
Performance Based Scheduling Real-Time

Application over Multicore Reservation

Ishwar Chaudhary, Radhakrishna Naik, Pratap Suryawanshi

MIT, Aurangabad

Abstract- Now days, computational control existing in

multicore platform involves the software to be quantified in

terms of parallel performance flows. Task set considered as

application with precedence relation among them and it is

communicated by directed acyclic graph. Till now in directed

acyclic graph tasks are partitioned into number of flows for

reduce bandwidth necessities and scheduled according to

precedence relationship only. This paper suggests multicore

performance contribution factor scheduling algorithm

(MPCF). On the other hand tasks are scheduled considering

precedence relationship, performance contribution factor

(PCF) as well as deadline of each task in the task set.

Proposed scheduling algorithm is proved by scheduling real-

time periodic task set on quad core processor by using

Earliest Deadline First (EDF) scheduler. Simulating the

proposed MPCF scheduling algorithm through the analysis of

three case studies and gives optimal improvement solution for

requirement of execution time and bandwidth are less for

executing an application on core. Results are compared with

Branch and Bound algorithm.

Keywords: Performance Contribution Factor (PCF), Earliest

Deadline First, Multicore reservation, Real- Time Scheduling,

Branch and Bound Algorithm, IRIS.

I. INTRODUCTION

 In real-time systems use of the available resources

while achieving a desired performance is a serious design

goal. Day by day continuously increase of complication

and requiring the higher performance industry moving

towards the multicore platforms.

 Multicore architecture gives effective solution to

the problem of increasing the processing speed with

controlled power dissipation. If only operating frequency

of single processor increase then it would cause the serious

heating problems and the problem of power consumption.

In multicore platform tasks are executing parallel.

Therefore, the tasks are allotted to processor considerably

affects the number of active cores required for running the

application. In multicore system researchers are still

working to produce the new theoretical results. Control

power available in multicore system requires the

programming structure; in which application optimize the

allocation of tasks on different cores [1].

 In real-time systems results are required within a

specified deadline. Now days real time system are more

difficult and more correctness of consistent results are

predictable. In real-time systems tasks are interact with

each other to achieve the output of the system. The

collection of tasks is called as tasks set. In the tasks set

tasks are depend on each other to achieve the goal of

system, effective resource consumption, and create the

precedence relationship among the tasks. The task in the

task set considering the precedence relationship in which

successor tasks should need the predecessor tasks result to

achieving the output of the system.

 The processing platform affects the scheduling

strategies. Consequently it can be well-defined the

scheduling algorithm by Liu and Layland [2] namely Rate

Monotonic (RM), Earliest Deadline First (EDF) are

optimum scheduling algorithm on uniprocessor processing

platform but it is not the case processing platform moved to

multiprocessor. Now day’s huge amount of changes in

processing platform. In the early stage of the processing

platform progress which was characterized by

uniprocessor, then shifted towards the multiprocessor

platform, distributed architecture, and now multicore

platform. Modern tendency turns around multicore

processing platform, in which multiple cores mounted on

single chip [3].

 In real-time systems, scheduling strategy must

consume the strength of the processing platform and this

paper claims involvement of each task in task set

throughout the schedulability of whole task set. Lower

significant task must have less priority that the higher

significant task. Performance contribution factor (PCF) of

each task indicates that quantity of involvement of tasks to

achieve output of system. Achievement level must be

considered if the task performs partly. Involvement of task

can be calculated whether it completes execution partly or

successfully in MSS.

 This paper suggests preemptive scheduling

algorithm intended for multicore architecture. The

algorithm proposed scheduling strategy will schedule task

set by considering the precedence relation among the task,

Performance contribution factor (PCF) as well as deadline

of each task in task set. Task can completes full of its

instruction or insufficient of its instruction is considered as

contribution factor of each task in task during scheduling of

task. The accumulative performance of each task can be

calculated by calculating the probability of each state and

achievement level of each state is assumed. In the task set

task priorities are allocated on the basis of two factors such

as Performance Contribution factor (PCF) and Deadline of

each task in task set.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080251

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

697

 Task set considered as an application and is

expressed by Directed Acyclic Graph (DAG). Till now, in

directed acyclic graph tasks are scheduled according to the

precedence relation among the tasks only. Due to that

higher priority tasks in directed acyclic graph are wait in

the queue because of the resources acquire by the lower

priority task. So, requirement of the bandwidth for

performing application is more and the performance of the

system reduces. Therefore, the algorithm proposed an

innovative scheduling strategy for scheduling task in

directed acyclic graph for decreasing the bandwidth

requirement and increasing the system performance.

