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Abstract 
TCP is a reliable transport protocol tuned to 

perform well in traditional networks where 

congestion is the primary cause of packet loss. 

However, networks with wireless links and mobile 

hosts incur significant losses due to bit errors and 

handoff. This environment violates many of the 

assumptions made by TCP, causing degraded end-

to-end performance. And this paper mainly shows 

the performance of individual protocols of 

wireless-TCP such as Indirect-TCP, Snooping-

TCP and Mobile-TCP. TCP is an End-to –End 

Semantic follows throughout the Session. I.e. for 

session created and session completed. So analyze 

the parts of various TCP-models. 

         One part of the modifications, called the 

snoop module, caches packets at the base station 

and performs local retransmissions across the 

wireless link to alleviate the problems caused by 

high bit-error rates. The second part is a routing 

protocol that enables low-latency handoff to occur 

with negligible data loss. We have implemented 

this new protocol stack on a wireless tested. Our 

experiments show that this system is significantly 

more robust at dealing with unreliable wireless 

links than normal TCP; we have achieved 

throughput speedups of up to 20 times over 

regular TCP and handoff latencies over 10 times 

shorter than other mobile routing protocols. And 

this paper mainly shows the performance of 

individual protocols of wireless-top such as 

Indirect-TCP, Snooping-TCP and Mobile-TCP. 

Key words:  TCP wireless protocols, snooping 

TCP.  

1. Introduction 
There are mainly three techniques of Wireless TCP 

Protocols supported for mobile Transactions. 

These are 1.Indirct TCP, 2.Snooffing TCP, 

3.Mobile TCP. But in this paper mainly 

concentrated on Working Environment of TCP 

(i.e. performance Issues and Security 

Considerations)   

Working Environment: Recent activity in mobile 

computing and wireless networks strongly 

indicates that mobile computers and their wireless  

Communication links will be an integral part of 

future internetworks. Communication over 

wireless links is characterized by limited 

bandwidth, high latencies, sporadic high bit-error 

rates and temporary disconnections that network 

protocols and applications must deal with. In 

addition, protocols and applications have to handle 

user mobility and the handoffs that occur as users 

move from cell to cell in cellular wireless 

networks. These handoffs involve transfer of 

communication state (typically network-level 

state) from one base station (a router between a 

wired and wireless network) to another, and often 

result in either packet loss or variation in packet 

delays. Handoffs typically last anywhere between 

a few tens to a few hundreds of milliseconds in 

most systems. Reliable transport protocols such as 

TCP [22, 23, and 5] have been tuned for traditional 

networks made up of wired links and stationary 

hosts. TCP performs very well on such networks 

by adapting to end-to-end delays and packet losses 

caused by congestion. It provides reliability by 

maintaining a running average of estimated round-

trip delay and mean deviation, and by 

retransmitting any packet whose acknowledgment 

is not received within four times the deviation 

from the average. Due to the relatively low bit-

error rates over wired networks, all packet losses 

are correctly assumed to be caused by congestion. 

In the presence of the high bit-error rates, 

intermittent connectivity and handoffs 

characteristic of wireless environments, TCP 

reacts to packet losses as it would in the wired 

environment: it drops its transmission window size 

before retransmitting packets, initiates congestion 

control or avoidance mechanisms (e.g., slow start 

[11]) and resets its retransmission timer (Karn’s 

Algorithm [14]). These measures result in an 

unnecessary reduction in the link’s bandwidth 

utilization, thereby causing a significant 

degradation in performance in the form of poor 

throughput and very high interactive delays [6]. In 
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this paper, we describe the design and 

