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Abstract - With advancement, research is going on for various
aspect of 6'" generation wireless communication system. One of the
aspect is Cell-Free Massive MIMO (CF-mMIMO), which is a
paradigm shift from traditional cellular networks, where a large
number of distributed Access Points (APs) serve a smaller number
of users simultaneously, without cell boundaries. This architecture
promises uniform high-rate coverage, improved spectral and
energy efficiency, and enhanced reliability, making it a strong
candidate for 6G networks. In this paper, a simulation results and
analysis of an uplink Cell-Free Massive Multiple-Input Multiple-
Output (CF-mMIMOQO) system is reported. A large number of
distributed Access Points (APs) are used. They serve a smaller
number of users simultaneously and coherently. The primary
objective of this simulation is to evaluate the system's performance
in terms of Bit Error Rate (BER) and achievable uplink spectral
efficiency (SE) under varying user transmits power levels. The
results for different configuration of Aps and users are discussed
in this paper.
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INTRODUCTION

The one of the objective is “Analyse the performance of cell-
free massive MIMO under various channel conditions and
system parameters”. This includes key performance metrics
like achievable rate, bit error ratio, and spectral efficiency. To
achieve this objective, initially a simplified MATLAB
simulation of an uplink Cell-Free Massive Multiple-Input
Multiple-Output (CF-mMIMO) system has been carried out and
reported here. In this simulation, a large number of distributed
Access Points (APs) are used. They serve a smaller number of
users simultaneously and coherently. The primary objective of
this simulation is to evaluate the system's performance in terms
of Bit Error Rate (BER) and achievable uplink spectral
efficiency (SE) under varying user transmits power levels. The
results are discussed in this paper .In CF-mMIMO, all APs are
connected to a Central Processing Unit (CPU) via fronthaul
links. Each user is served by all APs coherently, eliminating
inter-cell interference and providing macro-diversity gains.
This distributed nature offers significant advantages over co-

IJERTV 141 S120087

located Massive MIMO, especially in terms of coverage and
user experience at the cell edges.Evaluating CF-mMIMO
performance involves assessing its capabilities across several
dimensions Spectral Efficiency (SE), Energy Efficiency (EE),
Coverage Uniformity, Latency, Reliability, Fronthaul Load,
Complexity etc.Despite its promises, CF-mMIMO faces several
challenges that limit its full potential:

e Pilot Contamination: If non-orthogonal pilots are reused
across users in different coherence blocks, their channels
become indistinguishable, leading to interference during
channel estimation.

e Channel Estimation Accuracy: Accurate Channel State
Information (CSI) is crucial for coherent processing.
Estimating channels for a large number of AP-user links
can be challenging due to noise and interference.

e Resource Allocation (Power Control & User
Scheduling): Optimally allocating power to users and
scheduling them across time/frequency resources in a
distributed system is complex.

e Fronthaul Capacity: The aggregation of signals from
many APs to the CPU can demand very high fronthaul
capacities, which can be expensive and difficult to
implement.

o Interference Management: While inter-cell interference
is eliminated, intra-user interference (if multiple users are
served simultaneously) and pilot contamination remain.

e Computational Complexity: Centralized processing at
the CPU can be computationally intensive, especially with
a massive number of APs and antennas.

e Mobility Management: Handover-like procedures are
simplified, but maintaining optimal performance for highly
mobile users requires dynamic channel tracking and
resource adaptation.

Artificial Intelligence (Al), particularly Machine Learning
(ML) and Deep Learning (DL), offers powerful tools to address
the aforementioned challenges and significantly enhance CF-
mMIMO performance for 6G.
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e Al for Channel Estimation and Prediction:

o

Deep Learning (DL): Convolutional Neural
Networks (CNNs) or Recurrent Neural Networks
(RNNs) can learn complex channel dynamics
from historical data, improving estimation
accuracy, especially in rapidly changing
environments. They can also predict future
channel states, enabling proactive resource
allocation.

Federated Learning: Can be used to train
channel estimation models across distributed APs
without sharing raw channel data, addressing
privacy concerns and reducing fronthaul load.

e Al for Resource Allocation (Power Control & User
Scheduling):

o

Reinforcement Learning (RL): An agent (e.g.,
at the CPU) can learn optimal power allocation
strategies and user scheduling policies by
interacting with the network environment and
receiving rewards based on SE, EE, or fairness.
This can adapt to dynamic network conditions.
Deep Reinforcement Learning (DRL):
Combines DL with RL to handle high-
dimensional state and action spaces, making it
suitable for complex CF-mMIMO scenarios.

e Al for Beamforming Optimization:

o

DL-based Beamforming: Neural networks can
learn non-linear mappings from estimated CSI to
optimal precoding/combining vectors, potentially
outperforming traditional optimization methods,
especially with imperfect CSI.

