
PERFORMANCE CONSIDERATIONS OF VARIOUS WIRELESS TCP-

PROTOCOLS

B.SRIRAMULU
1
, SURESH.T

2
 and M. RAMAKRISHNAM RAJU

3
.

1
 Asst. Prof. in Department of CSE., Vijaya Institute of Technology for Women,Vijayawada.

2
 Asst. Prof. in Department of CSE., Vijaya Institute of Technology for Women,Vijayawada.

3
 Asst. Prof. in Department of CSE., Vijaya Institute of Technology for Women,Vijayawada.

Abstract
TCP is a reliable transport protocol tuned to

perform well in traditional networks where

congestion is the primary cause of packet loss.

However, networks with wireless links and mobile

hosts incur significant losses due to bit errors and

handoff. This environment violates many of the

assumptions made by TCP, causing degraded end-

to-end performance. And this paper mainly shows

the performance of individual protocols of

wireless-TCP such as Indirect-TCP, Snooping-

TCP and Mobile-TCP. TCP is an End-to –End

Semantic follows throughout the Session. I.e. for

session created and session completed. So analyze

the parts of various TCP-models.

 One part of the modifications, called the

snoop module, caches packets at the base station

and performs local retransmissions across the

wireless link to alleviate the problems caused by

high bit-error rates. The second part is a routing

protocol that enables low-latency handoff to occur

with negligible data loss. We have implemented

this new protocol stack on a wireless tested. Our

experiments show that this system is significantly

more robust at dealing with unreliable wireless

links than normal TCP; we have achieved

throughput speedups of up to 20 times over

regular TCP and handoff latencies over 10 times

shorter than other mobile routing protocols. And

this paper mainly shows the performance of

individual protocols of wireless-top such as

Indirect-TCP, Snooping-TCP and Mobile-TCP.

Key words: TCP wireless protocols, snooping

TCP.

1. Introduction
There are mainly three techniques of Wireless TCP

Protocols supported for mobile Transactions.

These are 1.Indirct TCP, 2.Snooffing TCP,

3.Mobile TCP. But in this paper mainly

concentrated on Working Environment of TCP

(i.e. performance Issues and Security

Considerations)

Working Environment: Recent activity in mobile

computing and wireless networks strongly

indicates that mobile computers and their wireless

Communication links will be an integral part of

future internetworks. Communication over

wireless links is characterized by limited

bandwidth, high latencies, sporadic high bit-error

rates and temporary disconnections that network

protocols and applications must deal with. In

addition, protocols and applications have to handle

user mobility and the handoffs that occur as users

move from cell to cell in cellular wireless

networks. These handoffs involve transfer of

communication state (typically network-level

state) from one base station (a router between a

wired and wireless network) to another, and often

result in either packet loss or variation in packet

delays. Handoffs typically last anywhere between

a few tens to a few hundreds of milliseconds in

most systems. Reliable transport protocols such as

TCP [22, 23, and 5] have been tuned for traditional

networks made up of wired links and stationary

hosts. TCP performs very well on such networks

by adapting to end-to-end delays and packet losses

caused by congestion. It provides reliability by

maintaining a running average of estimated round-

trip delay and mean deviation, and by

retransmitting any packet whose acknowledgment

is not received within four times the deviation

from the average. Due to the relatively low bit-

error rates over wired networks, all packet losses

are correctly assumed to be caused by congestion.

In the presence of the high bit-error rates,

intermittent connectivity and handoffs

characteristic of wireless environments, TCP

reacts to packet losses as it would in the wired

environment: it drops its transmission window size

before retransmitting packets, initiates congestion

control or avoidance mechanisms (e.g., slow start

[11]) and resets its retransmission timer (Karn’s

Algorithm [14]). These measures result in an

unnecessary reduction in the link’s bandwidth

utilization, thereby causing a significant

degradation in performance in the form of poor

throughput and very high interactive delays [6]. In

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

1

www.ijert.org

IJ
E
R
T

IJ
E
R
T

this paper, we describe the design and

implementation of a protocol stack to alleviate this

degradation and present the results of several

experiments using this protocol. Our aim is to

improve the end-to-end performance on networks

with wireless links without changing existing TCP

implementations at hosts in the fixed network and

without recompiling or re-linking existing

applications. We achieve this by a simple set of

modifications to the standard Internet network-

layer (IP) software at the base station and mobile

host. Two different changes deal with the wireless

transmission losses and handoff-related losses. The

snoop module deals with bit-error losses while the

routing protocol eliminates the losses during

handoff. The snoop modifications consist of

caching packets and performing local

retransmissions across the wireless link by

monitoring the acknowledgments to TCP packets

generated by the receiver. Our experiments show

speedups of up to 20 times over regular TCP in the

presence of bit errors on the wireless link. We

have also found that the snoop module makes the

protocol significantly more robust at dealing with

multiple packet losses in a single window as

compared to regular TCP. The routing protocol

multicasts packets to several base stations in the

target mobile host’s area. This multicast combined

with intelligent buffering at these base stations

allows mobile hosts to roam without incurring

packet losses due to handoff. Our measurements

show that handoff completes in 5 to 70 ms and

causes negligible degradation of end-to-end TCP

performance. The snoop module and routing

protocol combine to alleviate the TCP

performance problems present in typical wireless

networks.