implementation of a protocol stack to alleviate this 

degradation and present the results of several 

experiments using this protocol. Our aim is to 

improve the end-to-end performance on networks 

with wireless links without changing existing TCP 

implementations at hosts in the fixed network and 

without recompiling or re-linking existing 

applications. We achieve this by a simple set of 

modifications to the standard Internet network-

layer (IP) software at the base station and mobile 

host. Two different changes deal with the wireless 

transmission losses and handoff-related losses. The 

snoop module deals with bit-error losses while the 

routing protocol eliminates the losses during 

handoff.  The snoop modifications consist of 

caching packets and performing local 

retransmissions across the wireless link by 

monitoring the acknowledgments to TCP packets 

generated by the receiver. Our experiments show 

speedups of up to 20 times over regular TCP in the 

presence of bit errors on the wireless link. We 

have also found that the snoop module makes the 

protocol significantly more robust at dealing with 

multiple packet losses in a single window as 

compared to regular TCP. The routing protocol 

multicasts packets to several base stations in the 

target mobile host’s area. This multicast combined 

with intelligent buffering at these base stations 

allows mobile hosts to roam without incurring 

packet losses due to handoff. Our measurements 

show that handoff completes in 5 to 70 ms and 

causes negligible degradation of end-to-end TCP 

performance. The snoop module and routing 

protocol combine to alleviate the TCP 

performance problems present in typical wireless 

networks. 

 

2. Design Alternatives and Related 

Work 
TCP performance is an important factor in 

determining the current and future usability of 

wireless networks, since several popular 

applications such as ftp, telnet, and WWW (http) 

are built upon it. It is desirable to improve its 

performance in wireless networks without any 

modifications to the fixed hosts, since this will 

enable seamless integration of mobile devices 

communicating over wireless links with the rest of 

the Internet. Recently, several reliable transport-

layer protocols for networks with wireless links 

have been proposed [3, 4, 6, and 24] to alleviate 

the poor end-to-end performance of unmodified 

TCP in the wireless medium. We summarize these 

protocols in this section and point out the 

advantages and disadvantages of each method. In 

Section 8 we present a more detailed comparison 

of these schemes with our protocol. 

 

The Split Connection Approach:  The Indirect-

TCP (I-TCP) protocol shown in fig: 1, [3, 4] was 

one of the first protocols to use this method. It 

involves splitting a TCP connection between a 

fixed and mobile host into two separate 

connections at the base station -- one TCP 

connection between the fixed host and the base 

station, and the other between the base station and 

the mobile host. Since the second connection is 

over a one-hop wireless link, there is no need to 

use TCP on this link. Rather, a more optimized 

wireless link-specific protocol tuned for better 

performance can be used [24]. During a handoff, 

the I-TCP connections must be moved from the 

base station currently forwarding data to another 

one. This is done by transferring the state 

associated with the two connections to the new 

base station. The advantage of the split connection 

approach is that it achieves a separation of flow 

and congestion control of the wireless link from 

that of the fixed network and hence results in good 

bandwidth at the sender. However, there are some 

drawbacks of this approach, including:  

i. Loss of Semantics: I-TCP acknowledgments 

and semantics are not end-to-end. Since the 

TCP connection is explicitly split into two 

distinct ones, acknowledgments of TCP 

packets can arrive at the sender even before 

the packet actually reaches the intended 

recipient. I-TCP derives its good performance 

from this splitting of connections. However, 

as we shall show, there is no need to sacrifice 

the semantics of acknowledgments in order to 

achieve good performance. 

 

ii.Application relinking: Applications running 

on the mobile host have to be relinked with 

the I-TCP library and need to use special I-

TCP socket system calls in the current 

implementation. 

 

iii.Software overhead: Every packet needs to go 

through the TCP protocol stack and incur the 

associated overhead four times -- once at the 

sender, twice at the base station, and once at 

the receiver. This also involves copying data 

at the base station to move the packet from the 

incoming TCP connection to the outgoing 

one. This overhead is lessened if a more 

lightweight, wireless-specific reliable protocol 

is used on the last link. 

 

iv.Handoff Latency: The state maintained at a 

base station in I-TCP consists mainly of a set 

of socket buffers. Since this state must be 

moved to another base station during handoff, 

the latency of handoff is proportional to the 

size of these socket buffers. The I-TCP 

handoffs range from 265 ms for empty socket 
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buffers to 1430 ms for 32KByte socket buffers 

[4]. 

 
Figure 1: I-TCP Socket & State Mitigation: 

 

The Fast-Retransmit Approach [6]:   shown in 

fig-2: This approach addresses the issue of TCP 

performance when communication resumes after a 

handoff. Unmodified TCP at the sender interprets 

the delay caused by a handoff process to be due to 

congestion (since TCP assumes that all delays are 

caused by congestion) and when a timeout occurs, 

reduces its window size and retransmits 

unacknowledged packets. Often, handoffs 

complete relatively quickly (between a few tens to 

a couple of hundred milliseconds), and long waits 

are required by the mobile host before timeouts 

occur at the sender and packets start getting 

retransmitted. This is because of coarse retransmit 

timeout granularities (on the order of 500 ms) in 

most TCP implementations. The fast retransmit 

approach mitigates this problem by having the 

mobile host send a certain threshold number of 

duplicate acknowledgments to the sender. This 

causes TCP at the sender to immediately reduce its 

window size and retransmit packets starting from 

the first missing one (for which the duplicate 

acknowledgment was sent). The main drawback of 

this approach is that it only addresses handoffs and 

not the error characteristics of the wireless link. 

