
Particle Swarm Optimization Approach for Scheduling of

Flexible Job Shops
1
Srinivas P. S., 2Ramachandra Raju V., 3C.S.P Rao.

1Associate Professor, V. R. Siddhartha Engineering College, Vijayawada

2Professor, Department of Mechanical Engineering,

College of Engineering, JNTUK, Vizianagaram,
3Professor, Department of Mechanical Engg, NIT, Warangal

Abstract

Recent developments in research on decision

making have linked up the strings of optimization with

the social behavior of the insects. There have been a

host of complex problems like scheduling, project

management, routing etc., that are conveniently

mapped with natural environment and solved through

the inspiration of the insects. This paper illustrates the

application of particle swarm optimization (PSO)

approach for solving a simple and flexible job shop

problems with an objective of minimizing the maximum

completion time of all the jobs. The preliminary results

are quite encouraging and motivating for the

researchers to use PSO as a powerful tool in real time

scheduling problems.

Keywords: Flexible Job Shop, Particle Swarm

Optimization, NP-hard, Swarm Intelligence

1. Introduction

 Scheduling is concerned with allocating limited

resources to tasks to optimize some performance

criterion, such as completion time or production cost.

Scheduling of a job shop is very important in both

fields of production management and combinatorial

optimization. However, it is quite difficult to achieve

an optimal solution to this problem with traditional

optimization approaches owing to the high

computational complexity. A large number of

approaches to the modeling and solution of these

scheduling problems have been reported in the

Operations Research (OR) literature, with varying

degrees of success.

The flexible job shop scheduling problem (FJSP) is

one of the hardest combinatorial problems and very

difficult to solve. FJSP is an extension of the classical

JSP which allows an operation to be processed by any

machine from a given set. It incorporates all the

difficulties and complexities of its predecessor JSP and

is more complex than JSP because of the addition need

to determine the assignment of operations to machines.

In most of its practical formulations, the FJSP is

known to be NP-hard, so exact solution methods are

unfeasible for most problem instances and heuristic

approaches must therefore be employed to find good

solutions with reasonable search time. In this paper,

PSO based solution methodology is adopted for

solving FJSP.

2. Literature

Kennedy J, Eberhart R C [3] are the first persons

introducing this particle swarm optimization. It is an

evolutionary computation technique mimicking the

behavior of flying birds and their means of information

exchange. It combines local search (by self experience)

and global search (by neighboring experience),

possessing high search efficiency. Chandrasekaran. S

et al [2] dealt the problem of scheduling in flow shops

with the objective of minimizing makespan, total flow

time and completion time variation. Rahimi [4]

considered a bi-criteria permutation flow shop

scheduling problem, where weighted mean completion

time and weighted mean tardiness are to be minimized

simultaneously. Since a flow shop scheduling problem

has been proved to be NP-hard in strong sense, an

effective multi-objective particle swarm (MOPS),

exploiting a new concept of the Ideal Point and a new

approach to specify the superior particle‟s position

vector in the swarm, is designed and used for finding

locally Pareto-optimal frontier of the problem.

Zhixiong Liu [7] proposed the particle

representation based on operation-particle position

sequence. In the particle representation, the mapping

between the particle and the scheduling solution is

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

1www.ijert.org

established through connecting the operation sequence

of all the jobs with the particle position sequence. The

particle representation can ensure that the scheduling

solutions decoded are feasible and can follow the

particle swarm optimization algorithm model. Weijun

Xia and Zhiming Wu [6] proposed a hybrid

optimization approach for multi objective flexible job

shop scheduling problems, where they can integrate

particle swarm with simulated annealing for solving

job shop problems. By reasonably hybridizing these

two methodologies, they develop an easily

implemented hybrid approach for the multi-objective

flexible job-shop scheduling problem (FJSP).

Sha and Cheng [5] proposed a hybrid particle

swarm optimization (PSO) for the job shop problem.

Since the solution space of the JSP is discrete, we

modified the particle position representation, particle

movement, and particle velocity to better suit PSO for

the JSP. They modified the particle position based on

preference list-based representation, particle movement

based on swap operator, and particle velocity based on

the tabu list concept in our algorithm. Giffler and

Thompson‟s heuristic is used to decode a particle

position into a schedule. Furthermore, they applied

tabu search to improve the solution quality.

