
Performance Evaluation of Different Digital
Multipliers in VLSI using VHDL

Bhawna Singroul
M. Tech Student

Department of Electronics & Communication Engineering
Dr. C.V. Raman University Kota, Bilaspur

C.G., India

Pallavee Jaiswal
Assistant Professor

Department of Electronics & Communication Engineering
Dr. C.V. Raman University Kota, Bilaspur

C.G., India

Abstract-This project presents an efficient implementation of
high speed multiplier using the shift and add method, Radix 2,
Radix 4 modified Booth multiplier algorithm by comparing
the working of the three multipliers by implementing each of
them separately in FIR filter. The parallel multipliers like
radix 2 and radix 4 modified booth multiplier does the
computations using lesser adders and lesser iterative steps. As
a result of which they occupy lesser space as compared to the
serial multiplier. We first designed three different type of
multipliers using shift and add method, radix 2 and radix 4
modified booth multiplier algorithm. We used different type
of adders like sixteen bit full adder in designing that
multiplier. Then we designed a 4 tap delay FIR filter and in
place of the multiplication and additions we implemented the
components of different multipliers and adders. Then we
compared the working of different multipliers by comparing
the power consumption by each of them.So by analyzing the
working of different multipliers helps to frame a better system
with less power consumption and lesser area.

Keywords: Digital multipliers, comparison, delay, power, area,
vedic, wallce, booth.

1 INTRODUCTION

Multipliers are key components of many high performance
systems such as FIR filters, microprocessors, digital signal
processors, etc. A system’s performance is generally
determined by the performance of the multiplier because
the multiplier is generally the slowest element in the
system. Furthermore, it is generally the most area
consuming. Hence, optimizing the speed and area of the
multiplier is a major design issue. However, area and speed
are usually conflicting constraints so that improving speed
results mostly in larger areas. As a result, whole spectrums
of multipliers with different area-speed constraints have
been designed with fully parallel. Multipliers at one end of
the spectrum and fully serial multipliers at the other end. In
between are digit serial multipliers where single digits
consisting of several bits are operated on. These multipliers
have moderate performance in both speed and area.
However, existing digit serial multipliers have been
Plagued by complicated switching systems and/or
irregularities in design. Radix 2^n multipliers which
operate on digits in a parallel fashion instead of bits bring
the pipelining to the digit level and avoid most of the above
problems. They were introduced by M. K. Ibrahim in 1993.
These structures are iterative and modular. The pipelining
done at the digit level brings the benefit of constant

operation speed irrespective of the size of the multiplier.
The clock speed is only determined by the digit size which
is already fixed before the design is implemented.

2 METHODOLOGY
2.1 Overview
In this project we first designed three different types of
multipliers using shift and add method, radix 2 and radix 4
modified booth multiplier algorithm. We used different
type of adders like sixteen bit full adder in designing that
multiplier. Then we designed a 4 tap delay FIR filter and in
place of the multiplication and additions we implemented
the components of different multipliers and adders. Then
we compared the working of different multipliers by
comparing the power consumption by each of them.

2.2 VHDL: The language
An entity declaration, or entity, combined with architecture
or body constitutes a VHDL model. VHDL calls the entity-
architecture pair a design entity. By describing alternative
architectures for an entity, we can configure a VHDL
model for a specific level of investigation. The entity
contains the interface description common to the alternative
architectures. It communicates with other entities and the
environment through ports and generics. Generic
information particularizes an entity by specifying
environment constants such as register size or delay value
Power consumption in VLSI DSPs has gained special
attention due to the proliferation of high-performance
portable battery-powered electronic devices such as cellular
phones, laptop computers, etc. DSP applications require
high computational speed and, at the same time, suffer
from stringent power dissipation constraints. Multiplier
modules are common to many DSP applications. The
fastest types of multipliers are parallel multipliers. Among
these, the Wallace multiplier is among the fastest.
However, they suffer from a bad regularity. Hence, when
regularity, high performance and low power are primary
concerns, Booth multipliers tend to be the primary choice.
Booth multipliers allow the operation on signed operands
in 2's complement. They derive from array multipliers
where, for each bit in a partial product line, an encoding
scheme is used to determine if this bit is positive, negative
or zero. The Modified Booth algorithm achieves a major
performance improvement through radix-4 encoding. In
this algorithm each partial product line operates on 2 bits at
a time, thereby reducing the total number of the partial

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

65

products. This is particularly true for operands using 16 bits
or more.