Organization of the Paper:

 The rest of the paper is organized as follows.

Section II represents the related work. Section III

represents the system model with terminology and recalls

the some background concepts. Section IV represents the

proposed work for scheduling the application according to

the precedence relation along with considering the PCF and

Deadline. Section V illustrates the performance evaluation

of the proposed algorithm. Section VI represents the

performance analysis of the proposed work. Section VII

states our conclusion and possible extensions for a future

work.

II. RELATED WORK

 In real-time systems deadline is the prime

constraint. Therefore, the tasks are executed in the proper

order with respect to the deadline constraints. Many

researchers and academicians has been done lot of work

right from first result publish in 1973, by Liu and

Layland[2] in the field of real-time scheduling. In the first

paper of real-time scheduling Liu and Layland expressed

optimum fixed priority algorithm i.e. Rate monotonic (RM)

and Earliest Deadline First (EDF). In RM algorithm

priorities are assigned to task in the task set on the basis of

their period whereas in EDF priorities are assigned to tasks

in task set on the basis of their deadline.

 Partitioning a real-time periodic task in task set by

using branch-and-bound algorithm proposed by Peng and

Shin [4]. Proposed method is optimum but requirements of

bandwidth for executing a task graph are not considered.

To assign and schedule the real-time periodic task in task

set proposed by Ramamritham [5] by considering

precedence relation and communication among the tasks.

 Baruah and Fisher [6] proposed, heuristically

partition a set of deadline constrained sporadic tasks set on

multiprocessor but they are not consider the precedence

relation among the task. Chetto et al [7]. addressed on the

problem of precedence relation among the real-time tasks,

who proposed a method for setting the activation time and

deadline to each task in the task graph to convert that graph

into precedence graph.

 In precedence constraint problem of assigning

tasks is generally a type of NP hard problem. Issues

involve in scheduling of precedence constraint tasks in

real-time system addressed in Performance contribution

and Deadline algorithm [8]. In this proposed method of

scheduling a task in task graph by considering the

Performance contribution factor and deadline of each task

in task set. Increase reward with increase service type of

imprecise computation model was proposed to permit for

the trade-off the quality of computations in favor of

meeting the deadline constraints [9]. In this model tasks are

logically divided into two parts one is mandatory part

another one is optional part of the task. In this paper for

scheduling of task we are using the mandatory and optional

part of the task strategy for increasing the system

performance and decreasing the bandwidth consumption of

task.

2.1 Real Time Scheduling on Multicore Processing

Platform:

 Multicore processing platform also called as

single-chip multiprocessor. In the multicore processor there

is only a single chip and multiple processing units are

mounted on that chip [10]. The multicore platform has two

categories, first one is homogeneous multicore platform

and second one is heterogeneous multicore platform. In

global scheduling algorithm, consist of global queue and it

is associated with multiple processing unit. In partitioning

scheduling algorithm there is separate queue associated

with separate processing unit. Migration of task not

allowed in partitioning scheduling [10]. Once the task

allocated to any core preemption method is used in

scheduling of task set then tasks mandatory as well as

optional part executed on that core only.

 There are many challenges for scheduling a task

on multicore to succeed goal of system along with reducing

bandwidth consumption, use the less number of cores due

to that power consumption is less, increase the processor

speed. Therefore, now day’s different parameter is used in

designing of scheduling strategy in multicore platform.

2.2 Performance Contribution Factor of Task:

 In real-time systems each task in task set

contribute to the achieving the output of the system. But in

MSS it may not happen some tasks may not execute

completest but contributes up to definite amount.