2. Design Alternatives and Related

Work
TCP performance is an important factor in

determining the current and future usability of

wireless networks, since several popular

applications such as ftp, telnet, and WWW (http)

are built upon it. It is desirable to improve its

performance in wireless networks without any

modifications to the fixed hosts, since this will

enable seamless integration of mobile devices

communicating over wireless links with the rest of

the Internet. Recently, several reliable transport-

layer protocols for networks with wireless links

have been proposed [3, 4, 6, and 24] to alleviate

the poor end-to-end performance of unmodified

TCP in the wireless medium. We summarize these

protocols in this section and point out the

advantages and disadvantages of each method. In

Section 8 we present a more detailed comparison

of these schemes with our protocol.

The Split Connection Approach: The Indirect-

TCP (I-TCP) protocol shown in fig: 1, [3, 4] was

one of the first protocols to use this method. It

involves splitting a TCP connection between a

fixed and mobile host into two separate

connections at the base station -- one TCP

connection between the fixed host and the base

station, and the other between the base station and

the mobile host. Since the second connection is

over a one-hop wireless link, there is no need to

use TCP on this link. Rather, a more optimized

wireless link-specific protocol tuned for better

performance can be used [24]. During a handoff,

the I-TCP connections must be moved from the

base station currently forwarding data to another

one. This is done by transferring the state

associated with the two connections to the new

base station. The advantage of the split connection

approach is that it achieves a separation of flow

and congestion control of the wireless link from

that of the fixed network and hence results in good

bandwidth at the sender. However, there are some

drawbacks of this approach, including:

i. Loss of Semantics: I-TCP acknowledgments

and semantics are not end-to-end. Since the

TCP connection is explicitly split into two

distinct ones, acknowledgments of TCP

packets can arrive at the sender even before

the packet actually reaches the intended

recipient. I-TCP derives its good performance

from this splitting of connections. However,

as we shall show, there is no need to sacrifice

the semantics of acknowledgments in order to

achieve good performance.

ii.Application relinking: Applications running

on the mobile host have to be relinked with

the I-TCP library and need to use special I-

TCP socket system calls in the current

implementation.

iii.Software overhead: Every packet needs to go

through the TCP protocol stack and incur the

associated overhead four times -- once at the

sender, twice at the base station, and once at

the receiver. This also involves copying data

at the base station to move the packet from the

incoming TCP connection to the outgoing

one. This overhead is lessened if a more

lightweight, wireless-specific reliable protocol

is used on the last link.

iv.Handoff Latency: The state maintained at a

base station in I-TCP consists mainly of a set

of socket buffers. Since this state must be

moved to another base station during handoff,

the latency of handoff is proportional to the

size of these socket buffers. The I-TCP

handoffs range from 265 ms for empty socket

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

2

www.ijert.org

IJ
E
R
T

IJ
E
R
T

buffers to 1430 ms for 32KByte socket buffers

[4].

Figure 1: I-TCP Socket & State Mitigation:

The Fast-Retransmit Approach [6]: shown in

fig-2: This approach addresses the issue of TCP

performance when communication resumes after a

handoff. Unmodified TCP at the sender interprets

the delay caused by a handoff process to be due to

congestion (since TCP assumes that all delays are

caused by congestion) and when a timeout occurs,

reduces its window size and retransmits

unacknowledged packets. Often, handoffs

complete relatively quickly (between a few tens to

a couple of hundred milliseconds), and long waits

are required by the mobile host before timeouts

occur at the sender and packets start getting

retransmitted. This is because of coarse retransmit

timeout granularities (on the order of 500 ms) in

most TCP implementations. The fast retransmit

approach mitigates this problem by having the

mobile host send a certain threshold number of

duplicate acknowledgments to the sender. This

causes TCP at the sender to immediately reduce its

window size and retransmit packets starting from

the first missing one (for which the duplicate

acknowledgment was sent). The main drawback of

this approach is that it only addresses handoffs and

not the error characteristics of the wireless link.

Link-level Retransmissions [20]: In this

approach, the wireless link implements a

retransmission protocol coupled with forward error

correction at the data-link level. The advantage of

this approach is that it improves the reliability of

communication independent of the higher-level

protocol. However, TCP implements its own end

to-end retransmission protocol. Studies have

shown that independent retransmission protocols

such as these can lead to degraded performance,

especially as error rates become significant [9]. In

such systems, a tight coupling of transport- and

link-level retransmission timeouts and policies is

necessary to avoid redundant retransmissions. In

summary, several schemes have been proposed to

improve the performance of TCP in wireless

networks. However, they have the disadvantages

described above. Furthermore, while a variety of

schemes for low-latency, low data loss handoffs

have been proposed [1, 10], none of these address

the problems of reliable protocols in wireless

networks. We feel that it is possible to design a

protocol to solve this problem without these

drawbacks. The rest of the paper describes the

design, implementation, and performance of such a

protocol stack.