 

Link-level Retransmissions [20]:  In this 

approach, the wireless link implements a 

retransmission protocol coupled with forward error 

correction at the data-link level. The advantage of 

this approach is that it improves the reliability of 

communication independent of the higher-level 

protocol. However, TCP implements its own end 

to-end retransmission protocol. Studies have 

shown that independent retransmission protocols 

such as these can lead to degraded performance, 

especially as error rates become significant [9]. In 

such systems, a tight coupling of transport- and 

link-level retransmission timeouts and policies is 

necessary to avoid redundant retransmissions. In 

summary, several schemes have been proposed to 

improve the performance of TCP in wireless 

networks. However, they have the disadvantages 

described above. Furthermore, while a variety of 

schemes for low-latency, low data loss handoffs 

have been proposed [1, 10], none of these address 

the problems of reliable protocols in wireless 

networks. We feel that it is possible to design a 

protocol to solve this problem without these 

drawbacks. The rest of the paper describes the 

design, implementation, and performance of such a 

protocol stack. 

  
Figure 2: Indirect TCP 

 

3. The Snoop Module  
Massachusetts Most current network applications 

that require reliable transmission use TCP. 

Therefore, it is desirable to achieve our goal of 

improving its performance in our network without 

changing existing TCP implementations in the 

fixed network. The only components of the 

network we can expect to have administrative 

control over are the base stations and the mobile 

hosts. For transfer of data from a fixed host to a 

mobile host, we make modifications only to the 

routing code at the base station. These 

modifications include caching unacknowledged 

TCP data and performing local retransmissions 

based on a few policies dealing with 

acknowledgments (from the mobile host) and 

timeouts. By using duplicate acknowledgments to 

identify packet loss and performing local 

retransmissions as soon as this loss is detected, the 

module shields the sender from the vagaries of the 

wireless link. In particular, transient situations of 

very low communication quality and temporary 

disconnectivity are hidden from the sender.                    

For transfer of data from a mobile host to a fixed 

host, we detect missing packets at the base station 

and generate negative acknowledgments for them. 

These negative acknowledgments are sent to the 

mobile host (the sender), which then processes 

them and retransmits the corresponding missing 

packets. This requires modifications to both the 

fixed and mobile hosts. These mechanisms 

together improve the performance of the 

connection in both directions, without sacrificing 

any of the end-to-end semantics of TCP, 

modifying host TCP code in the fixed network or 

relinking existing applications. This combination 

of improved performance, preserved protocol 

semantics and full compatibility with existing 

applications is the main contribution of our work. 

A preliminary design of a protocol based on these 

ideas appeared in [2]. Simulations of the protocol 

indicated that it was capable achieving the same 

throughput as unmodified TCP at 10 time’s higher 

bit-error rates. These promising results indicated 

that an implementation would be worthwhile, and 

we used the simulated protocol as the basis of our 

initial implementation. Several parts of the 
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protocol were changed based on measurements 

and our experience with it. 

 

 
Figure 3: Snooping TCP 

 

3.1. Data Transfer from a Fixed Host 
We first describe the changes to the protocol for 

transfer of data from a fixed host (FH) to a mobile 

host (MH) through a base station (BS). The base 

station routing code is modified by adding a 

module, called snoop that monitors every packet 

that passes through the connection in either 

direction. No transport layer code runs at the base 

station. The snoop module maintains a cache of 

TCP packets sent from the FH that haven’t yet 

been acknowledged by the MH. This is easy to do 

since TCP has a cumulative acknowledgment 

policy for received packets. When a new packet 

arrives from the FH, the snoop module adds it to 

its cache and passes the packet on to the routing 

code which performs the normal routing functions. 

The snoop module also keeps track of all the 

acknowledgments sent from the mobile host. 