Ajith Abraham et al [1] introduced a hybrid

metaheuristic, the Variable Neighborhood Particle

Swarm Optimization (VNPSO) algorithm, consisting

of a combination of the Variable Neighborhood Search

(VNS) and Particle Swarm Optimization (PSO). The

proposed VNPSO algorithm is used for solving the

multi-objective Flexible Job-shop Scheduling

Problems (FJSP).

3. Particle Swarm Optimization

Particle swarm optimization (PSO) is a popular

problem solving technique in the swarm intelligence

(SI) paradigm. It was first introduced by Kennedy and

Eberhart in 1995. They developed simple methods

which could efficiently optimize continuous nonlinear

mathematical functions. Borrowing ideas from

artificial life (A-life), social psychology and swarming

theory, PSO simulates swarms such as flocks of birds

and schools of fish searching for food.

Also, PSO is related to evolutionary computation

(EC), but it is somewhat different. Similar to many EC

techniques, PSO initializes a problem state to a

population of randomly distributed solutions. Unlike

many other ECs however, PSO "evolves" solutions

based on individual experience and group experience,

rather than using evolutionary operators (e.g. the

crossover and the mutation operators in genetic

algorithms). It assumes that socially shared information

helps its population evolve. In other words, the

population iteratively updates and searches for optima

with the shared information. In this paper, PSO is

employed to solve the flexible job shop scheduling

problem with an objective of minimal make span.

In this paper we use the global model equations as

follows (Shi & Elbert, 1999):

1

2

id id id id

gd id

V W V C Rand p X

C rand p X
 1

and
id id idX X V 2

where idV is called the velocity for particle I,

represents the distance to be traveled by this particle

from its current position, idX represents the particle

position, idp which is also called as pbest (local best

solution), represents i
th

 particles best previous position,

and gdp , which is also called gbest (global best

solution), represents the best position among all

particles in the swarm. W is the inertial weight. It

regulates the trade-off between the global exploration

and local exploitation abilities of the swarm. C1 and

C2 represent the weight of the stochastic acceleration

terms that pull each particle toward pbest and gbest

positions. Rand and rand are two random

functions in the range [0,1].

The inertia weight is set using the following

equation

max min
max

max

,
W W

W W iter
iter

Where

maxW = initial value of the weighting coefficient

minW = final value of the weighting coefficient

maxiter = maximum number of iterations

iter = current iteration or generation number

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

2www.ijert.org

The process of implementing the PSO algorithm is

as follows.

1. Initialize a swarm of particles with random

positions and velocities in the D-dimensional

problem space.

2. For each particle, evaluate the desired

optimization fitness function.

3. Compare particle‟s fitness value with

particle‟s pbest. If current value is better than

pbest, then set pbest value equal to the current

value and the pbest position equal to the

current position in D-dimensional space.

4. Compare the fitness evaluation value with the

best swarm‟s fitness obtained so far. If current

value is better than gbest, then reset gbest to

the current particle‟s fitness value.

5. Change the velocity and position of the

particle according to the equation (1) and (2)

respectively.

6. Go back to step (2) until a termination

criterion is met, usually a sufficiently good

fitness or a specified number of generations.

3.1 Particle Position and Velocity Initialization and

Limitation

For initialization of particle position, position

vector ijx is set to the random number from minx to maxx

.During a PSO run, position vector has no limitation

bound. That is to say, the range [minx ,
maxx] is valid

only for initialization of position, which can assure that

position sequence SP and operation sequence SO have

the diversity, and then, schedule solutions decoded

from the particle swarm have the diversity too. In the

following Computation, minx is set to 0, and
maxx is set

to 1.

For initialization of particle velocity, velocity

vector vij is set to the random number from
minv to maxv .

During a PSO run, velocity vector is limited to the

range [minv , maxv]. In the following computation, minv

is set to -1, and maxv is set to 1.

Figure 1: Particle Swarm Optimization Flow Chart

3.2 Particle Swarm Optimization Algorithm

Begin

 Step 1. Initialization

 Initialize parameters, including swarm size,

maximum of generation, Wmax, Wmin,

C1, C2;

 Step 2. Assignment and scheduling

 Generation=0;

 Initialize particle‟s position and velocity

stochastically;

 Evaluate each particle‟s fitness;

Start

 Initialize particles with

random position and velocities

Apply Local Search

Compare / Update fitness value with

P Best and G Best

Evaluate Fitness

Meet

stopping

Criterion

Update velocity and position

End

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

3www.ijert.org

 Initialize gbest position with the particle

with the lowest fitness in the swarm;

 Initialize pbest position with a copy of

particle it self;

 While (the maximum of generation is not

met)

 Do {

 generation = generation+1;

 Generate next swarm by

 equations;

 Evaluate swarm

 {

 Compute each particle‟s

 fitness;

 Find new gbest and pbest by

 comparison;

 Update gbest of the swarm and

pbest of each particle;

 }

 }

 Step 3. Output optimization results.