Figure 2: Indirect TCP

3. The Snoop Module
Massachusetts Most current network applications

that require reliable transmission use TCP.

Therefore, it is desirable to achieve our goal of

improving its performance in our network without

changing existing TCP implementations in the

fixed network. The only components of the

network we can expect to have administrative

control over are the base stations and the mobile

hosts. For transfer of data from a fixed host to a

mobile host, we make modifications only to the

routing code at the base station. These

modifications include caching unacknowledged

TCP data and performing local retransmissions

based on a few policies dealing with

acknowledgments (from the mobile host) and

timeouts. By using duplicate acknowledgments to

identify packet loss and performing local

retransmissions as soon as this loss is detected, the

module shields the sender from the vagaries of the

wireless link. In particular, transient situations of

very low communication quality and temporary

disconnectivity are hidden from the sender.

For transfer of data from a mobile host to a fixed

host, we detect missing packets at the base station

and generate negative acknowledgments for them.

These negative acknowledgments are sent to the

mobile host (the sender), which then processes

them and retransmits the corresponding missing

packets. This requires modifications to both the

fixed and mobile hosts. These mechanisms

together improve the performance of the

connection in both directions, without sacrificing

any of the end-to-end semantics of TCP,

modifying host TCP code in the fixed network or

relinking existing applications. This combination

of improved performance, preserved protocol

semantics and full compatibility with existing

applications is the main contribution of our work.

A preliminary design of a protocol based on these

ideas appeared in [2]. Simulations of the protocol

indicated that it was capable achieving the same

throughput as unmodified TCP at 10 time’s higher

bit-error rates. These promising results indicated

that an implementation would be worthwhile, and

we used the simulated protocol as the basis of our

initial implementation. Several parts of the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

3

www.ijert.org

IJ
E
R
T

IJ
E
R
T

protocol were changed based on measurements

and our experience with it.

Figure 3: Snooping TCP

3.1. Data Transfer from a Fixed Host
We first describe the changes to the protocol for

transfer of data from a fixed host (FH) to a mobile

host (MH) through a base station (BS). The base

station routing code is modified by adding a

module, called snoop that monitors every packet

that passes through the connection in either

direction. No transport layer code runs at the base

station. The snoop module maintains a cache of

TCP packets sent from the FH that haven’t yet

been acknowledged by the MH. This is easy to do

since TCP has a cumulative acknowledgment

policy for received packets. When a new packet

arrives from the FH, the snoop module adds it to

its cache and passes the packet on to the routing

code which performs the normal routing functions.

The snoop module also keeps track of all the

acknowledgments sent from the mobile host.

When a packet loss is detected (either by the

arrival of a duplicate acknowledgment or by a

local timeout), it retransmits the lost packet to the

MH if it has the packet cached. Thus, the base

station (snoop) hides the packet loss from the FH

by not propagating duplicate acknowledgments,

thereby preventing unnecessary congestion control

mechanism invocations. The snoop module has

two linked procedures, snoop_data() and

snoop_ack(). Snoop_data() processes and caches

packets intended for the MH while snoop_ack()

processes acknowledgments (ACKs) coming from

the MH and drives local retransmissions from the

base station to the mobile host. The flowcharts

summarizing the algorithms for snoop_data() and

snoop_ack() are shown in Figures 1 and 2 and are

described below.

3.1.1. Snoop_data()
Snoop_data() processes packets from the fixed

host. TCP implements a sliding window scheme to

transmit packets based on its congestion window

(estimated from local computations at the sender)

and the flow control window (advertised by the

receiver). TCP is a byte stream protocol and each

byte of data has an associated sequence number. A

TCP packet (or segment) is identified uniquely by

the sequence number of its first byte of data and its

size. At the BS, snoop keeps track of the last

sequence number seen for the connection. One of

several kinds of packets can arrive at the BS from

the FH, and snoop_data() processes them in

different ways:

Figure 4: Flowchart for Snoop_data().

i.A new packet in the normal TCP sequence:

This is the common case, when a new packet

in the normal increasing sequence arrives at

the BS. In this case the packet is added to the

snoop cache and forwarded on to the MH. We

do not perform any extra copying of data

while doing this. We also place a timestamp

on one packet per transmitted window in order

to estimate the round-trip time of the wireless

link. The details of these steps are described in

Section 4.

ii.An out-of-sequence packet that has been

cached earlier: This is a less common case,

but it happens when dropped packets cause

timeouts at the sender. It could also happen

when a stream of data following a TCP sender

fast retransmission arrives at the base station.