2.3 Shift and add multiplier
Shift-and-add multiplication is similar to the multiplication
performed by paper and pencil. This method adds the
multiplicand X to itself Y times, where Y denotes the
multiplier. To multiply two numbers by paper and pencil,
the algorithm is to take the digits of the multiplier one at a
time from right to left, multiplying the multiplicand by a
single digit of the multiplier and placing the intermediate
product in the appropriate positions to the left of the earlier
results.

2.4 Booth multiplier (Radix2)
Booth's algorithm is based upon recoding the multiplier, y,
to a recoded, value, z, leaving the multiplicand, x,
unchanged. In Booth recoding, each digit of the multiplier
can assume negative as well as positive and zero values.
There is a special notation, called signed digit (SD)
encoding, to express these signed digits. In SD encoding +1
and 0 are expressed as 1and 0, but -1 is expressed as 1

The value of a 2s complement integer was defined a by
equation.

This equation says that in order to get the value of a signed
2's complement number, multiply the m – ith digit by -2`-1,
and multiply each remaining digit i by +2g.

𝒚𝒚𝒊𝒊 𝒚𝒚𝒊𝒊−𝟏𝟏 𝒛𝒛𝒊𝒊−𝒊𝒊 Multiplier
Value

Situation

0 0 0 0 String of 0s
0 1 1 +1 End of

string of 1s
1 0 1 -1 Begin string

of 1s
1 1 0 0 String of 1s

Table 2.1: Booth recoding table for adix_2.

2.5 Booth Multiplication Algorithm for radix 2
Booth algorithm gives a procedure for multiplying binary
integers in signed 2’s complement representation. I will
illustrate the booth algorithm with the following example:

Example, 2 ten x (- 4) ten

0010 two* 1100 two

Step 1: Making the Booth table

I. From the two numbers, pick the number with the smallest
difference between a series of consecutive numbers, and
make it a multiplier.

i.e., 0010 -- From 0 to 0 no change, 0 to 1 one change, 1 to
0 another change, and so there are two changes on this one

1100 -- From 1 to 1 no change, 1 to 0 one change, 0 to 0 no
change, so there is only one change on this one. Therefore,

multiplication of 2 x (– 4), where 2 ten (0010 two) is the
multiplicand and (– 4) ten (1100 two) is the multiplier.

II. Let X = 1100 (multiplier)

Let Y = 0010 (multiplicand)

Take the 2’s complement of Y and call it –Y

–Y = 1110

III. Load the X value in the table.

IV. Load 0 for X-1 value it should be the previous first
least significant bit of X

V. Load 0 in U and V rows which will have the product of
X and Y at the end of operation.

VI. Make four rows for each cycle; this is because we are
multiplying four bits numbers.

U V X X-1 Comment
0000 0000 1100 0 Load the

value
 1st cycle
 2nd cycle
 3rd cycle
 4th cycle

Table 2.2: Making the Booth table

Step 2: Booth Algorithm

Booth algorithm requires examination of the multiplier bits,
and shifting of the partial product. Prior to the shifting, the
multiplicand may be added to partial product, subtracted
from the partial product, or left unchanged according to the
following rules:

Look at the first least significant bits of the multiplier “X”,
and the previous least significant bits of the multiplier “X -
1”.

I 0 0 Shift only

1 1 Shift only.