When a packet loss is detected (either by the 

arrival of a duplicate acknowledgment or by a 

local timeout), it retransmits the lost packet to the 

MH if it has the packet cached. Thus, the base 

station (snoop) hides the packet loss from the FH 

by not propagating duplicate acknowledgments, 

thereby preventing unnecessary congestion control 

mechanism invocations. The snoop module has 

two linked procedures, snoop_data() and 

snoop_ack(). Snoop_data() processes and caches 

packets intended for the MH while snoop_ack() 

processes acknowledgments (ACKs) coming from 

the MH and drives local retransmissions from the 

base station to the mobile host. The flowcharts 

summarizing the algorithms for snoop_data() and 

snoop_ack() are shown in Figures 1 and 2 and are 

described below. 

 

3.1.1. Snoop_data() 
Snoop_data() processes packets from the fixed 

host. TCP implements a sliding window scheme to 

transmit packets based on its congestion window 

(estimated from local computations at the sender) 

and the flow control window (advertised by the 

receiver). TCP is a byte stream protocol and each 

byte of data has an associated sequence number. A 

TCP packet (or segment) is identified uniquely by 

the sequence number of its first byte of data and its 

size. At the BS, snoop keeps track of the last 

sequence number seen for the connection. One of 

several kinds of packets can arrive at the BS from 

the FH, and snoop_data() processes them in 

different ways: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Flowchart for Snoop_data(). 
 

i.A new packet in the normal TCP sequence: 

This is the common case, when a new packet 

in the normal increasing sequence arrives at 

the BS. In this case the packet is added to the 

snoop cache and forwarded on to the MH. We 

do not perform any extra copying of data 

while doing this. We also place a timestamp 

on one packet per transmitted window in order 

to estimate the round-trip time of the wireless 

link. The details of these steps are described in 

Section 4. 

ii.An out-of-sequence packet that has been 

cached earlier: This is a less common case, 

but it happens when dropped packets cause 

timeouts at the sender. It could also happen 

when a stream of data following a TCP sender 

fast retransmission arrives at the base station. 

Different actions are taken depending on 

whether this packet is greater or less than the 

last acknowledged packet seen so far. If the 

sequence number is greater than the last 

acknowledgment seen, it is very likely that 

this packet didn’t reach the MH earlier, and so 

it is forwarded on. If, on the other hand, the 

sequence number is less than the last 

acknowledgment, this packet has already been 

received by the MH. At this point, one 

possibility would be to discard this packet and 

continue, but this is not always the best thing 

to do. The reason for this is that the original 

ACK with the same sequence number could 

have been lost due to congestion while going 

back to the FH. In order to facilitate the sender 

getting to the current state of the connection as 

fast as possible, a TCP acknowledgment 

corresponding to the last ACK seen at the BS 

is generated by the snoop module (with the 

source address and port corresponding to the 

MH) and sent to the FH. 

iii.An out-of-sequence packet that has not been 

cached earlier: In this case the packet was 

N

o 

Sender 

rexmission 

Packet 

Arrives 

Common 

Case 

1. Forward 
Packet 

2. Reset local 
rexmit  

counter 
Y

es 

Y

es 
1. Cache Packet 
2. Forward to 

Mobile 

N

o 

In sequence? 
1. Mark as cong. 

loss 
2. Forward Pkt 

Congestion 

loss 

New Pkt? 

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

4

www.ijert.org

IJ
E
R
T

IJ
E
R
T



either lost earlier due to congestion on the 

wired network or has been delivered out of 

order by the network. The former is more 

likely, especially if the sequence number of 

the packet (i.e, the sequence number of its first 

data byte) is more than one or two packets 

away from the last one seen so far by the 

snoop module. This packet is forwarded to the 

MH, and also marked as having been 

retransmitted by the sender. Snoop_ack() uses 

this information to process duplicate 

acknowledgments that arrive for this packet 

from the MH. 

 

3.1.2 Snoop_ack() 
Snoop_ack() monitors and processes the 

acknowledgments (ACKs) sent back by the MH 

and performs various operations depending on the 

type and number of acknowledgments it receives. 