Different actions are taken depending on

whether this packet is greater or less than the

last acknowledged packet seen so far. If the

sequence number is greater than the last

acknowledgment seen, it is very likely that

this packet didn’t reach the MH earlier, and so

it is forwarded on. If, on the other hand, the

sequence number is less than the last

acknowledgment, this packet has already been

received by the MH. At this point, one

possibility would be to discard this packet and

continue, but this is not always the best thing

to do. The reason for this is that the original

ACK with the same sequence number could

have been lost due to congestion while going

back to the FH. In order to facilitate the sender

getting to the current state of the connection as

fast as possible, a TCP acknowledgment

corresponding to the last ACK seen at the BS

is generated by the snoop module (with the

source address and port corresponding to the

MH) and sent to the FH.

iii.An out-of-sequence packet that has not been

cached earlier: In this case the packet was

N

o

Sender

rexmission

Packet

Arrives

Common

Case

1. Forward
Packet

2. Reset local
rexmit

counter
Y

es

Y

es
1. Cache Packet
2. Forward to

Mobile

N

o

In sequence?
1. Mark as cong.

loss
2. Forward Pkt

Congestion

loss

New Pkt?

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

4

www.ijert.org

IJ
E
R
T

IJ
E
R
T

either lost earlier due to congestion on the

wired network or has been delivered out of

order by the network. The former is more

likely, especially if the sequence number of

the packet (i.e, the sequence number of its first

data byte) is more than one or two packets

away from the last one seen so far by the

snoop module. This packet is forwarded to the

MH, and also marked as having been

retransmitted by the sender. Snoop_ack() uses

this information to process duplicate

acknowledgments that arrive for this packet

from the MH.

3.1.2 Snoop_ack()
Snoop_ack() monitors and processes the

acknowledgments (ACKs) sent back by the MH

and performs various operations depending on the

type and number of acknowledgments it receives.

These ACKs fall into one of three categories:

i.A new ACK: This is the common case (when

the connection is fairly error-free and there is

little user movement), and signifies an

increase in the packet sequence received at the

MH. This ACK initiates the cleaning of the

snoop cache and all acknowledged packets are

freed. The round-trip time estimate for the

wireless link is also updated at this time. This

estimate is not done for every packet, but only

for one packet in each window of

transmission, and only if no retransmissions

happened in that window. The last condition is

needed because it is impossible in general to

determine if the arrival of an acknowledgment

for a retransmitted packet was for the original

packet or for the retransmission [14]. Finally,

the acknowledgment is forwarded to the FH.

ii.A spurious ACK: This is an acknowledgment

less than the last acknowledgment seen by the

snoop module and is a situation that rarely

happens. It is discarded and the packet

processing continues.

iii.A duplicate ACK (DUPACK): This is an

ACK that is identical to a previously received

one. In particular, it is the same as the highest

cumulative ACK seen so far. In this case the

next packet in sequence from the DUPACK

has not been received by the MH. However,

some subsequent packets in the sequence have

been received, since the MH generates a

DUPACK for each TCP segment received out

of sequence. One of several actions is taken

depending on the type of duplicate

acknowledgment and the current state of

snoop:

 The first case occurs when the DUPACK is

for a packet that is either not in the snoop

cache or has been marked as having been

retransmitted by the sender. If the packet is

not in the cache, it needs to be resent from

the FH, perhaps after invoking the

necessary congestion control mechanisms at

the sender. If the packet was marked as a

sender-retransmitted packet, the DUPACK

needs to be routed to the FH because the

TCP stack there maintains state based on

the number of duplicate acknowledgments it

receives when it retransmits a packet.

Therefore, both these situations require the

DUPACK to be routed to the FH.he realm

represents the nodes that are managed by a

single KDC; i.e. share the same Kerberos

database.

 The second case occurs when the snoop

module gets a DUPACK that it doesn’t

expect to receive for the packet. This

typically happens when the first DUPACK

arrives for the packet, after a subsequent

packet in the stream reaches the MH,

following a packet loss. The arrival of each

successive packet in the window causes a

DUPACK to be generated for the lost

packet. In order to make the number of such

DUPACKs as small as possible, the lost

packet is retransmitted as soon as the loss is

detected, and at a higher priority as normal

packets. This is done by maintaining two

queues at the link layer for high and normal

priority packets. In addition, snoop also

estimates the maximum number of duplicate

acknowledgments that can arrive for this

packet. This is done by counting the number

of packets that were transmitted after the

lost packet prior to its retransmission.

 The third case occurs when an “expected”

DUPACK arrives, based on the above

maximum estimate. The missing packet

would have already been retransmitted

when the first DUPACK arrived (and the

estimate was zero), so this acknowledgment

Later dup acks

for lost packets Next pkt lost

Figure 5: Flowchart for Snoop_ack().

Ack

arri

ves

Common Case

New

Ack?