Therefore, in the scheduling of task set contribution of each

task must be considered [8]. In some task set task are

scheduled according to precedence relation only. Due to

that resources are not available for scheduling of higher

priority tasks, all the resources are acquire by the lower

priority tasks. Therefore, contribution of each task in task

set with respect to the other task must be considered. Tasks

are divided into mandatory and optional part. Mandatory

part is the compulsory part of the task in execution and

optional part of not affects too much on system if it is not

executed at the right time. In precedence relation graph

tasks are connected to each other so without the execution

of predecessor task; successor task not starts its execution.

Priorities assign to the classification of task in task set on

the basis of two parameters Performance Contribution

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080251

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

698

factor (PCF) and Deadline. Then the task is scheduled by

considering the precedence relation with PCF and Deadline

of each task.

PCF of each task can be calculated as,

 EG = ∑ 𝑃𝑘 . 𝐺𝑘
𝑘
𝑘=0 (1)

Where,

EG = Expected MSS Performance.

Pk = Probability of task in state k.

Gk = Performance of task in state k.

The probability that task extents to particular state can be

calculated by,
 Pk = Lin / Lt (2)

Lin = Total number of inputs received tasks from the other

task.

Lt = Total number of inputs associated with that task.

 In the precedence relation graph successor task

depend on the predecessor task. So the probability of task

execution having only one preceded task can be calculated

by the conditional probability. If the task having more than

one preceded task then probability of task execution can be

calculated by using Bayes rule.

III SYSTEM MODEL:

 In real-time system task set is considered as an

application and is expressed by Directed Acyclic Graph

(DAG) [1]. In Directed Acyclic Graph tasks are scheduled

according to the precedence relation only. Due to that

higher priority tasks are blocked by lower priority tasks. To

prevent the blocking of higher priority tasks calculate

Performance Contribution Factor (PCF) and Deadline of

each task in task set.

3.1 Related Terminologies:

Figure 1: Directed Acyclic Graph

a) Application A: It is set of tasks expressed by Directed

acyclic graph (DAG).

b) Task set: It is collection of task in one group and set the

precedence relation among the task set.

c) Precedence Relation R: It is defined as partial ordering

of task in task set. R ⊆ A × A. In the application Task 0

is the predecessor of Task 1 and Task 1 not start its

execution before the completion of Task 0

d) Path P: It is subset of task set order according to the

precedence relation R. P ⊆ A.

e) Predecessor Task: It is tasks whose output needed in the

execution of the other tasks in the precedence graph. In the

above fig.1 Task 0 is the predecessor task of Task T1 and

Task 3.

f) Successor Task: It is task which is not start its execution

before the completion of predecessor task in the precedence

graph. In the above fig.1 Task 1 is the successor task. Task

1 not start its execution before the completion of Task 0

g) Sequential Execution Time Cs: It is the minimum time

needed to complete the total application in sequentially.

Tasks are executed sequentially one after the other. In the

above figure 1 Task 0 to Task 4 are executed sequentially.

h) Parallel Execution Time Cp: It is the time needed to

complete the application on parallel architecture with four

numbers of cores.

3.2 Partitioning Application into Flows:

 This section describes the optimal method for

partitioning application into flows. Fig.1 considered as one

application and partitioning that application into number of

possible ways. Partitioning application into flows find out

the number of required core and how much bandwidth is

required for executing the application. If the numbers of

fragmentation are less then only the required numbers of

cores are also less. There are the two possible methods are

used for the optimal partitioning application into flows [1].

1) Branch and Bound Algorithm:

 This algorithm is used for partitioning application

into number of possible flows [1]. The main aim of this

algorithm is to minimize the bandwidth requirement for the

execution of application. This algorithm gives best solution

for partitioning application. This algorithm concentrates

only on the partitioning not on scheduling application. It

schedules the application according to the precedence

relation among the tasks in the application.

 The aim of this algorithm is to minimize the

bandwidth consumption and is calculated by,

 B = ∑ 𝐵𝑚
𝑘=1 𝑘 = ∑ (𝛼𝑘

𝑚
𝑘=1 + 2𝜎

1− 𝛼𝑘
∆𝑘

) (3)

Where,

B = Total bandwidth of the application

Bk = Bandwidth of each flow.

m = Number of flows.