These ACKs fall into one of three categories: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i.A new ACK: This is the common case (when 

the connection is fairly error-free and there is 

little user movement), and signifies an 

increase in the packet sequence received at the 

MH. This ACK initiates the cleaning of the 

snoop cache and all acknowledged packets are 

freed. The round-trip time estimate for the 

wireless link is also updated at this time. This 

estimate is not done for every packet, but only 

for one packet in each window of 

transmission, and only if no retransmissions 

happened in that window. The last condition is 

needed because it is impossible in general to 

determine if the arrival of an acknowledgment 

for a retransmitted packet was for the original 

packet or for the retransmission [14]. Finally, 

the acknowledgment is forwarded to the FH. 

ii.A spurious ACK: This is an acknowledgment 

less than the last acknowledgment seen by the 

snoop module and is a situation that rarely 

happens. It is discarded and the packet 

processing continues. 

iii.A duplicate ACK (DUPACK): This is an 

ACK that is identical to a previously received 

one. In particular, it is the same as the highest 

cumulative ACK seen so far. In this case the 

next packet in sequence from the DUPACK 

has not been received by the MH. However, 

some subsequent packets in the sequence have 

been received, since the MH generates a 

DUPACK for each TCP segment received out 

of sequence. One of several actions is taken 

depending on the type of duplicate 

acknowledgment and the current state of 

snoop: 

 The first case occurs when the DUPACK is 

for a packet that is either not in the snoop 

cache or has been marked as having been 

retransmitted by the sender. If the packet is 

not in the cache, it needs to be resent from 

the FH, perhaps after invoking the 

necessary congestion control mechanisms at 

the sender. If the packet was marked as a 

sender-retransmitted packet, the DUPACK 

needs to be routed to the FH because the 

TCP stack there maintains state based on 

the number of duplicate acknowledgments it 

receives when it retransmits a packet. 

Therefore, both these situations require the 

DUPACK to be routed to the FH.he realm 

represents the nodes that are managed by   a 

single KDC; i.e. share the same Kerberos 

database. 

 

 The second case occurs when the snoop 

module gets a DUPACK that it doesn’t 

expect to receive for the packet. This 

typically happens when the first DUPACK 

arrives for the packet, after a subsequent 

packet in the stream reaches the MH, 

following a packet loss. The arrival of each 

successive packet in the window causes a 

DUPACK to be generated for the lost 

packet. In order to make the number of such 

DUPACKs as small as possible, the lost 

packet is retransmitted as soon as the loss is 

detected, and at a higher priority as normal 

packets. This is done by maintaining two 

queues at the link layer for high and normal 

priority packets. In addition, snoop also 

estimates the maximum number of duplicate 

acknowledgments that can arrive for this 

packet. This is done by counting the number 

of packets that were transmitted after the 

lost packet prior to its retransmission. 

 

 The third case occurs when an “expected” 

DUPACK arrives, based on the above 

maximum estimate. The missing packet 

would have already been retransmitted 

when the first DUPACK arrived (and the 

estimate was zero), so this acknowledgment 

Later dup acks 

for lost packets Next pkt lost 

Figure 5:  Flowchart for Snoop_ack(). 
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is discarded. In practice, the retransmitted 

packet reaches the MH before most of the 

later packets do (because it was 

retransmitted at a higher priority) and the 

BS sees an increase in the ACK sequence 

before all the expected DUPACKs arrive.  

 

Retransmitting packets at a higher priority 

improves performance at all error rates. This 

enables retransmitted packets to reach the mobile 

host sooner, reducing the number of duplicate 

ACKs and leading to improved throughput. Snoop 

keeps track of the number of local retransmissions 

for a packet, but resets this number to zero if the 

packet arrives again from the sender following a 

timeout or a fast retransmission. In addition to 

retransmitting packets depending on the number 

and type of acknowledgments, the snoop module 

also performs retransmissions driven by timeouts. 

This is described in more detail in the section on 

implementation (Section 4). 

