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Abstract 

This paper uses particle swarm optimization 

(PSO) to solve complex variable  fractional 

programming problems (CVFPP) where the 

objective function includes the two parts (real 

and imaginary), the input is complex while the 

output is always real. Particle swarm 

optimization can be denoted as an effective 

technique for solving linear or nonlinear, non 

analytic complex fractional objective functions. 

Problems with an optimal solution at a finite 

point and an unbounded constraint set can also 

be solved using the proposed technique. 

Numerical examples are given to show the 

feasibility, the effectiveness and robustness of 

the proposed algorithm.  

 

Keywords: Particle Swarm Optimization, 

Fractional Programming, complex function. 

 

1. Introduction 

Mathematical programming in complex space 

has many applications such as control theory, 

signal processing and electrical networks.The 

alternating currents/voltages are using complex 

variable nz C  to stand for elements of the 

network. Where  ,z x iy x y   . The 

theory of complex programming is employed in 

varied fields of electric engineering, such as 

blind deconvolution, blind equalization, 

minimal entropy, optimal receiver. Some good 

applications of fractional programming in 

complex spaces having the application potential 

of this field. Additional application examples to 

minimize the real part of complex function the 

blind deconvolution/equalization and to 

maximize kurtosis see Lai H.C., and Liu J.C., 

[12] and the references therein. There were 

many authors who had studied complex 

Programming problems. Complex space was 

first studied by Levinson [18] 1966 for linear 

programming (LP). Later Swarap and Sharma 

[25] in 1970 studied linear fractional  

 

programming (LFP). Thereafter nonlinear 

complex programming for fractional or non 

fractional was treated by numerous authors [8-9, 

12, 13,15-16, 21-23]. Also studied complex 

programming for nonlinear minmax fractional 

or non fractional from different viewpoints. 

Recently Chen_ Lai_ Schaible  [3] introduced a 

generalized Charnes-Cooper variable 

transformation to change fractional complex 

programming into non fractional programming, 

and proved that the optimal solution of complex 

fractional programming can be reduced to an 

optimal solution of the equivalent non fractional 

programming and vice versa. Many authors also 

considered the dual problems concerning to 

primal complex programming problems with 

various different dual forms. [10,11, 14, and 

[19]. 

 

Youness, E. A., and Mekawy, I. M. [27] in 

(2012). Introduced a study on fuzzy complex 

linear programming problems and provided the 

proof of Kuhn-Tucker stationary point 

necessary optimality theorem.  

Sorber L., and at all. [24]   (2012) used complex 

Taylor series expansions to generalize existing 

optimization algorithms for both general 

nonlinear optimization problems and nonlinear 

least squares problems. They applied these 

methods to two case studies which demonstrate 

that complex derivatives can lead to greater 

insight in the structure of the problem, and that 

this structure can often be exploited to improve 

computational complexity and storage cost. 

Lai H.C., and Huang T.Y., [10] in 2012 studied 

a duality programming problem for a complex 

non differentiable minimax fractional 

programming with complex variables. They 

established the duality theorem and proved that 

the optimal values of the duality problem as 

well as the primary problem are equal under 

some reasonable assumptions. That is, there are 

no duality gap between the primary problem and 

its dual problem. 

 

Clerc M., and Kennedy J., [3] in 2002 proposed 

particle swarm optimization algorithm for  
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finding optimal regions of complex search 

spaces through the interaction of individuals in a 

population of particles, but did not deal with 

FPP with complex variable.  

 

However, all the above researches discussed the 

necessary and sufficient optimality conditions of 

various models of complex programming under 

generalized convexities. Most functions arising 

from the applications are non-analytic and 

difficult to deal with classical mathematical 

methods so it is necessary to use an effective 

technique, such as (PSO) that is able to deal 

with such functions. The PSO proposed 

technique can handle any type of FPP 

nevertheless the nature of the solutions space.  

 The paper aims to investigate the direct 

solution of the complex variable fractional 

programming problem using particle swarm 

optimization. Section 2 will introduce the 

formulation of the complex fractional 

programming. Particle swarm optimization 

algorithm is reviewed in section 3.  Illustrative 

examples and discussion on the results are 

presented in Section 4. Finally, conclusions are 

presented in Section5. 

 

2. Complex Fractional Programming 
The paper, considers the following general 

complex fractional programming problem 

(CVFPP) model mathematical: 

 

 

 

Re ,
min/ max

Re ,

, n

f z z

g z z

subject to h z z S C

  

  

 

                   (1) 

where 

, :

:

n n

n n m

f g C C C

and h C C C








 

are supposed to be analytic functions,  S  is 

compact. Actually, complex programming 

problems are extended from the optimization 

theory for real vector spaces, and nC is 

isomorphic to 2nR  under the isomorphism of 

 ,z x iy x y   , and their complex 

conjugates z x iy   , and so a function of n 

complex variables can be regarded as a function 

of  2n  real variables. 