End.

3.3 Particle Representation (Encoding): Based on

Operation and Particle Position Sequence

As PSO is used to optimize the problem, one key

issue is the encoding, which is called particle

representation in this paper. Suitable particle

representation should importantly impact the

optimization result and performance of PSO. In most

applications of PSO, it is applied to the continuous

optimization problems. In these optimization problems,

particle position xi is directly denoted as the solution,

which is continuous value. Velocity vi , acceleration

constants C1 and C2 , and inertia weight W are also

continuous constants. Because PSO model justly

comprises addition, subtraction and multiplication

operations, updated particle position and velocity are

also continuous value.

Therefore, PSO completes the searching process in

the continuous space that limits the use of PSO in the

discrete space or combination optimization problem.

However, job shop scheduling problem is a

combination optimization problem, and its feasible

solutions are the sequence of operations of all jobs.

The authors also solved the classical JSP problem

using PSO. In case of JSP, PSO cannot directly employ

the particle position as the solution. Certain particle

representation should be employed, which can

establish the mapping between the scheduling solution

and the particle position, and the scheduling solution

can be indirectly obtained through decoding of the

particle representation. The paper employs the particle

representation based on Operation- Particle Position

Sequence (OPPS).

The feasible solution of JSP is the operation

sequence of all jobs. For the particle position xi= (xi1,

xi2 ,… xij ,…, xid) , all position vectors xij (the total

number is equal to d) also have a sequence (increasing

sequence or decreasing sequence). So the operation

sequence of all jobs and the sequence of the particle

position vectors can be linked together, and the

mapping is gained between the scheduling solution and

the particle position.

Table 1: PSO results in comparison with the best

known results of bench mark problems

Problem m n Best

known

results

PSO

results

ft06_csp:6*6 6 6 55 55

la01_csp:10*5 10 5 666 666

La02_csp:10*5 10 5 655 655

la03_csp:10*5 10 5 597 597

la04_csp:10*5 10 5 590 590

La06_csp: 15*5 15 5 926 926

La08_csp:15*5 15 5 863 863

La10_csp:15*5 15 5 951 951

La12_csp:20*5 20 5 1039 1039

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

4www.ijert.org

Figure 2: The mapping, decoding and updating of the

particle

Particle swarm optimization algorithm is

employed to solve the job shop scheduling problem

with an objective of minimizing the maximum

completion time of all the jobs. In the particle

representation, the mapping between the particle and

the scheduling solution is established through

connecting the operation sequence of all the jobs with

the particle position sequence. According to processing

constraints of the problem, each operation in the

operation sequence of all the jobs is assigned on each

machine in turn to form the scheduling solution. The

results of PSO based optimization heuristic are

compared against the results of the benchmark

problems in Table 1.

4.0 PSO for FJSP

The FJSP problem may be formulated as follows.

Each instance of the problem is defined by set of jobs,

a set of machines and a set of operations. Each job

consists of a sequence of operations, each of which

requires one machine out of a set of given machines.

The problem is thus to determine both assignment and

sequence of operations on all the machines that

minimize the makespan subjected to the conditions: (i)

the precedence of operations given by each job are to

be respected. (ii) each machine can perform at most

one operation at a time and (iii) the operations can not

be interrupted.

Let:

J= {1, 2... n} denotes the set of jobs;

M= {1, 2… m} denotes the set of machines;

N= {0, 1, 2… n+1} denotes the set of operations,

where 0 and n+1 represents the dummy start and finish

operations, respectively.

The flexible job shop problem (FJSP) consists of a

set J of n jobs that must be processed on a set M of m

machines. Each job j consists of a sequence of nj

operations (routing) i.e. Oj,1, Oj,2, … Oj,,nj. The

execution of each operation i of a job j (Oj,i) requires

one machine out of a set of given machines called Mj,i

 M.

4.1 Assumptions made in this work

 Each job is an entity: Although the job is

composed of distinct operations, no two

operations of the same job may be processed

simultaneously. Thus we exclude from our

discussion certain practical problems, e.g.

those in which components are manufactured

simultaneously prior to assembly into the

finished product.