 

 

4. Implementation 
We have implemented the snoop module and 

routing protocol on a test bed consisting of IBM 

ThinkPad laptops and i486 base stations running 

BSD/OS 2.0 from BSDI, communicating over an 

AT&T Wavelan. The maximum raw aggregate 

bandwidth of the Wavelan is about 2 Mbits/s. The 

implementation currently supports bulk transfers to 

and from mobile hosts and supports smooth 

handoffs. The network topology for our 

experiments is shown in Figure 6. The state 

maintained by snoop is easily reconstructed from 

scratch by snooping on a few packets and 

acknowledgments. The snoop cache is maintained 

as a circular buffer of packets, consisting mainly of 

pointers to kernel mbufs [18] and some other 

associated information that includes the packet 

sequence number, its size, the number of local 

retransmissions, and a flag set if the packet was 

retransmitted by the sender. In general, the size of 

the cache at a forwarding (primary) base station 

needs to be large enough to handle the maximum 

transmission window size. In practice, we set a 

“high-water mark” on the cache: the only packets 

accepted into the cache after this point is reached 

are those that are out of order and earlier in 

sequence than the last one seen. Other packets are 

forwarded to the mobile host without being 

cached. This is because it is more important for the 

older, rather than newer, packets to be cached and 

retransmitted, since they will cause sender 

timeouts earlier. Several studies have shown that 

one of the predominant costs of TCP is the 

copying of data [7, 16]. We use the reference 

counting mechanism present in kernel mbufs to 

avoid data copying in the snoop module. Thus, we 

do not incur any extra overhead associated with 

copying at the base station. When error rates are 

relatively low, the protocol overhead is small -- an 

incoming packet is added to the cache without 

copying it, and it is forwarded on to the mobile 

host. A small number of state variables (e.g., the 

last sequence number seen) are updated. When a 

new acknowledgment arrives at the base station, 

we forward it on to the fixed host and clean the 

snoop cache by freeing the packets corresponding 

to packets already acknowledged by the mobile. 

The last link round-trip time estimate is updated 

once per transmission window. 

 

In addition to retransmitting packets depending on 

the number and type of acknowledgments 

received, the snoop module also performs 

retransmissions driven by timeouts. There are two 

types of timer interrupts in the module, the round-

trip timer and the persist timer. The round-trip 

timer is based on the estimate of the smoothed 

round-trip time (srtt) of the last link. We compute 

this using the standard adaptive technique, srtt=(1-

α)*old_srtt+ α*curr_rtt), with αset to 0.25, so 

that integer shift operations can be used. The 

packet is retransmitted if an acknowledgment 

hasn’t been received in twice this time. In order to 

limit the amount of time spent processing timer 

interrupts, we do not timeout more frequently than 

a threshold time, currently set to 40 ms. 

additionally; we trigger this timeout only after the 

first retransmission of a packet from the snoop 

cache, caused by the arrival of a duplicate 

acknowledgment. This also ensures that negligible 

number of (unnecessary) retransmissions occur for 

packets that have already reached the mobile host. 

The persist timer triggers a retransmission if there 

are unacknowledged packets in the cache, and if 

there has been no activity either from the sender or 

receiver for 200 ms. This timer also sets the 

number of expected DUPACKs to zero and the 

next expected acknowledgment to one more than 

the last ACK seen so far. These timers and their 

associated retransmissions are critical when packet 

losses are high (e.g., due to interference or 

movement), since they increase the number of 

transmission attempts and thereby increase the 

likelihood of the packet getting through sooner to 

the mobile host. 

 

As mentioned in the design of the routing protocol, 

there are three major components of the mobile 

routing system -- the packet encapsulation at the 

home agent, the de-capsulation at the base stations 

and the beaconing system. The encapsulation and 

de-capsulation modules use data structures similar 

to those used by the snoop module. In-kernel data 

structures are used to maintain mappings between 

IP multicasts addresses and home addresses. These 

tables are configured by user-level daemons. The 

home agent uses this table to perform the 

encapsulation in the IP forwarding code. This 

same table is used in the forwarding and buffering 

BSs to identify which multicast packets are 

destined to which mobile hosts. Each of the 

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

6

www.ijert.org

IJ
E
R
T

IJ
E
R
T



buffering base stations store the packets 

transmitted to a mobile host in a circular buffer. 

The maximum number of packets to store is set to 

prevent data loss during handoff. In our current 

implementation, we store at most 12 packets, 

which correspond to between 24 and 72 ms of 

transfer time across the Wavelan link. During a 

handoff, the mobile host transmits to the new 

primary base station unique identifiers (IP IDs) of 

the last three packets it has received. The base 

station searches for these IDs in its circular buffer 

and frees all packets that arrived before them. The 

remaining TCP packets in the circular buffer are 

transmitted to the mobile host. If the IP IDs are not 

found, the entire circular buffer is sent. 