The following definition for generalized 

convexity of complex function follows from Lai 

and Huang [10]. 

 

Definition The real part of an analytic 

function  f  from 2nC  to R  is called, 

respectively, 

 

(i) convex (strictly) at 

      

 

2

Re Re ,

nQ C if

f f f 

 

    

  

       





     

(ii) pseudoconvex (strictly) at 

      

 

2

Re 0 Re 0,

0 .

nQ C if

f f f

 

    

  

         





  

 (iii) quasiconvex  at  

      

2

Re 0 Re 0.

nQ C if

f f f

 

    

  

         



  

 

Since the complex numbers are unordered so it 

is not possible for a function with complex 

outputs to be convex, but it is entirely possible 

for functions that accept complex inputs to be 

convex. The outputs are real; where the inputs 

that are complex. For this reason, the objective 

function can be written as (1) 

 

3. Particle Swarm Optimization (PSO)  
Particle swarm optimization is a population 

based stochastic optimization technique 

developed by Eberhart and Kennedy in 1995, 

inspired by social behavior of bird flocking or 

fish schooling [1,6,17]. 

The characteristics of (PSO) can be represented 

as follows:   

k
ix The current position of the particle i at 

iteration k; 

k
iv The current velocity of the particle i at 

iteration k; 

k
iy  The personal best position of the particle i 

at iteration k; 

k
iy  The neighbourhood best position of the 

particle. 

The velocity update step is specified for each 

dimension j ∈ 1,…,Nd, hence, vi,j represents the 

jth element of the velocity vector of the ith 

particle. Thus the velocity of particle i is 

updated using the following equation: 

          

      

1 1

2 2

1k k
i i i i

i i

v t w v t c r t y t x t

c r t y t x t

   

 
     (2)  

where  w is weighting function, 1,2c  are 

weighting coefficients,  ,2ir t  are random 

numbers between 0 and 1. 
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The current position (searching point in the 

solution space) can be modified by the 

following equation: 

1 1k k k
i i ix x v                                            (3) 

 

Penalty functions 
In the penalty functions method, the constrained 

optimization problem is solved using 

unconstrained optimization method by 

incorporating the constraints into the objective 

function thus transforming it into an 

unconstrained problem. 

 fitness f x Penalty Factor Error  
 

 

The detailed operation of particle swarm 

optimization is given below: 

 

Step 1: Initialize parameters and population. 

Step 2: Initialization. Randomly set the 

position and velocity of all particles, within pre-

defined ranges and on D dimensions in the 

feasible space (i.e.it satisfies all the constraints). 

Step 3: Velocity Updating. At each iteration, 

velocities of all particles are updated according 

to equation (2) 

After updating, k
iv should be checked and 

maintained within a pre-specified range to avoid 

aggressive random walking. 

Step 4: Position Updating. Assuming a unit 

time interval between successive iterations, the  

 

positions of all particles are updated according 

to equation (3). 

After updating, k
ix  should be checked and 

limited within the allowed range. 

Step 5: Memory updating. Update k
iy  

and k
iy  when the following condition is met. 

 

 
       
       

1

1

1 1

k k k
i i i

k
i

k k k
i i i

y t if f x t f y t

y t

x t if f x t f y t

  


  
   


 

where f(x) is the objective function subject to 

maximization. 

Step 6: Termination Checking. Repeat Steps 2 

to 4 until definite termination conditions are 

met, such as a pre-defined number of iterations 

or a failure to make progress for a fixed number 

of iterations. 
 
4. Illustrative Examples with 

Discussion and Results 
Five benchmarks examples were collected from  

the literature to demonstrate the efficiency and 

robustness of solving with complex variables 

using swarm intelligence programming 

problems. The numerical results which are 

compared to other methods are illustrated in 

Table 1. The algorithms have been implemented 

using  MATLAB R2011. 

 

 

 

 

 

Table (1): Comparison results of the (PSO) with other methods. 

 

Fun. Fun. Optimal solution Optimal 

value 

1f
   

(Max)    , 1,0x y   → 1z x    2 

2f
   (Min) (x*,y*)= (0,0) → z*=0 0 

(Max) (x*,y*)= (2,0) → z*=2 7 

3f
   

(Min) (x*,y*)= (1,1) → z*=1+i -0.5 

(Max) (x*,y*)= (0,0) → z*=0 0 

4f
 

(Min) (x*,y*)= (0,1) → z*=i -0.4 

(Max) (x*,y*)= (2,0) → z*=2 0.15 

5f
 

(Min) (x*,y*)= (1,2) → z*=1+2i -0.6 

(Max) (x*,y*)= (2,1) → z*=2+i 0.6 
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The functions related to the difference examples 

listed in the previous table are follow as: 

 

 

2
1 : max ( ) 1

1

f f z Re z

subject to z C z

 

 

 

This function is just for clear illustration to how 

PSO can reach almost the same optimized 

solution. However the function does not 

represent a fractional programming problem but 

still a good evidence for the dominancy of PSO 

in solving complex nonlinear programing 

optimisation problems.  

