random numbers. 

While the computational complexity is not very high, the 

number of parameters is relatively important. 

 

For the GBFM model, after creating the GoPs, a 

classification algorithm is run to group GoPs into classes and 

to create scenes. The generation of the P matrix is the same 

than the MMG model but the creation of the phase-type 

distribution and the global Markov process is much more 

time-consuming. The generation of the random GoP sizes is 

based on random exponentially distributed sojourn time in 

each state and the use of Johnson distribution for the GoP 

size. The computation of frame size is obtained by simple 

divisions. The GBFM has a higher time complexity but 

requires fewer parameters (the A matrix and the drift vector 

D. In [9], the authors affirmed that the optimal results are 

obtained for n = 7 while for the GBFM model, the optimal 

dimension of the A matrix is n = 3 for a 2-state phase type 

processes [5]. 

 

IV. CONCLUSION 

 

In this paper, we compared the performance of the fluid 

model with reference models and showed that while the three 

models capture well the trace statistics, the GBFM model is 

 
(a) ARD Talk (b) Lecture room (c) N3 Talk 

Fig. 4. Loss rate for original and artificial traffic 
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the most accurate among them. DAR(1) model captures well 

auto-correlation between frame sizes but is not suitable for 

loss estimation. The GBFM has a large standard deviation 

compared to other models. The MMG model does not show 

such a dispersion because of 99% selection done in MMG. 

Quantile-quantile plots shows that most model fail to capture 

accurately the statistical characteristics of the highest 

percentiles of frame sizes. 

While DAR(1) model captures well frame size statistics 

according to [8], the analysis of GoP size distribution shows a 

lower performance because frames of different types in the 

same GoP are modeled independently and do not reflect the 

fact that P and B frames are generated using I frames. For 

MMG and GBFM models, the model focuses on the 

generation of frame sizes according to their context in the 

video (scenes or clips) but the generation of intra-GoP 

information is based on simple linear models. 

 

As a conclusion, the results show that there is no model 

that outperforms the others clearly but we can say objectively 

that GBFM is the most accurate without a significant 

additional complexity. 
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(a) ARD Talk (b) Lecture room (c) N3 Talk 

Fig. 5. Quantile-Quantile plots 
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