 No Pre-emption: Each operation once started,

must be completed before another operation

may be started on that machine.

 Each job has m distinct operations on one

machine: we do not allow for the possibility

that a job might require processing twice on

the same machine.

 Setup times of machines and move time

between operations are negligible.

 No machine may process more than one

operation at a time.

 There is no randomness: in particular,

 The number of jobs is known and fixed.

 The number of machines is known and

fixed.

 The processing times are known and

fixed.

4.2 Encoding

The most important issue in applying PSO

successfully to FJSP is to develop an effective

„problem mapping' and 'solution generation'

mechanism. If these two mechanisms are devised

successfully, it is possible to find good solutions for a

given optimization problem in acceptable time. To find

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

5www.ijert.org

a suitable mapping between problem solution and PSO

particle, we first sequence the capable machines of an

operation according to the increasing order of

processing time. If one machine's processing time is

equal to another, the lower order number of machine

has priority. After this, we get different priority levels

for all machines which process the same operation.

Then the particle position can be generated

stochastically according to the order of operations of

different jobs.

The problem shown in Table 2 is to execute three

jobs on four machines. Table 3 gives the order of

priority of machines corresponding to each operation

(priority 1>2>3>4).

Table 2: Flexible job shop

Job Operation
Machine Number

M0 M1 M2 M3

J1
O11 2 3 4 1

O12 3 1 8 2

J2

O21 1 4 1 2

O22 5 3 2 9

O23 3 1 1 4

J3
O31 7 6 3 5

O32 4 5 6 2

Table 3: Priority order of machines.

Job Operation
Priority Order

1 2 3 4

J1
O11 M4 M1 M2 M3

O12 M2 M4 M1 M3

J2

O21 M1 M3 M4 M2

O22 M3 M2 M1 M4

O23 M2 M3 M1 M4

J3
O31 M3 M4 M2 M1

O32 M4 M1 M2 M3

In general, initial particles' positions and initial

particles' velocities in the swarm are generated at

random. According to this approach to generate initial

particles' positions, search space can be reduced and

improves the search speed.

The PSO algorithm using the above encoding

procedure is developed and tested for the FJSP and the

results obtained after 200 iterations are as follows.

gbest initial sequence is 1 1 2 2 2 3 3

gbest machine sequence is 3 1 0 1 2 2 3

gbest ptime sequence is 1 1 1 3 1 3 2

gbest sequence is 2 2 3 1 1 2 3

Makespan (gbest) = 5

5. Conclusions

 This paper discussed the Particle Swarm

Optimization algorithm for FJSP problems. Although

there is a huge literature on classical JSP, the FJSP

does not have a rich literature. Therefore there is a

need to develop effective approach for this complex

problem. In this paper the authors have attempted JSP

by using PSO and the experimental results show that

Particle Swarm Optimization algorithm for JSP is very

effective, and can find the best known solution for the

cited benchmark instances. The preliminary results

obtained by the implementation of PSO for FJSP in

this paper are quite encouraging and motivating for the

researchers to use PSO as a powerful tool in real time

scheduling problems.

6. References

[1] Ajith Abraham, Hongbo Liu, Tae-Gyu Chang, “Variable

Neighborhood Particle Swarm Optimization Algorithm”.

[2] Chandrasekaran. S, Ponnambalam. S.G, Suresh. R.K,

Vijayakumar. N, “An Application of Particle Swarm

Optimization Algorithm to Permutation Flowshop

Scheduling Problems to Minimize Makespan, Total Flowtime

and Completion Time Variance”.

[3] Kennedy J, Eberhart R C., “Particle Swarm

Optimization”, Proceedings of IEEE International

Conference on Neutral Networks, Perth, Australia, 1995, pp.

1942-1948.

[4] Rahimi-Vahed A.R, Mirghorbani S.M, “A multi-objective

particle swarm for a flow shop scheduling problem “, J Comb

Optim (2007) 13:79–102 DOI 10.1007/s10878-006-9015-7.

[5] Sha D.Y, Cheng-yu Hsu, “A hybrid particle swarm

optimization for job shop scheduling problem”. Computers &

Industrial Engineering 51 (2006) 791–808

[6] Weijun Xia, Zhiming Wu, “An effective hybrid

optimization approach for multi- objective flexible job-shop

scheduling problems”. Computers & Industrial Engineering

48 (2005) 409–425.

[7] Zhixiong Liu, “Investigation of Particle Swarm

Optimization for Job Shop Scheduling Problem”.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

6www.ijert.org