 

The simple solution. Since  

22 1 1 2 1z z for z      

 

The maximum must be 2 . On the other hand 

we obtain the value 2 at the point 1z    in the 

closed unit disc, and we conclude that the 

maximum is indeed 2. 

Mejibro L., [20], applied the known real 

methods. He obtained the best solution at 

   , 1,0x y   ,  corresponding to 1z x   . 

Then function value equal to 2. 

 

When applying the (PSO) algorithm we get near 

exact optimal solution at (1,0). A corresponding 

function value equal to 2 was obtained.  

 

 

 
 

3

2

Re 1
:

Re 1

z
f

z




  

In the set A, where A  is the closed triangle of 

the corners z=0, z=2, and z=i. 

Applying the PSO algorithm to solve the above 

problem in minimum case, we get the optimal 

basic feasible solution at    , 0,0x y  ,  

corresponding to 0z x  . Then function 

value equal to 0. 

 

 When applying the PSO algorithm to solve the 

above problem in maximum case, we get the 

optimal basic feasible solution at 

   , 2,0x y  ,  corresponding to 2z x  . 

Then function value equal to 7. 

 

 

 
 

2

3

Re 3 2
:

Re 1

z z
f

z

 


 

Applying the PSO algorithm to solve the above 

problem in minimum case, we get the optimal 

basic feasible solution at    , 1,1x y  ,  

corresponding to 1z x iy i    . Then 

function value equal to -0.5. 

 

 When applying the PSO algorithm to solve the 

above problem in maximum case, we get the 

optimal basic feasible solution at 

   , 0,0x y  ,  corresponding to 0z  . Then 

function value equal to 2. 

 
  

2

4

Re 1
:

Re 2 3

z
f

z z



 
 

In the set A, where A is the closed triangle of the 

corners z=0, z=2, and z=i. 

Applying the PSO algorithm to solve the above 

problem in minimum case, we get the optimal 

basic feasible solution at    , 0,1x y  ,  

corresponding to 0z x iy i i     . Then 

function value equal to -0.4. 

 

 When applying the PSO algorithm to solve the 

above problem in maximum case, we get the 

optimal basic feasible solution at 

   , 2,0x y  ,  corresponding to 2z x  . 

Then function value equal to 0.15. 

 

 

 
 

2

5 2

Re
:

Re

z
f

z

 

In the set A, where A is the closed square of the 

corners z=0, z=1, and z=i. z=2i. 

Applying the PSO algorithm to solve the above 

problem in minimum case, we get the optimal 

basic feasible solution at    , 0,1x y  ,  

corresponding to 0z x iy i i     . Then 

function value equal to -1. 

 When applying the PSO algorithm to solve the 

above problem in maximum case, we get the 

optimal basic feasible solution at 

   , 1,0x y  ,  corresponding to 1z x  . 

Then function value equal to 1. 

 

Overall, we observe that particle swarm 

optimization technique can ever solve (CVFPP) 

easily. (PSO) is effective in nonlinear and  non-

analytic  fractional objective functions. (PSO) 

can be efficiently used for large datasets and a 

multi-processor environment. 

It also does not require the problem defined 

function to be continuous. 

It can find optimal or near-optimal solutions, 

and may be suitable for discrete and 

combinatorial problems. 
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In spite of the referred advantages, (PSO) 

possesses some drawbacks. The global (PSO) is 

that it tends to be trapped in a local optimum 

under some initialization conditions. The 

selection of parameters in (PSO) and penalty 

function method for handling the constrained 

problems may affect the optimal solution. This 

be checked by exciting the (PSO) algorithm 

more than one time at different parameters. 

 

5. Conclusions  

This paper uses particle swarm optimization 

(PSO) to solve complex variable  fractional 

programming problems (CVFPP) where the 

objective function includes the two parts (real 

and imaginary), the input is complex while the 

output is always real. Particle swarm 

optimization can be denoted as an effective 

technique for solving linear or nonlinear, non-

analytic complex fractional objective functions. 

Problems with an optimal solution at a finite 

point and an unbounded constraint set can also 

be solved using the proposed technique. A set of 

five benchmark numerical examples are given 

to show the feasibility, effectiveness, 

competences, and robustness of the proposed 

algorithm in solving CVFPP. The propose 

technique does not have any sophisticated math 

computation as well as the superiority in 

computation time.  
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