Performance Comparison and Analysis of AODV, OLSR and TORA using Jelly Fish Attack under MANET

Er. Pardeep Singh (M-Tech Student)
Comp. Sci. and Engg. dept.
Guru Kashi University, Talwandi Sabo
Bathinda, India

Er. Rachna Rajput (Asstt Proff.)
Comp. Sci. and Engg. dept.
Guru Kashi University, Talwandi Sabo
Bathinda, India

Abstract—Mobile Ad-hoc Networks are highly vulnerable to the various types of attack because in MANET there is no presence of centralized authority. Communication occurs hop by hop through intermediate nodes. Jelly Fish attack is one of the DOS (Denial of service) attacks, which tries to increase the End to End delay. In this paper we will compare the performance of AODV, OLSR and TORA Under Jelly Fish attack and Normal scenario.

Keywords— JF attack, AODV, OLSR, DOS, TORA.

I. INTRODUCTION
MANET is Mobile Ad-hoc network in which nodes can communicate with each other without any pre defined infrastructure. MANET has different type of protocols; Reactive (On demand), Proactive (Table driven) and hybrid (Combination of best of both). The routing protocols suitable for the fixed infrastructure network were not suitable for MANET because each node in the MANET may change their positions randomly. MANET can be configured to allow the communication devices to form a dynamic and temporary network. A malicious attacker can easily access this kind of network because of lack of the strong defense mechanism and high mobility of the nodes.

In this paper we have investigated the impact of the JF Delay Variance attack on the performance of network. We have used three protocols i.e. 1) OLSR (Proactive) is table driven protocol. It usually store and updates its routes so that when a route is needed, it present the route immediately without any initial delay. In OLSR, some candidate nodes are known as multipoint relay (MPRs) are selected and responsible to forward the broadcast packet during the flooding process. OLSR performs the hop by hop routing where each node uses its most recent routing information to route packets 2) AODV (Reactive) Ad-hoc On-demand Distance Vector Routing Protocol is a reactive protocols, when a source wants to initiate transmission with another node as destination in the network, AODV uses control message to find the to the destination in the network. A route request message (RREQ) is forward to the neighbor nodes. Whenever a route is discovered they generate the route reply message (RREP) and send to the source. 3) TORA is a highly adaptive loop free distributed routing algorithm based the concept of link reversal. It is a source initiated and provide multiple route for any desired source/destination pair. The protocol performs three basic functions of Route creation, route maintenance, and Route erasure. Section (ii) includes the Literature review about the previous work done by various authors. Section (iii) includes the exact problem definition. Section (iv) includes the detail of parameters. In section (v) we will explain the JF attack in brief. Section (vi) includes the methodology used to justify our work. Section (vii) Results will be discussed. Section (viii) includes conclusion.

II. LITERATURE SURVEY
[1] In this paper Ekta Barkhodia, Parulpreet Singh and Gurleen kaur Walia have taken the 40 node scenario with AODV protocol and described that as the nodes increases the average end to end delay increases but throughput increases as the no. of attacker nodes increases. In the presence of 3rd attacker node is the highest. [2] Ashok desai has presented a review paper on detection and prevention technique of gray hole attack. He has discussed about the various papers about the Gray Hole attack. [3] Osamah yaseen fadhil has analyzed the behavior of two protocols AODV and DSR by using the two different voice encoding schemes; Pulse Code Modulation (PCM) and Global System Mobile (GSM). He has concluded that Performance of AODV is better as compare to the DSR Protocol. [4] Jasjeet Singh and Er. Sukhjit Singh has evaluated the MANET protocols i.e TORA, OLSR and GRP with variable bit rate multimedia traffic including audio and video codec. They have used throughput, delay and load Parameters for comparison w.r.t 35, 50, 70 nodes comparison shows highest load in OLSR . Both GRP and TORA have the stable load. [5] Harmanpreet Kaur and Er. Jaswinder Singh has compared three protocols OLSR, GRP and TORA on the basis of delay, load, media access delay and throughput in their research. They have concluded that OLSR performs best in terms of throughput, GRP performs best in terms of delay and routing overhead, TORA is worst choice when we consider all four parameters. [6]
Ekta Nehra and Er. Jasvir Singh in this paper routing protocols AODV, TODV, OLSR and ABR are compared using the various parameters i.e delay, Network load and throughput. They have concluded that OLSR performs best in terms of network load and throughput, AODV performs worst in case of Load and throughput. Performance of ABR is good for load and throughput and TODV,s performance is consistent for all three parameters. [7] Naveen Bilandi and Harsh K Verma has compared the three type of protocols in MANET. In this paper comparison has done by considering the AODV (Reactive), OLSR (Proactive) and GRP (Hybrid). In this comparison 75 nodes are taken and simulation time is fixed for 1800 seconds. [11] In this paper Mohammad Wazid, Vipin Kumar and R H Gourad has analyzed the performance of AODV, TORA, DSR routing protocol. For efficient network performance DSR is best protocol and TORA will perform best in case of throughput. [9] In this paper authors Diya Naresh Vadhwani, Deepak kulhare and Megha Singh analyzed the behavior of DSR protocol with http traffic. They have used the 100, 70 and 50 nodes for the various parameters.