0 1 Add Y to U, and shift

1 0 Subtract Y from U, and shift or add (-Y) to U and shift

II Take U & V together and shift arithmetic right shift
which preserves the sign bit of 2’s complement number.
Thus a positive number remains positive, and a negative
number remains negative.

III Shift X circular right shift because this will prevent us
from using two registers for the X value.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

66

2.6 Modified booth multiplier (Radix 4)
The Booth multiplier makes use of Booth encoding
algorithm in order to reduce the number of partial products
by processing three bits at a time during recoding. This
recoding method is widely used to generate the partial
products for implementation of large parallel multipliers,
which adopts the parallel encoding scheme.

2.7 Booth multiplication algorithm for radix 4
One of the solutions of realizing high speed multipliers is
to enhance parallelism which helps to decrease the number
of subsequent calculation stages. The original version of
the Booth algorithm (Radix-2) had two drawbacks. They
are: (i) the number of add subtract operations and the
number of shift operations become variable and become
inconvenient in designing parallel multipliers. (ii) The
algorithm becomes inefficient when there are isolated 1’s.
These problems are overcome by using modified Radix4
Booth algorithm which scans strings of three bits with the
algorithm given below:

1) Extend the sign bit 1 position if necessary to ensure that
n is even.

2) Append a 0 to the right of the LSB of the multiplier.

3) According to the value of each vector, each Partial
Product will he 0, +y , -y, +2y or -2y.

The negative values of y are made by taking the 2’s
complement and in this paper Carry-look-ahead (CLA) fast
adders are used. The multiplication of y is done by shifting
y by one bit to the left. Thus, in any case, in designing a n-
bit parallel multipliers, only n/2 partial products are
generated.

X(i) X(i-1) X(i-2) Y
0 0 0 +0
0 0 1 +y
0 1 0 +y
0 1 1 +2y
1 0 0 -2y
1 0 1 -y
1 1 0 -y
1 1 1 +0

Table 2.3: Radix4 Modified Booth algorithm scheme for
odd values of i.

3 RESULTS OF DIFFERENT MULTIPLIERS

After analysing the three multipliers, and compare their
characteristics in terms of multiplication speed, no of
computations required, no of hardware, we come on
finding that radix 4 booth multipliers is better than Array
multiplier and Radix-2 booth multipliers. By implementing
Array, Radix-2 & Radix -4 multiplier we analysis that
Radix -4 multiplier computation speed is higher than Array
and Radix-2 multipliers . We have done the coding of all
multipliers separately in VHDL & simulate it to get the
accurate waveforms as output each multiplier shown in
Figure. Also get the device utilization summary, where we
get the exact no of i/p, o/p/ no of slices requirement etc for
the multiplier. In Radix-4 design simulation result is same
as Radix-2 scheme. Only difference between these two
schemes is synthesis report. These results are given in
tables. Comparison of all three multipliers are shown in
graph.

3.1 ARRAY MULTIPLIER

Number of Slices 229
Number of 4 input LUTs 302
Number of bonded INPUT 16
Number of bonded
OUTPUT

16

CLB Logic Power 104mW
Table3.1: Output of Array multiplier

3.2 RADIX 2 BOOTH MULTIPLIER
Number of Slices 130
Number of 4 input LUTs 249
Number of bonded INPUT 16
Number of bonded OUTPUT 17
CLB Logic Power 79mW

Table3.2: Output of Radix 2 booth multiplier

3.3 RADIX 4 BOOTH MULTIPLIER
Number of Slices 229
Number of 4 input LUTs 302
Number of bonded INPUT 16
Number of bonded OUTPUT 16
CLB Logic Power 47mW