σ = Context Switch Overhead.

 Branch and bound algorithm generates search tree

for finding out the optimal partition. At the starting point of

the search tree i.e. parental node of the tree Task T1

associated with the flow F1. Then branch and bound search

the level 2 nodes, at that level Task T2 associated with the

already created flow F1 or its create new flow F2. Branch

and Bound algorithm search the tree until the last element

of the tree. In the Branch and Bound Algorithm if the

element with flow has bandwidth greater than one then

pruning condition is apply on that flow. Application starts

execution according to the precedence relation.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080251

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

699

2) Heuristic Partitioning:

 To compact with large number of tasks in task set

heuristic partitioning is used for partitioning real-time

application into number of flows [1]. Branch and bound

algorithm is not possible if the task set contains the more

than 15 - 20 tasks.

 Heuristic algorithm starts with making the longest

possible path into the flow F1. At the start critical path of

the precedence graph taking into flow F1. The remaining

task of the graph algorithm tries to fir them into the already

existing flows by using the best fit strategy. If this not

possible to fit the task in that flow then algorithm makes

new flow. Algorithm schedules the tasks according to the

flows and precedence relation of the precedence graph.

3.3 Demand Bound Function:

Demand bound function is used to estimate the

amount of required computational resources for execution

of the application. The application demand is calculated for

core reservation for executing the application on core [11].

 The processor demand of a task Ti that has

activation time ai, computation time Ci, period T, and

relative deadline di, in any interval [t1, t2] is defined to be

the amount of processing time g(t1,t2) requested by those

instance of Ti activated in[t1,t2] that must be completed in

[t1,t2]

 gi = (⌊
𝑡2−𝑑𝑖

𝑇
⌋ − ⌈

𝑡1−𝑎𝑖
𝑇

⌉ + 1) 0 𝐶𝑖 (4)

IV PROPOSED WORK

4.1 Architecture:

 In this section describes the how the proposed

algorithm works .This is the architecture of the proposed

Multicore PCF Scheduling algorithm as shown in fig.2.

Figure 2: Architecture of MPCF Scheduling Algorithm

 In the previous algorithm, concentrate on only

partitioning an application into number of flows but not on

scheduling. Tasks are schedule according to the precedence

relation only. So, higher priority tasks are blocked by lower

priority tasks. Due to that performance of the system

reduces. Tasks take too much time for execution.

Therefore, in the proposed algorithm calculating the

performance contribution factor of each task in task set and

schedule the task by setting the priority in task set on the

basis of PCF and Deadline of each task. Then task are

schedules on different core by Earliest Deadline First

(EDF) scheduler.

 Proposed Multicore PCF Scheduling algorithm

also gives some novel idea for scheduling task in

precedence graph. In the precedence graph successor task

not start its execution before the completion of predecessor

task. In precedence graph successor task need output of the

predecessor task for execution. Every task has mandatory

and optional part. Mandatory part is the compulsory part

for execution of task. Proposed algorithm makes

assumptions that if successor task have higher PCF value

than the predecessor task then that time only execute

mandatory part of the predecessor task. After the execution

of mandatory part of predecessor task start execution of

higher PCF task. Because of that strategy higher priority

task are starts their execution as early as in the precedence

graph.

4.2 Set Activation Time and Deadline:
Fig.1 considered as one application. Before the application

start execution we know the activation time and deadline to

each task in task set [12]. After the assignment of deadline

and activation time then overall computation requirement

of the application can be find out.

 First algorithm start with assigning the activation

time to the application. Assume that the application start

time t = 0. So in the application all the task starts at time t

= 0.

 At the second step algorithm assigns deadline to

each task of the application. First assume the total

application deadline. Then the last task of the application

means those tasks that are not the predecessor for any task

in the application whose deadline equal to the total

application deadline. For Example, in above figure Task 2

and Task 4 are last task of the application. So their deadline

equal to the total application deadline.

 Then assign deadline to remaining task in the

graph for which all the successor have been considered.

Therefore, deadline assign to such task is,

 di = min (dj – cj) (5)

Here, Ti is the predecessor of task Tj. So deadline of

predecessor task Ti is calculated by subtraction of

computation time of successor task Tj through deadline of

successor task Tj.