 

The beaconing system was implemented in three 

parts -- a user level process at the base stations, a 

user level process at the mobile host and a kernel 

module at the mobile host. The process on the base 

station transmits a broadcast packet on the wireless 

network once per second. The beacon message 

contains the IP address of the base station and a 

timestamp. Each mobile host has a user-level 

beacon analysis process that listens for new 

beacons on the wireless network. When the 

process receives a beacon from a base station it has 

not heard before, it requests the kernel to add the 

base station to the list of active beacon sources.  

When a beacon from a listed base station arrives a 

mobile host, the kernel samples the signal strength 

of the wireless transmitter. The beacon analyzer 

process reads the signal strength samples and uses 

them to determine when handoff should occur. 

 

 

5. Performance 
We performed several experiments with the snoop 

module and routing protocol on our wireless tested 

and compared the resulting performance with 

unmodified TCP. We present the results of these 

experiments in this section. In the presence of no 

packet losses, the maximum throughput achieved 

by a TCP connection over the wireless link was 

about 1.6 Mbits/s. The rated maximum raw 

bandwidth of the wireless link was 2 Mbits/s. We 

present the results of data transfer from a fixed 

sender to a mobile receiver. These were obtained 

using the network configuration shown in Figure 

6. The sender TCP stack was based on TCP Reno, 

an implementation supporting fast retransmissions 

upon the arrival of three duplicate 

acknowledgments. The maximum possible 

window size for the connection was 64 KBytes 

and the maximum TCP segment size was 1460 

bytes. In order to measure the performance of the 

implementation under controlled conditions, we 

used a Poisson-distributed bit error model. We 

generated a Poisson distribution for each bit-error 

rate and changed the TCP checksum of the packet 

at the base station if the error generator determined 

that the packet should be dropped at the receiver, 

before forwarding the packet over the wireless 

link. The same operation was done for packets 

(acknowledgments) from the mobile host. We also 

experimented with using a two-state Markov error 

generator that more accurately modeled the 

wireless channel. The two states corresponded to 

periods of good connectivity and periods of poor 

connectivity. Poisson-distributed errors were 

generated at different rates in each state. 

Unfortunately, throughput measurements 

converged very slowly when using this error 

model and it was difficult to interpret the 

implications of the results. As a result, we used the 

Poisson error model across a wide range of bit-

error rates to understand how the snoop module 

would perform in either the good or bad channel 

state. 

 

Each run involved a 10 Mega Byte transfer and 

this was repeated ten times at each error rate. 

Figure 7 compares the throughput of a connection 

using the snoop module with that of a connection 

using an unmodified TCP implementation, for 

various Poisson-distributed bit-error rates shown 

on a log scale. The vertical error bars in the figure 

show the standard deviation of the receiver 

throughput. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We see that for error rates of over 5x10-7 (close to 

the 2 Mb point on the x-axis of the graph) the 

snoop protocol. 

 

TCP, achieving a throughput improvement factor 

of 1 to 20 depending on the bit error rate. In fact, 

the snoop protocol was robust and completed the 

run even when every other packet was being 

dropped over the last link, whereas the regular 

TCP connection didn’t make any progress. Under 

conditions of very low bit error rates (< 5x10-7), 

we see little difference between the snoop protocol 

and unmodified TCP. At such low bit errors there 

is typically less than one error per transmitted 

window and unmodified TCP is quite robust at 

handling these. At these low error rates, snoop 

behaves as is it were not present and this ensures 

no degradation in performance. 
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Figure 6: Bit Error Rate-1 (1 error every x 

bits, on average) 
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A more detailed picture of the behavior of the 

connection can be seen can be seen in Figure 8, 

which plots the sequence numbers of the received 

TCP packets versus time for one of the 

experiments. 

 

 
Figure 7: Sequence numbers for transfer 

to mobile host over channel with 3.8x10-6 

(1/256kbps) BER. 