Table3.3 : Output of Radix 4 booth multiplier

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

67

3.4 COMPARISION OF MULTIPLIERS
CHARACTERISTICS
3.4..1 NUMBER OF SLICES

3.4.2 NUMBER OF 4 INPUT

LUTs

3.4.3 NUMBER OF BONDED

INPUT

3.4.4 NUMBER OF BONDED

OUTPUT

3.4.5 CLB LOGIC POWER

3.5 MULTIPLIER OUTPUT

0

50

100

150

200

250

Array
Multiplier

Radix_2
Booth

Multiplier

Radix_4
Booth

Multiplier

N

U

M

B

E

R

O

F

S

L

I

C

E

S

M U L T I P L I E R S

0

50

100

150

200

250

300

350

Array
Multiplier

Radix_2
Booth

Multiplier

Radix_4
Booth

Multiplier

N

U

M

B

E

R

S

O

F

4

I

N

P

U

T

L

U

T

s

M U L T I P L I E R S

0

2

4

6

8

10

12

14

16

18

Array
Multiplier

Radix_2
Booth

Multiplier

Radix_4
Booth

Multiplier

N

U

M

B

E

R

O

F

B

O

N

D

E

D

…

M U L T I P L I E R S

0

2

4

6

8

10

12

14

16

18

Array
Multiplier

Radix_2
Booth

Multiplier

Radix_4
Booth

Multiplier

N

U

M

B

E

R

O

F

B

O

N

D

E

D

…

M U L T I P L I E R S

0

20

40

60

80

100

120

Array
Multiplier

Radix_2
Booth

Multiplier

Radix_4
Booth

Multiplier

C

L

B

L

O

G

I

C

…

M U L T I P L I E R S

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

68

4 CONCLUSION

Our project gives a clear concept of different multiplier and
their implementation in tapdelay FIR filter. We found that
the parallel multipliers are much option than the
serialmultiplier. We concluded this from the result of
power consumption and the total area. Incase of parallel
multipliers, the total area is much less than that of serial
multipliers.Hence the power consumption is also less. This
is clearly depicted in our results. Thisspeeds up the
calculation and makes the system faster.
While comparing the radix 2 and the radix 4 booth
multipliers we found that radix 4consumes lesser power
than that of radix 2. This is because it uses almost half
number ofiteration and adders when compared to radix
2.When all the three multipliers were compared we found
that array multipliers are mostpower consuming and have
the maximum area. This is because it uses a large number
ofadders. As a result it slows down the system because now
the system has to do a lot ofcalculation.
Multipliers are one the most important component of many
systems. So we always needto find a better solution in case
of multipliers. Our multipliers should always consumeless
power and cover less power. So through our project we try
to determine which of thethree algorithms works the best.
In the end we determine that radix 4 modified
boothalgorithm works the best.

5 FUTURE WORK

Multiplication is a most commonly used operation in many
computing systems. Infact multiplication is nothing but
addition since, multiplicand adds to itself multiplier no.of
times gives the multiplication value between multiplier and
multiplicand. But considering the fact that this kind of
implementation really takes huge hardware resources and
the circuit operates at utterly low speed. In order to address
this so many ideas have been presented so far for the last
three decades. Each one is aimed at particular improvement
according to the requirement. One may be aimed at high
clock speeds and another maybe aimed for low power or
less area occupation. Either way ultimate job is to come up
with an efficient architecture which can address three
constraints of VLSI speed, area, and power. Among these
three speeds is the one which requires special attention. If
we observe closely multiplication operation involves two
steps one is producing partial products and adding these
partial products. Thus, the speed of a multiplier hardly
depends on how fast generate the partial products and how
fast we can add them together. If the number of partial
products to be generated is of less than it indirectly means
that we have achieved the speed in generating partial
products. Booth’s algorithms are meant for this only. To
speed up the addition among the partial products we need
fast adder architectures.

Since the multipliers have a significant impact on the
performance of the entire system, many high performance
algorithms and architectures have been proposed. The very
high speed and dedicated multipliers are used in pipeline
and vector computers. Thus, the requirement of the modern
computer system is a dedicated and very high speed
multiplier unit that can perform multiplication operation on
signed as well as unsigned numbers.