4.3 Calculation of PCF:

 Let A be the application considered as task set

expressed by Directed Acyclic Graph (DAG).

T be the set of n tasks i.e. T = { T1, T2, T3…….}

C is the set of classes to classify the task from the task set.

i.e. C = { C1, C2}

I) Calculation of PCF of each task in task set by using the

some following criteria.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080251

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

700

In figure Task 0 is the root node of the DAG, so PCF value

of that task can be calculated as,

 EG = ∑ 𝑃𝑘 . 𝐺𝑘
𝑘
𝑘=0

Pk=
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑂𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝐿𝑖𝑛𝑘𝑠

𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑛𝑜𝑑𝑒𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑎𝑡 𝑅𝑂𝑂𝑇 𝑁𝑜𝑑𝑒

Gk = Assume.

For the last node of the DAG i.e. those tasks are not the

predecessor for the any other successor task. In figure Task

2 and Task 4 PCF value can be calculated as,

 EG = ∑ 𝑃𝑘 . 𝐺𝑘
𝑘
𝑘=0

Pk=
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝐿𝑖𝑛𝑘𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑎𝑡 𝑙𝑖𝑛𝑘

Gk = Assume.

For the other nodes of DAG i.e. in figure Task 1 and Task

3 PCF value can be calculated as,

 EG = ∑ 𝑃𝑘 . 𝐺𝑘
𝑘
𝑘=0

Pk=
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝐿𝑖𝑛𝑘𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑙𝑖𝑛𝑘𝑠

Gk = Assume.

II) Classification of tasks done on the basis of two

parameters PCF and Deadline of each task.

Table1 Classification based on PCF and Deadline.

Priority Levels PCF (EG) Deadline (D)

Class I High Low

Class II Low High

4.4 Scheduling Strategy:

 Task assignment to core is dynamically depending

upon the precedence relation among the task and

availability of core. Once task is allocated to particular

core, task is not migrated to any other core. All the tasks

are executed in preemptive manner which means higher

priority task are scheduled first, they may not need to wait

in queue.

 Assumptions:

1. Task set can be represented by Directed Acyclic Graph

concerning the precedence relation.

2. Tasks are divided into mandatory and optional portion.

3. Data required for transmission as to successor are

tasked by mandatory portion.

4. Tasks are scheduled according to the EDF scheduler.

5. For scheduling dependent task, if the predecessors are

from class I, then its mandatory as well as optional

portion is executed.

6. If the predecessors PCF value is low than the successor

task then only execute mandatory part of the

predecessors’ tasks.

7. Class II contains all the higher deadline tasks of the

application.

8. All cores are homogeneous i.e. identical

9. Intercommunication among tasks is done by message

passing.

Multicore PCF Scheduling Algorithm:

1. Take the input of tasks containing computation time

and precedence relation among tasks.

2. Generate directed acyclic graph (DAG) consider as

application.

3. Partition the application into number of flows by using

branch and bound algorithm or heuristic partition.

4. Set the deadline and activation time to each tasks of

the application.

5. Calculate PCF of each task of the application.

6. Calculate demand bound function of application for

reservation of core.

7. Calculate total bandwidth required for the application

to schedule on core.

8. Tasks are schedule on the core by EDF scheduler,

considering the precedence relation among the tasks,

PCF and deadline of each task.

V PERFORMANCE EVALUATION:

 In real-time systems gives the correct output of

system in specified time known as deadline. In real-time

scheduling task must execute on or before its deadline. In

task set task assigned to core in specific time for execution

of task has to be done on or before its deadline.

 In order to evaluate the performance of proposed

scheduling strategy, simulation is done on three case

studies.

Case Study 1:

 Fig.3shows the task set along with precedence

relationship among the task and considered as application.

Table 2 shows the details of the entire task in task set i.e.

Task Id, Computation time, Activation time, Deadline and

PCF, requirement of mandatory and optional part of the

task for scheduling.