III. PROBLEM DEFINITION

In our research work we have done a comparative performance analysis of the three protocols OLSR, AODV and TORA under Jelly Fish attack. We will also analyze which protocol is best under Jelly Fish Attack.

IV. PARAMETERS

Commonly Used Simulation Parameters

<table>
<thead>
<tr>
<th>Simulator Used</th>
<th>OPNET 14.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>10 X 10 (Fix)</td>
</tr>
<tr>
<td>Mobility Model</td>
<td>Random</td>
</tr>
<tr>
<td>Topology</td>
<td>Random</td>
</tr>
<tr>
<td>Traffic</td>
<td>Voice</td>
</tr>
<tr>
<td>Simulation Time</td>
<td>10 minute</td>
</tr>
<tr>
<td>Address Mode</td>
<td>IPv4</td>
</tr>
<tr>
<td>Ad-hoc Routing Protocol</td>
<td>AODV, OLSR, TORA</td>
</tr>
<tr>
<td>AODV Parameters</td>
<td>Default</td>
</tr>
<tr>
<td>OLSR Parameters</td>
<td>Default</td>
</tr>
<tr>
<td>TORA Parameters</td>
<td>Default</td>
</tr>
<tr>
<td>TCP Parameters</td>
<td>Default</td>
</tr>
<tr>
<td>Forwarding rate</td>
<td>4,00,000 Packets/Sec for Honest Node</td>
</tr>
<tr>
<td></td>
<td>5000 Packets/Sec for JF Nodes</td>
</tr>
<tr>
<td>Network Size</td>
<td>40 Nodes for Scenario 1,2,3</td>
</tr>
<tr>
<td></td>
<td>40 Nodes for Scenario 4,5,6</td>
</tr>
<tr>
<td>Jelly Fish Attacker Nodes</td>
<td>Zero for normal flow</td>
</tr>
<tr>
<td></td>
<td>25 Nodes for JF Scenarios</td>
</tr>
</tbody>
</table>

Performance Metrics: -
1. Load
2. Throughput
3. End to End delay
4. Data Dropped (Buffer Overflow)

V. JELLY FISH BASICS

JF Attack: - JF attack is the Denial of Service type attack also known as the Passive attack because the Malicious nodes fully obey the protocol rules. JF attack produces the delay before the transmission and reception of data packets in the network. JF attacks can be categorized as follows.
1. JF Reorder attack
2. JF Periodic Dropping attack
3. JF Delay variance attack

VI. METHODOLOGY

Network simulations are implemented using OPNET modeler. OPNET modeler is commercial simulation environment for network modeling and simulation. It allows users to design and study the communication devices, protocols and applications with flexibility and scalability. It simulates the network graphically and give the structure of actual network and network components. The users can design the network model visually the model uses object oriented approach. The nodes and protocols are modeled as the classes with inheritance and specialization. The OPNET modeler architecture consists of three modeling domains: the process, the node and the network. Within the process modeling domain the developer implements the behavior of various processes, such as the e-mail client, TCP manager and IP interfaces. The development language is c. OPNET is high level event based network level simulation tool in which simulation operates at the packet level. OPNET contains a huge library of accurate models of commercially available fixed network hardware and protocols. As we have discussed the parameters in the section (IV), to justify our work we simulate the mobile Ad-hoc network for three protocols AODV, OLSR, TORA at normal flow with 40 node scenario

VII. RESULTS

a. Delay: - In both cases (normal Scenario and JF scenario) Delay is Minimum for the OLSR and abruptly increases in the TORA and AODV. Delay is maximum in the AODV with increase in no of nodes.

Fig: a (i)
b. Throughput: - In both scenarios (normal and JF scenario) AODV has the Maximum throughput with the increasing no. of nodes as compare to the TORA and OLSR. But as compare to the normal scenario throughput lags little bit for OLSR and TORA but not in AODV.

Data Dropped (Buffer overflow): - TORA has minimum Data Dropped and AODV has highest data dropped (Buffer overflow) because the MAC could not receive any acknowledgement for retransmission of those packets.

Load: - Load represents total load submitted to wireless LAN layer by all higher layers. Highest load is captured by AODV and TORA has captured lowest load.

c. Data Dropped (Buffer overflow): - TORA has minimum Data Dropped and AODV has highest data dropped
VIII. CONCLUSION

AODV is best protocol to use when we need highest throughput, TORA performs worst. Data dropped is high in TORA and less in AODV. OLSR is best protocol when we need less delay in network.

REFERENCES