Graph Neural Networks (GNNs): Can model
the relationships between APs and users in the
distributed network to optimize cooperative
beamforming.

e Al for Interference Management:

o

DL-based Interference Cancellation: Neural
networks can be trained to identify and mitigate
various forms of interference (e.g., pilot
contamination, residual interference) more
effectively than traditional signal processing
techniques.

e Al for Fronthaul Optimization:

o

Data Compression: ML models can learn
efficient compression schemes for the data
transmitted over fronthaul links, reducing
bandwidth requirements.

Intelligent Quantization: Al can optimize the
quantization of channel state information (CSI) or
received signals at the APs before sending them
to the CPU, balancing performance and fronthaul
load.

e Al for Network Management and Orchestration:

o

Predictive Maintenance: Al can predict network
failures or performance degradation, enabling
proactive maintenance.

Self-Organizing Networks (SON): Al can
automate network configuration, optimization,
and healing, reducing operational costs and
improving efficiency.
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Al for Energy Efficiency Optimization:

o

Sleep Mode Management: RL can learn optimal
AP sleep/wake-up schedules based on traffic
patterns to save energy without compromising
performance.

Dynamic Power Scaling: Al can adapt transmit
power levels dynamically based on user demand
and channel conditions.

Al for Mobility Management:

o

Predictive Handover: ML models can predict

user movement patterns to facilitate seamless

transitions and reduce ping-pong effects.

Channel Tracking: Al can improve the tracking

of rapidly changing channels for mobile users.
Simulation

It is primary method for evaluating Al-enhanced CF-
mMIMO. This involves developing detailed system
models, integrating Al algorithms, and running extensive
simulations under various traffic and channel conditions.
The simulation platform for achieving first objective has
been developed successfully. In this simulation, physical
layer and data transmission was analysed for CF-mMIMO
system for uplink scenario. The following key components
and parameters are used in the simulation.

Deployment Area 200x200 meters

Access Points 20 distributed APs (equipped
(APs): with 4 antennas.)

User Equipments 5 active users with in the same
(UEs): area.

Modulation QPSK

Channel Noise AWGN with a fixed noise

figure of 5 dB, a system bandwidth
of 20 MHz, and a temperature of
290 Kelvin

Channel Model:

Large-Scale Fading

Pilot Sequences

Orthogonal pilot sequences

No. of simulations

100 coherence blocks with
1000 data symbols per user

A.

Simulation Methodology:-

The simulation proceeds in an outer loop iterating through
a range of user transmit power levels (from -10 dBm to 20 dBm
in 2 dB steps), and an inner loop for coherence blocks. Within
each coherence block, the following steps are performed:

For each coherence block, new channel realizations are

generated. This involves:

Calculating the distance-dependent path loss between

each AP and each user.

Generating i.i.d. Rayleigh fading coefficients for each

antenna of each AP to each user.

Combining the large-scale and small-scale fading to

form the true channel matrix Htrue.

Pilot Transmission: Each user transmits its unique

orthogonal pilot sequence simultaneously.

Received Pilots at APs:

Each AP receives the

superimposed pilot signals from all users, corrupted by
AWGN.
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Channel Estimation: Each AP performs Least Squares (LS)
channel estimation. This involves correlating the received
pilot signal with the known pilot sequences to estimate the
channel from each user to its antennas. The estimated channels
are stored in Hest.
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Figure 1: Spatial Distribution of AP and users for simulation

The simulation provides a foundational understanding of CF-
mMIMO performance. The transmitted power is increased
linearly and the effect on achievable spectral efficiency has
been identified. The typical graph between transmitted power
and spectral efficiency is shown in the figure 2.

Uplin%(4$pectral Efficiency vs. User Transmit Power in Cell-Free Massive MIMO

—8— Average SE

22 3 s:'|

20

18

16

Average Achievable Spectral E fficiency (bits/s/Hz)

-10 -5 0 5 10 15 20
User Transmit Power (dBm)

Figure 2: Spectral efficiency for different SNR level

The results demonstrate the basic operational principles and
how system parameters like transmit power influence
fundamental communication metrics.
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This  simplified MATLAB  simulation  successfully
demonstrates the core functionalities of an uplink Cell-Free
Massive MIMO system, including channel modeling, pilot-
based channel estimation, MRC combining, and the evaluation
of BER and achievable spectral efficiency. The results align
with theoretical expectations, showing improved performance
with increased transmit power.

CONCLUSION:-

Al technology is not merely an add-on but a fundamental
enabler for unlocking the full potential of Cell-Free Massive
MIMO in 6G. By intelligently managing complex interactions,
optimizing resource allocation, and enhancing signal
processing, Al can push the boundaries of spectral efficiency,
energy efficiency, coverage uniformity, and reliability, paving
the way for truly ubiquitous and high-performance wireless
communication.
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