Figure 3: Directed Acyclic Graphs

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080251

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

701

Table2: Case Study 1 Task Table

Task C.T

Activati

on Time

(ri)

Deadli
ne (D)

PCF Mi Oi

Task 0 2 0 12 0.70 1 1

Task 1 3 0 15 0.90 3 0

Task 2 5 0 20 0.40 5 0

Task 3 3 0 16 0.80 3 0

Task 4 4 0 20 0.60 4 0

Task 5 3 0 11 0.60 2 1

Task 6 6 0 20 0.30 6 0

Task 7 5 0 16 0.70 5 0

Task 8 6 0 20 0.25 6 0

 Mandatory Part Optional Part

Figure 4: Scheduling Graph of Case Study I

 Fig.4 shows the scheduling graph of the case

study 1. This Proposed scheduling strategy managed by

EDF Scheduler. Tasks are allocated to core by considering

precedence relation, PCF of each task and deadline of each

task. The scheduling strategy also considers the Increase

reward with increase service type of imprecise computation

model. Tasks are scheduled in mandatory and optional part.

If the PCF value of the predecessor is low and deadline

also low than the successor task then schedule only the

mandatory part of the predecessor task. In the above

scheduling graph task T0 have PCF value lower than the

task T1, so only schedule the mandatory part of the task T0

then task T1 start its execution. Because of this strategy

higher priority task start their execution as early as

possible. Application completes its execution one unit

before as compared with branch and bound algorithm. Core

reserves less time and due to that bandwidth required for

execution of the application as compared to Branch and

bound algorithm are less.

Case Study II:

Figure5: Directed Acyclic Graph

 In the case study II Fig. 5 shows the application

consisting of 9 tasks expressed in Directed Acyclic Graph.

Table 3 shows the details of all the tasks of the application.

 Fig.6 shows the scheduling graph of case study II.

In this case study proposed algorithm try to create Increase

reward with Increase service type imprecise computation

model scenario. Here, assumes that predecessor task

completed its mandatory part then the next task in the

precedence relation starts its execution. In this case study

tasks are executing according to their precedence relation,

PCF and Deadline of each task in task set

Table 3: Case Study 2 Task Table

Task C.T
Activation

Time (ri)

Deadline

(D)
PCF Mi Oi

Task 0 2 0 5 0.90 2 0

Task 1 3 0 10 0.80 3 0

Task 2 6 0 16 0.60 6 0

Task 3 3 0 13 0.60 3 0

Task 4 5 0 20 0.40 5 0

Task 5 3 0 16 0.60 3 0

Task 6 5 0 10 0.70 5 0

Task 7 6 0 16 0.50 6 0

Task 8 4 0 20 0.375 4 0

Figure 6: Scheduling Graph of Case Study II

Case Study III

 Fig. 7 shows the task set consisting of 12 tasks

and it is considered as an application. Table 4 shows the

task table containing the details of all the tasks.

Figure 7: Directed Acyclic Graph

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080251

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

702

Table 4: Case Study III Task Table

Task
Computat

ion Time

Activation

Time (ri)

Deadli

ne (D)
PCF Mi Oi

Task 0 2 0 10 0.90 2 0

Task 1 3 0 25 0.60 3 0

Task 2 5 0 30 0.40 5 0

Task 3 4 0 14 0.80 4 0

Task 4 3 0 17 0.45 2 1

Task 5 6 0 23 0.80 3 3

Task 6 3 0 18 0.70 2 1

Task 7 4 0 22 0.80 2 2

Task 8 3 0 25 0.90 3 0

Task 9 5 0 30 0.39 5 0

Task 10 3 0 26 0.90 3 0

Task 11 4 0 30 0.35 4 0

Figure 8: Scheduling Graph of Case Study III

 Fig.8 shows the scheduling graph of Case Study

III. In this scheduling graph proposed algorithm shows how

to schedule the task if the middle of the task set having

high PCF value than the other task.

VI PERFORMANCE ANALYSIS:

 The proposed Multicore PCF scheduling

algorithm compared with Branch and bound algorithm, in

MPCF scheduling execution time require for executing an

application on core less than the branch and bound

algorithm. If the application completes its execution as

early as possible then cores are free as early, due to that

cores are not busy with one application, and it is then

reserves for another application. In MPCF scheduling

algorithm requirement of the bandwidth for executing an

application on core are less as compared to the branch and

bound algorithm.

