
Performance Evaluation of Mongo
DB:Native Driver and Mongoose

Saptarshi Samanta
Student, Bachelor of Technology in Computer Science

Kalinga Institute of Industrial Technology

India

Abstract—NoSQL databases are an excellent alternative to

relational databases and can manage huge volumes of data. One

such popular NoSQL document database is MongoDB. In this

paper we will try to evaluate the performance of MongoDB

native driver and its popular framework mongoose with CRUD

operations.

Keywords— MongoDB , Mongoose , CRUD operations , NoSQL ,

Document database

I. INTRODUCTION

Few years back, if we looked into software applications like

websites, it had few thousand to tens of thousand of users. But

the landscape of internet activity has changed and millions of

users visit sites 24/7, 365 days a year.

Relational Databases performed really well with those limited

number of users.

But with the emergence of big data, it had problem with 3V’s :

volume , variety and velocity.

“Not Only SQL” or NoSQL databases came out as an

alternative to relational database to solve these problems.

One important feature of NoSQL database is that it can handle

unstructured data efficiently.
There are primarily four types of NoSQL database:

⚫ Key-Value: Key-Value databases are schema less and are
like distributed dictionaries.

⚫ Wide-Column: In wide-column database, data is stored in
columns, organized into column families. But unlike
relational database, Wide Column database can have
variable number of columns to support multiple data
types.

⚫ Document: In document database, data is stored as nested
key value pairs, known as documents.

⚫ Graph: Graph databases are used to store data which are
highly connected.

This paper is separated in sections: Section 2 describes NoSQL

databases in detail. Section 3 describes Development

experience. Section 4 shows experimental results. Section 5

presents the conclusions.

II. NOSQL DATABASES

NoSQL , aka “Not Only SQL” databases are generally non

tabular databases like relational database.

NoSQL database use different data models for managing and

fetching the data. NoSQL databases do not have a pre defined

schema, and are schema less. This feature makes NoSQL

database to be used for applications which require flexibility

and can handle large volume and variety of data.
.

A. SQL vs NoSQL database example

Here is an .example of modeling the schema for class
grades.

⚫In relational database , the record are stored in separate
tables and relationships are established by primary and
foreign keys.In the example a table Student has columns
like student id and student name and the Grade table has
columns like student id and grade.

⚫ But in NoSQL database like MongoDB, which is a
NoSQL Document database it will be written as a
documents with key value pairs. The collection name
is Student Grade and the keys of key value pair of the
documents will be student id, student name and grade.

B. SQL vs MongoDB terminology

Table 1. SQL vs MongoDB terminologies.

SQL MongoDB

Table Collection

Row Document

Columns Field

Primary Key ObjectId

Index Index

Nested Table Embedded Document

C. Types of NoSQL databases

Key-Value database: It is the pimpliest form of NoSQL

database. Data is stored in dictionary like key-value pairs. The

data can be fetched using a unique key given to each element

in the database. The values can range from simple data types

like strings to complex like objects.

Examples: Couchbase , Amazon DynamoDB , Riak

Document Database: In document database, instead of storing

data in rows and columns, data is stored as collection of key

value pairs inside documents. A collection is like a table,

which contains multiple documents. A document database

stores data in JSON, BSON or XML documents.

Example:MongoDB , DynamoDB , CosmosDB

Column-Oriented database: These databases store all the data

in columns. When we want data from small number of

columns, we can access them with greater speed and lesser

memory usage.

Example: Cassandra

Graph Database: Graph is used when data have many

relationships. All data are stored as nodes in database and

connections between node is called links.

Example: Nebula Graph

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030035
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

III. DEVELOPER EXPERIENCE

A. MongoDB Native Driver

The MongoDB Native Driver is the official client library for

MongoDB. MongoDB [1] stores data in flexible, JSON-like

document format, where fields can vary from document to

document and data structure can be changed over time.

Features of MongoDB native Driver:

●Provides optimized communication between the application

and MongoDB Database.