1. Free Buffers
2. Update RTT

estimate

3. Propagate
Ack to
sender

Dup

Ack?

Discard

Spurious ack

First

one?
Discard

N

o

Retransmit lost

packet with

high priority

N

o

Y

Y

Y

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

5

www.ijert.org

IJ
E
R
T

IJ
E
R
T

is discarded. In practice, the retransmitted

packet reaches the MH before most of the

later packets do (because it was

retransmitted at a higher priority) and the

BS sees an increase in the ACK sequence

before all the expected DUPACKs arrive.

Retransmitting packets at a higher priority

improves performance at all error rates. This

enables retransmitted packets to reach the mobile

host sooner, reducing the number of duplicate

ACKs and leading to improved throughput. Snoop

keeps track of the number of local retransmissions

for a packet, but resets this number to zero if the

packet arrives again from the sender following a

timeout or a fast retransmission. In addition to

retransmitting packets depending on the number

and type of acknowledgments, the snoop module

also performs retransmissions driven by timeouts.

This is described in more detail in the section on

implementation (Section 4).

4. Implementation
We have implemented the snoop module and

routing protocol on a test bed consisting of IBM

ThinkPad laptops and i486 base stations running

BSD/OS 2.0 from BSDI, communicating over an

AT&T Wavelan. The maximum raw aggregate

bandwidth of the Wavelan is about 2 Mbits/s. The

implementation currently supports bulk transfers to

and from mobile hosts and supports smooth

handoffs. The network topology for our

experiments is shown in Figure 6. The state

maintained by snoop is easily reconstructed from

scratch by snooping on a few packets and

acknowledgments. The snoop cache is maintained

as a circular buffer of packets, consisting mainly of

pointers to kernel mbufs [18] and some other

associated information that includes the packet

sequence number, its size, the number of local

retransmissions, and a flag set if the packet was

retransmitted by the sender. In general, the size of

the cache at a forwarding (primary) base station

needs to be large enough to handle the maximum

transmission window size. In practice, we set a

“high-water mark” on the cache: the only packets

accepted into the cache after this point is reached

are those that are out of order and earlier in

sequence than the last one seen. Other packets are

forwarded to the mobile host without being

cached. This is because it is more important for the

older, rather than newer, packets to be cached and

retransmitted, since they will cause sender

timeouts earlier. Several studies have shown that

one of the predominant costs of TCP is the

copying of data [7, 16]. We use the reference

counting mechanism present in kernel mbufs to

avoid data copying in the snoop module. Thus, we

do not incur any extra overhead associated with

copying at the base station. When error rates are

relatively low, the protocol overhead is small -- an

incoming packet is added to the cache without

copying it, and it is forwarded on to the mobile

host. A small number of state variables (e.g., the

last sequence number seen) are updated. When a

new acknowledgment arrives at the base station,

we forward it on to the fixed host and clean the

snoop cache by freeing the packets corresponding

to packets already acknowledged by the mobile.

The last link round-trip time estimate is updated

once per transmission window.

In addition to retransmitting packets depending on

the number and type of acknowledgments

received, the snoop module also performs

retransmissions driven by timeouts. There are two

types of timer interrupts in the module, the round-

trip timer and the persist timer. The round-trip

timer is based on the estimate of the smoothed

round-trip time (srtt) of the last link. We compute

this using the standard adaptive technique, srtt=(1-

α)*old_srtt+ α*curr_rtt), with αset to 0.25, so

that integer shift operations can be used. The

packet is retransmitted if an acknowledgment

hasn’t been received in twice this time. In order to

limit the amount of time spent processing timer

interrupts, we do not timeout more frequently than

a threshold time, currently set to 40 ms.

additionally; we trigger this timeout only after the

first retransmission of a packet from the snoop

cache, caused by the arrival of a duplicate

acknowledgment. This also ensures that negligible

number of (unnecessary) retransmissions occur for

packets that have already reached the mobile host.

The persist timer triggers a retransmission if there

are unacknowledged packets in the cache, and if

there has been no activity either from the sender or

receiver for 200 ms. This timer also sets the

number of expected DUPACKs to zero and the

next expected acknowledgment to one more than

the last ACK seen so far. These timers and their

associated retransmissions are critical when packet

losses are high (e.g., due to interference or

movement), since they increase the number of

transmission attempts and thereby increase the

likelihood of the packet getting through sooner to

the mobile host.

As mentioned in the design of the routing protocol,

there are three major components of the mobile

routing system -- the packet encapsulation at the

home agent, the de-capsulation at the base stations

and the beaconing system. The encapsulation and

de-capsulation modules use data structures similar

to those used by the snoop module. In-kernel data

structures are used to maintain mappings between

IP multicasts addresses and home addresses. These

tables are configured by user-level daemons. The

home agent uses this table to perform the

encapsulation in the IP forwarding code. This

same table is used in the forwarding and buffering

BSs to identify which multicast packets are

destined to which mobile hosts. Each of the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

6

www.ijert.org

IJ
E
R
T

IJ
E
R
T

buffering base stations store the packets

transmitted to a mobile host in a circular buffer.