Table 5: Comparative performance of the algorithm

Case Study Algorithm Execution Time
Bandwidth

Requirement

Case Study I

Branch and
Bound

12 2.842

PCF Scheduling 11 2.524

Case Study II

Branch and
Bound

17 2.435

PCF Scheduling 11 1.89

Case Study

III

Branch and

Bound
22 3.23

PCF Scheduling 18 2.75

Figure 9: Execution Time Analysis

Figure 10: Bandwidth Requirement Analysis

0

5

10

15

20

25

Case Study
1

Case Study
2

Case Study
3

Branch and
Bound

MPCF
Scheduling

0

0.5

1

1.5

2

2.5

3

3.5

Case
Study 1

Case
Study 2

Case
Study 3

Branch and
Bound

MPCF
Scheduling

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080251

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

703

VII CONCLUSION AND FUTURE SCOPE:

 Problem of precedence constraint tasks can be

solved more effectively with this approach.

 In proposed Multicore PCF scheduling algorithm

addresses problem of precedence constraint task scheduling

and it consider precedence relation, performance

contribution and deadline of each task taken into account of

the scheduling of task on multi-core processing platform

which has more than one core.

 Simulating the three case studies with MPCF

scheduling algorithm and then compared with branch and

bound algorithm, it gives 20.6 % improvement in execution

time and 16.14 % bandwidth are less utilize.

 By using the MPCF scheduling algorithm require

Execution time is less. Cores are idle as early as possible.

Bandwidth requirements for executing an application on

the core are low. Thus, the performance of the system

increases.

REFERENCES

[1] Giorgio Buttazzo, Enrico Bini, “Partitioning Real Time Application

Over Multicore Reservation,” IEEE Trans. Ind. Inf. 7 (2) (2011)

302–315.

[2] C. Liu, J. W. Layland, “Scheduling algorithm for multiprogramming

in hard real-time environment,” Journal of ACM 20, 1973, pp. 46-
61.

[3] Hitesh P. Daulani et al. “Precedence Constraint Task Scheduling for

Multicore Multikernel Architecture,”Journal of IOSR, volume 16,
Jul-Aug 2014, pp. 43-53.

[4] D.T.Peng and K. G. Shin, “Static allocation of periodic task with

precedence constraint in distributed real-time systems,” in 9th

international conference on Distributed Computing Systems,

Newport Beach ,CA, USA, June 1989, pp. 190-198.

[5] K. Ramamritham, “Allocation and scheduling of precedence-related
periodic tasks,” IEEE Transactions on Parallel and Distributed

Systems, vol. 6, April 1995,pp. 412-420.

[6] S. Baruah and N. Fisher, “The partitioned-multiprocessor scheduling
of deadline-constrained sporadic task system,” IEEE transaction on

Computers, vol. 55, no 7, 2006,pp.918-923.

[7] H. Chetto, M.Silly and T. Bouchentouf “Dynamic scheduling of
real-time tasks under precedence constraints,” Real-Time Systems,

vol. 2, no.3, , Sep.1990, pp. 181- 194.

[8] Radhakrishna Naik, R. R. Manthalkar, “A new approach to schedule
the precedence constraint tasks in real-time systems,” Journal of

IJCSIT, vol.3, 2012, 3436-3443.

[9] Radhakrishna Naik, R.R Manthalkar, “Instantaneous utilization
based scheduling algorithms for real-time systems, ” Journal of

IJCSIT, vol.2, 2011, 654-662.

[10] Fan Ming, ”Real-Time scheduling of FIU Embedded Application on
Multicore Platforms,” Electronics Thesis and Dissertation.Paper

1243. 2014.
[11] A.Rahni, E. Grolleu and M. Richard, “Feasibility analysis of non-

concrete real-time transactions with edf assignment priority,” in

proceedings of the 16th conference on Real-Time and Network
Systems, Rennes, France, Oct. 2008, pp. 109- 117.

[12] Yifan Wu, Zhigang Gao, “ Deadline and Activation time assignment

for partitioned real time application on multiprocessor reservation,”
Journal of System Architecture, 60, 2014, 247-257.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080251

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

704