6 REFERENCES

[1] [1] R. Jaikumar, P. Poongodi and R. Lavanya,” Implementation of
high speed arithmetic logic using vedic mathematics techniques”
ictact journal on microelectronics, february 2015

[2] [2] M. Ramalatha, K. Deena, Dayalan ,Dharani “High Speed
Energy Efficient ALU Design usingVedic Multiplication
Techniques” ACTEA IEEE 2009.

[3] [3] N. Petra, D. D. Caro, V. Garofalo, E. Napoli, and A. G. M.
Strollo, “Design of fixed width multipliers with linear
compensation function”, IEEETrans. Circuits Syst., vol. 58, no. 5,
pp. 947960, May 2011.

[4] [4] Jiun-Ping Wang, Shiann-RongKuang, and Shish-Chang Liang,
“High-Accuracy Fixed-Width Modied Booth Multipliers for
Lossy Applications”, IEEE Trans. Circuits Syst., vol. 19, no. 1,
pp. 52-60, January 2011.

[5] [5] Yuan-Ho Chen, T.-Y. Chang, and C.-Y. Li, “Area-Effective
and Power-Efficient Fixed-Width Booth Multipliers Using
Generalized Probabilistic Estimation Bias”, IEEE Trans. Circuits
Syst., vol. 1, no. 3, pp. 277-287, September 2011.

[6] [6] Yuan-Ho Chen and T.-Y. Chang, “A High-Accuracy Adaptive
Conditional-Probability Estimator for Fixed-Width Booth
Multipliers”, IEEE Trans. Circuits Syst., vol. 59, no. 3, pp. 594-
603, March 2012.

[7] [7] Shin-Kai Chen, Chih-Wei Liu, “Design and Implementation
of High-Speed and Energy-Efcient Variable-Latency Speculating
Booth Multiplier (VLSBM)”, IEEE Trans. Circuits Syst. I, vol.
60, no. 10, pp. 26312643, October 2013.

[8] [8] Shen-Fu Hsiao, Jun-Hong Zhang Jian, and Ming-Chih Chen,
“Low-Cost FIR Filter Designs Based on Faithfully Rounded
Truncated Multiple Constant Multiplication/Accumulation”, IEEE
Trans. Circuits Syst. II, Express Briefs, 2013.

[9] [9] O. L. MacSorley, “High speed arithmetic in binary
computers”, Proc.IRE, vol.49,pp. 67-91, 1961.

[10] [10] Parhami, Behrooz, “Computer Arithmetic: Algorithms and
Hardware Designs”, Oxford University Press 2000.

[11] [11] David H. K. Hoe, Chris Martinez and Sri
JyothsnaVundavalli, “Design and Characterization of Parallel
Prefix Adders using FPGAs”, Proc. IEEE, pp. 168172, 2011.

[12] [12] Srinivasasamanoj R. ,M. Sri Hari and B. RatnaRaju, “High
speed VLSI implementation of 256-bit Parallel Prefix Adders”,
International Journal of Wireless Communications and
Networking Technologies, vol. 1, no. 1, 2012.

[13] [13] Shelja Jose, ShereenaMytheen, “Modified Booth Multiplier
Based Low-Cost FIR Filter Design”, International Journal of
Engineering Scienceand Innovative Technology, vol. 3,
September, 2014.

[14] [14] Phil E. Madrid, Brian Millar and Earl E. Swartzlander, Jr,
“Modified Booth’s algorithm for high radix fixed point
multiplication”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems , Vol. 1, No. 2 June 1993.

[15] [15] Soniya, Suresh Kumar, “A Review of Different Type of
Multipliers and Multiplier-Accumulator Unit”, International
Journal of Emerging Trends & Technology in Computer Science
(IJETTCS), Volume 2, Issue 4, July – August 2013

[16] [16] GreeshmaHaridas,Dr. David Solomon George, “Area
Efficient Low Power Modified Booth Multiplier for FIR”,
International Conference on Emerging Trends in Engineering,
Science and Technology, Procedia Technology 24 (2016) 1163 –
1169

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

69