The maximum number of packets to store is set to

prevent data loss during handoff. In our current

implementation, we store at most 12 packets,

which correspond to between 24 and 72 ms of

transfer time across the Wavelan link. During a

handoff, the mobile host transmits to the new

primary base station unique identifiers (IP IDs) of

the last three packets it has received. The base

station searches for these IDs in its circular buffer

and frees all packets that arrived before them. The

remaining TCP packets in the circular buffer are

transmitted to the mobile host. If the IP IDs are not

found, the entire circular buffer is sent.

The beaconing system was implemented in three

parts -- a user level process at the base stations, a

user level process at the mobile host and a kernel

module at the mobile host. The process on the base

station transmits a broadcast packet on the wireless

network once per second. The beacon message

contains the IP address of the base station and a

timestamp. Each mobile host has a user-level

beacon analysis process that listens for new

beacons on the wireless network. When the

process receives a beacon from a base station it has

not heard before, it requests the kernel to add the

base station to the list of active beacon sources.

When a beacon from a listed base station arrives a

mobile host, the kernel samples the signal strength

of the wireless transmitter. The beacon analyzer

process reads the signal strength samples and uses

them to determine when handoff should occur.

5. Performance
We performed several experiments with the snoop

module and routing protocol on our wireless tested

and compared the resulting performance with

unmodified TCP. We present the results of these

experiments in this section. In the presence of no

packet losses, the maximum throughput achieved

by a TCP connection over the wireless link was

about 1.6 Mbits/s. The rated maximum raw

bandwidth of the wireless link was 2 Mbits/s. We

present the results of data transfer from a fixed

sender to a mobile receiver. These were obtained

using the network configuration shown in Figure

6. The sender TCP stack was based on TCP Reno,

an implementation supporting fast retransmissions

upon the arrival of three duplicate

acknowledgments. The maximum possible

window size for the connection was 64 KBytes

and the maximum TCP segment size was 1460

bytes. In order to measure the performance of the

implementation under controlled conditions, we

used a Poisson-distributed bit error model. We

generated a Poisson distribution for each bit-error

rate and changed the TCP checksum of the packet

at the base station if the error generator determined

that the packet should be dropped at the receiver,

before forwarding the packet over the wireless

link. The same operation was done for packets

(acknowledgments) from the mobile host. We also

experimented with using a two-state Markov error

generator that more accurately modeled the

wireless channel. The two states corresponded to

periods of good connectivity and periods of poor

connectivity. Poisson-distributed errors were

generated at different rates in each state.

Unfortunately, throughput measurements

converged very slowly when using this error

model and it was difficult to interpret the

implications of the results. As a result, we used the

Poisson error model across a wide range of bit-

error rates to understand how the snoop module

would perform in either the good or bad channel

state.

Each run involved a 10 Mega Byte transfer and

this was repeated ten times at each error rate.

Figure 7 compares the throughput of a connection

using the snoop module with that of a connection

using an unmodified TCP implementation, for

various Poisson-distributed bit-error rates shown

on a log scale. The vertical error bars in the figure

show the standard deviation of the receiver

throughput.

We see that for error rates of over 5x10-7 (close to

the 2 Mb point on the x-axis of the graph) the

snoop protocol.

TCP, achieving a throughput improvement factor

of 1 to 20 depending on the bit error rate. In fact,

the snoop protocol was robust and completed the

run even when every other packet was being

dropped over the last link, whereas the regular

TCP connection didn’t make any progress. Under

conditions of very low bit error rates (< 5x10-7),

we see little difference between the snoop protocol

and unmodified TCP. At such low bit errors there

is typically less than one error per transmitted

window and unmodified TCP is quite robust at

handling these. At these low error rates, snoop

behaves as is it were not present and this ensures

no degradation in performance.

R
ec

ei
v
e
r

B
a

n
d

 w
id

th
(M

b
/s

)

Figure 6: Bit Error Rate-1 (1 error every x

bits, on average)

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

7

www.ijert.org

IJ
E
R
T

IJ
E
R
T

A more detailed picture of the behavior of the

connection can be seen can be seen in Figure 8,

which plots the sequence numbers of the received

TCP packets versus time for one of the

experiments.

Figure 7: Sequence numbers for transfer

to mobile host over channel with 3.8x10-6

(1/256kbps) BER.