These values were obtained using the tcpdump 

[19] network monitoring tool. The figure shows 

the comparison of sequence number progression in 

a connection using the snoop protocol and a 

connection using unmodified TCP for a Poisson-

distributed bit error rate of 3.9x10-6 (a bit error 

every 256 Kbits on average). We see that the 

snoop protocol maintains a high and consistent 

throughput. On the other hand, regular TCP 

unnecessarily invokes congestion control 

procedures several times during the duration of the 

connection. This phenomenon appears as the flat 

and empty regions of the curve and degrades the 

throughput significantly. For this particular run, 

the aggregate bandwidth with the snoop protocol 

was about 1 Mbit/s, while it was only about 0.25 

Mbits/s for regular TCP. To isolate and measure 

the impact of handoff on TCP performance, we 

examined the performance of a TCP connection to 

the mobile host with regularly spaced handoffs 

between two base stations. As mentioned in 

Section 4, each base station sends out a beacon 

signal once per second. The presence of these 

beacons reduces the peak TCP throughput in the 

absence of errors and handoffs to 1.45 Mbits/s. In 

this experiment, the arrival of a beacon at the 

mobile host does not trigger an analysis of the 

signal strengths of the different base stations; 

instead, the mobile host uses the time elapsed since 

the last handoff to determine if a handoff should 

occur. In order to stress the performance impact of 

the handoff scheme on end-to-end performance, 

we performed several tests, varying the time 

between handoffs from 1 to 10 seconds. The 

results for different handoff rates are shown in 

Table1. These measurements show that even 

frequent handoffs have very little impact on 

performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Table 1: Throughput received by the 
mobile host at different handoff 

frequencies. 
 

In a Real environment, handoffs are likely to occur 

much less frequently than once per second. The 

behavior of a connection experiencing handoff is 

shown in Figure 9. The figure plots the sequence 

numbers of a TCP connection to a mobile host 

with handoffs occurring every 10 seconds. We see 

that the data transfer progresses without any 

significant interruptions despite the presence of the 

handoffs. The throughput during this transfer was 

about 1.4 Mbits/s. 

 

  

6. Future Work 
We are currently in the process of measuring and 

optimizing the performance of the snoop protocol 

under various situations. These include wide-area 

connections to a mobile host and data transfers 

from a mobile host. We are also working on 

characterizing the behavior of TCP connections 

and the snoop module in the presence of real-life 

sources of interference. In addition to this, we have 

started working on improving the TCP 

performance of the Metricom system, a 

metropolitan- area packet relay network. This 

system has multiple wireless hops from the base 

station to a mobile host and operates at bandwidths 

of about 100 Kbits/s. Although there are several 

differences between this and the Wavelan, we 

believe that with minor modifications the snoop 

protocol will result in improved performance in 

this environment. Wireless networks of the future 

are likely to be heterogeneous where each host will 

simultaneously be connected to different wireless 

interfaces that may interfere with each other. An 

example of this is an in-building Wavelan network 

and a campus-wide packet relay network that also 

extends inside buildings. The problems of 

improving TCP performance, routing and handoff 

Time 

Between 

Handoffs 

(sec) 

Throughput 

(Mbits/s) 

Standard 

Deviation 

(Mbit/s) 

1 1.42 .011 

2 1.43 .016 

3 1.43 .012 

5 1.43 .014 

8 1.44 .012 

10 1.43 .012 

∞ 1.45 .011 
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in such heterogeneous networks, characterizing the 

impact of interference on connection quality, and 

support for network-characteristic-aware 

applications are challenging ones with significant 

practical value [15]. 

 

 

7. Summary 
We have presented a set of additions and 

modifications to the standard Internet protocol 

stack to improve the performance of TCP in 

networks with wireless links and mobile hosts. 

This protocol works by   modifying the network 

layer software at the base station and mobile host, 

and involves no other changes to any of the fixed 

hosts elsewhere in the network. The two main 

ideas of the new protocol address the problems of 

high bit-error rates on wireless links and data loss 

caused by handoffs. Our solution to the problem of 

bit-errors is to cache packets intended for the 

mobile host at the base station and perform local 

retransmissions across the wireless link. We 

eliminate losses caused by mobility by using a low 

latency, multicast-based handoff algorithm. We 

have implemented the new protocol stack on a 

wireless tested consisting of IBM ThinkPad 

laptops and i486 base stations running BSD/OS 

2.0 communicating over a 2 Mbits/s AT&T 

Wavelan. Experiments show that this protocol 

stack is significantly more robust than regular TCP 

in the presence of unreliable links, multiple errors 

in a window and user mobility. We have achieved 

performance improvements of up to 20 times over 

normal TCP/IP for data transfer from a fixed to a 

mobile host across a wide range of bit error rates, 

reduced handoff latency to between 5 and 70 ms 

and eliminated data loss during handoff. 
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