●BSON aka Binary JSON is binary encoded serialization of

JSON like documents, used by MongoDB for efficient data

exchange.

●Supports indexing which enhances performance.

●Provides high availability, horizontal scaling and geographic

distribution.

B. Mongoose

Mongoose is MongoDB Object Data Modelling library used

with Node.js which provides higher-level abstraction over the

native driver. Unlike MongoDB native driver, mongoose is

flexible schema based where the developer can define fields,

data types and validation rules.

Features of MongoDB native Driver:

●Supports Middleware functions which helps developers to

make custom logic for events like validation, pre , post

operations.

●Supports population where it can automatically replace

specified path in a document with documents from other

collection.

●Supports hooks like pre , post .

IV. TIME ANALYSIS

Test cases were performed to check and compare the time

taken by MongoDB native driver and mongoose for CRUD

operations on 100 , 1000 , 10000 , 100000 documents in a

collection respectively. The time take in milliseconds is the

average of observations of 5 tests conducted.

The tests were conducted in using a machine equipped with an

AMD Ryzen 7 5700U processor with Radeon Graphics

1.80GHZ, 16 GB ram, 64-bit Operating System. The test was

performed in local machine using MongoDB compass.

A. Time evaluation for Create operation:

The following table and graph shows the comparison between
time taken to create the number of documents using MongoDB
native driver and Mongoose.

From Table 2 , it is clear that MongoDB native driver is faster
than mongoose.

Table 2. Time taken to create documents using MongoDB native driver and

using Mongoose

No. of documents MongoDB (in ms) Mongoose (in ms)

100 150.2 254.4

1000 962 1699.6

10000 7041 12712.8

100000 64958 116988.2

Figure 1. Time taken for creation of documents

B. Time evaluation for Read operation:

The following table and graph shows the comparison between
time taken to read the number of documents using MongoDB
native driver and Mongoose.

From Table 3 , it is clear that MongoDB native driver
performed faster than mongoose.

Table 3. Time taken to create documents using MongoDB native driver and

using Mongoose

No. of documents MongoDB (in ms) Mongoose (in ms)

100 97 136.2

1000 983.4 1295.6

10000 39837.2 42532

100000 4106458 3739444

Figure 2. Time taken to read the documents

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030035
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

C. Time evaluation for Update operation:

The following table and graph shows the comparison between

time taken to update the number of documents using

MongoDB native driver and Mongoose.

From Table 4 , it is clear that MongoDB native driver

performed faster than mongoose as number of documents

increased.
Table 4. Time taken to create documents using MongoDB native driver and

using Mongoose

No. of documents MongoDB (in ms) Mongoose (in ms)

100 151.2 147.8

1000 1273.6 989

10000 9631.2 7367.6

100000 41809.8 68875.4

Figure 3. Time taken to update the documents

D. Time evaluation for Delete operation:

The following table and graph shows the comparison between
time taken to Delete the number of documents using MongoDB
native driver and Mongoose.

From Table 5 , it is clear that MongoDB native driver
performed faster than mongoose.

Table 5. Time taken to delete documents using MongoDB native driver and

using Mongoose

Figure 4. Time taken to delete the documents

E. Conclusions:

This Paper evaluates developer experience and performance

for MongoDB native driver and mongoose. This paper can

help the readers choose when to use native driver and

mongoose respectively based on requirements.

The native driver provides better speeds of larger data during

CRUD operations. Mongoose on the other hand has

middleware support and hooks which makes it a good choice

for developers.

ACKNOWLEDGMENT

I would like to share my gratitude to every reader of this
paper.

REFERENCES

[1] Sarita Padhy & G Mayil Muthu Kumaran (2019) “A Quantitative

Performance Analysis between Mongodb and Oracle NoSQL”,

International Conference on Computing for Sustainable Global
Development (INDIACom), IEEE

No. of documents MongoDB (in ms) Mongoose (in ms)

100 146.8 191

1000 1212.2 1470.6

10000 9712.2 11307

10000 51131.6 107078

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030035
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