These values were obtained using the tcpdump

[19] network monitoring tool. The figure shows

the comparison of sequence number progression in

a connection using the snoop protocol and a

connection using unmodified TCP for a Poisson-

distributed bit error rate of 3.9x10-6 (a bit error

every 256 Kbits on average). We see that the

snoop protocol maintains a high and consistent

throughput. On the other hand, regular TCP

unnecessarily invokes congestion control

procedures several times during the duration of the

connection. This phenomenon appears as the flat

and empty regions of the curve and degrades the

throughput significantly. For this particular run,

the aggregate bandwidth with the snoop protocol

was about 1 Mbit/s, while it was only about 0.25

Mbits/s for regular TCP. To isolate and measure

the impact of handoff on TCP performance, we

examined the performance of a TCP connection to

the mobile host with regularly spaced handoffs

between two base stations. As mentioned in

Section 4, each base station sends out a beacon

signal once per second. The presence of these

beacons reduces the peak TCP throughput in the

absence of errors and handoffs to 1.45 Mbits/s. In

this experiment, the arrival of a beacon at the

mobile host does not trigger an analysis of the

signal strengths of the different base stations;

instead, the mobile host uses the time elapsed since

the last handoff to determine if a handoff should

occur. In order to stress the performance impact of

the handoff scheme on end-to-end performance,

we performed several tests, varying the time

between handoffs from 1 to 10 seconds. The

results for different handoff rates are shown in

Table1. These measurements show that even

frequent handoffs have very little impact on

performance.

 Table 1: Throughput received by the
mobile host at different handoff

frequencies.

In a Real environment, handoffs are likely to occur

much less frequently than once per second. The

behavior of a connection experiencing handoff is

shown in Figure 9. The figure plots the sequence

numbers of a TCP connection to a mobile host

with handoffs occurring every 10 seconds. We see

that the data transfer progresses without any

significant interruptions despite the presence of the

handoffs. The throughput during this transfer was

about 1.4 Mbits/s.

6. Future Work
We are currently in the process of measuring and

optimizing the performance of the snoop protocol

under various situations. These include wide-area

connections to a mobile host and data transfers

from a mobile host. We are also working on

characterizing the behavior of TCP connections

and the snoop module in the presence of real-life

sources of interference. In addition to this, we have

started working on improving the TCP

performance of the Metricom system, a

metropolitan- area packet relay network. This

system has multiple wireless hops from the base

station to a mobile host and operates at bandwidths

of about 100 Kbits/s. Although there are several

differences between this and the Wavelan, we

believe that with minor modifications the snoop

protocol will result in improved performance in

this environment. Wireless networks of the future

are likely to be heterogeneous where each host will

simultaneously be connected to different wireless

interfaces that may interfere with each other. An

example of this is an in-building Wavelan network

and a campus-wide packet relay network that also

extends inside buildings. The problems of

improving TCP performance, routing and handoff

Time

Between

Handoffs

(sec)

Throughput

(Mbits/s)

Standard

Deviation

(Mbit/s)

1 1.42 .011

2 1.43 .016

3 1.43 .012

5 1.43 .014

8 1.44 .012

10 1.43 .012

∞ 1.45 .011

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

8

www.ijert.org

IJ
E
R
T

IJ
E
R
T

in such heterogeneous networks, characterizing the

impact of interference on connection quality, and

support for network-characteristic-aware

applications are challenging ones with significant

practical value [15].

7. Summary
We have presented a set of additions and

modifications to the standard Internet protocol

stack to improve the performance of TCP in

networks with wireless links and mobile hosts.

This protocol works by modifying the network

layer software at the base station and mobile host,

and involves no other changes to any of the fixed

hosts elsewhere in the network. The two main

ideas of the new protocol address the problems of

high bit-error rates on wireless links and data loss

caused by handoffs. Our solution to the problem of

bit-errors is to cache packets intended for the

mobile host at the base station and perform local

retransmissions across the wireless link. We

eliminate losses caused by mobility by using a low

latency, multicast-based handoff algorithm. We

have implemented the new protocol stack on a

wireless tested consisting of IBM ThinkPad

laptops and i486 base stations running BSD/OS

2.0 communicating over a 2 Mbits/s AT&T

Wavelan. Experiments show that this protocol

stack is significantly more robust than regular TCP

in the presence of unreliable links, multiple errors

in a window and user mobility. We have achieved

performance improvements of up to 20 times over

normal TCP/IP for data transfer from a fixed to a

mobile host across a wide range of bit error rates,

reduced handoff latency to between 5 and 70 ms

and eliminated data loss during handoff.

References
[1] A.S. Acampora and M. Naghshineh, An architecture

and methodology for mobile-executed handoff in

cellular ATM, IEEE Journal on Selected Areas in

Communications, 12(8) (October 1994) 1365–1375.

[2] E. Amir, H. Balakrishnan, S. Seshan, and R. H. Katz,

Efficient TCP over networks with wireless links, in

Proc. Fifth IEEE Workshop of Hot Topics in Operating

Systems (May 1995).
[3] A. Bakre and B. R. Badrinath, I-TCP: Indirect TCP

for mobile hosts, Technical Report DCS-TR-314,

Rutgers University (October 1994).

[4] A. Bakre and B. R. Badrinath, Handoff and system

support for Indirect TCP/IP, in Proc. Second Usenix

Symp. on Mobile and Location-Independent Computing

(April 1995).

[5] R.T. Braden, Requirements for Internet Hosts –

Communication Layers, RFC-1323 (October 1989).

[6] R. Caceres and L. Iftode, Improving the Performance

of Reliable Transport Protocols in Mobile Computing

Environments, IEEE Journal on Selected Areas in

Communications, 13(5) (June 1994) 850-857.

[7] D. C. Clark, V. Jacobson, J. Romkey, and H.

Salwen, An Analysis of TCP Processing Overhead,

IEEE Communication Magazine (June 1989) 23-29.

[8] S.E.Deering, Multicast Routing in a Datagram

Internetwork, PhD thesis, Stanford University

(December 1991).

[9] A. DeSimone, M. C. Chuah, and O. C. Yue,

Throughput Performance of Transport-Layer Protocols

over Wireless LANs, in Proc. Globecom ’93 (December

1993).

[10] R. Ghai and S. Singh, An Architecture and

Communications Protocol for Picocellular Networks,

IEEE Personal Communications Magazine, 1(3) (1994)

36–46.

[11] V. Jacobson, Congestion avoidance and control, in

Proc. SIGCOMM 88 (August 1988).

 [12] V. Jacobson and R. T. Braden, TCP Extensions for

Long Delay Paths, RFC-1072 (October 1988).

 [13] V. Jacobson, R. T. Braden, and D. A. Borman,

TCP Extensions for High Performance, RFC 1323 (May

1992).

 [14] P. Karn and C. Partridge, Improving Round-Trip

Time Estimates in Reliable Transport Protocols, ACM

Transactions on Computer Systems, 9(4) (1991) 364-

373.

[15] R. H. Katz, Adaptation and mobility in wireless

information systems, IEEE Personal Communications,

1(1) (1994).

[16] J. Kay and J. Pasquale, The importance of non-data

touching processing overheads in TCP/IP, in Proc.

SIGCOMM ’93 (September 1993).

[17] K.Keeton, B.A. Mah, S. Seshan, R.H. Katz, and D.

Ferrari, Providing connection-oriented service to mobile

hosts, in Proc. First USENIX Symp. on Mobile and

Location-Independent Computing (August 1993).

[18] S. J. Leffler, M. K. McKusick, M. J. Karels, and J.

S. Quarterman, The Design and Implementation of the

4.3 BSD UNIX Operating System (Addison-Wesley,

Reading, MA, November 1989).

[19] S. McCanne and V. Jacobson, The BSD packet

filter: A new architecture for user-level packet capture,

in Proc. Winter ’93 USENIX Conference (January

1993).

 [20] S. Paul, E. Ayanoglu, T. F. LaPorta, K. H. Chen,

K. K. Sabnani, and R. D. Gitlin, An asymmetric link-

layer protocol for digital cellular communications, in

Proc. InfoComm ’95 (1995). The 27th Australasian

Computer Science Conference, conferences in Research

and Practice in Information Technology. 2004.

 [21] C. Perkins, IP mobility support, IETF Mobile-IP

Draft (1995).

[22] J.B. Postel, Transmission Control Protocol. RFC

1793 (September 1981).

[23] W.R. Stevens, TCP/IP Illustrated, Volume 1

(Addison-Wesley, Reading, MA, November 1994).

[24] R.Yavatkar and N. Bhagwat, Improving end-to-end

performance of TCP over mobile internetworks, in

Workshop on Mobile Computing Systems and

Applications (December 1994).

B. SRIRAMULU. He

received his Diploma from

Government Polytechnic

Vijayawada in 1999, B.

Tech degree from J.N.T.U

Hyderabad in 2004, M.

Tech degree from Andhra

Univesiry in 2008.and he is

short listed candidate for

doing another M.tech inwell

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

9

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Prestigious institute of IIT-Madras in 2008 batch.

And he had 6 years of Teaching Experience in

Various Engineering colleges.Currently working

as a Assistant Professor in

VITW,Enikepadu,Vijayawada. His interesting

areas are Network Security,Network Protocols.

SURESH. T. Currently

working as a Assistant

Professor in Vijaya

Institute of Technology

for Women (VITW)

Enikepadu, Vijayawada.

He pursuing his M.tech

degree in J.N.T.U.

kakinada. He Received

B.Tech Degree from

J.N.T.U Hyderabad. He

had 2 years of Teaching

and 3 years of Industry Experience. Interested

domain is Network security along with this image

processing.

M. RAMAKRISHNAM

RAJU. He received M. Tech

from University of JNTU

Hyderabad in 2011. He is

working as a Assistant

Professor in Vijaya Institute

of Technology for women,

Vijayawada. And having 4

years of Teaching

Experience and his research

areas are Computer

Networks, Compilers and

Data Mining and Data

Warehousing.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

10

www.ijert.org

IJ
E
R
T

IJ
E
R
T

