PARTIALLY ORDERED Γ-SEMIGROUPS

VB Subrahmanyeswara Rao Seetamraju¹, A. Anjaneyulu², D. Madhusudana Rao³.

¹Dept. of Mathematics, V K R, V N B & A G K College Of Engineering, Gudivada, A.P. India.

²Dept. of Mathematics, VSR & NVR College, Tenali, A.P. India.

³Dept. of Mathematics, VSR & NVR College, Tenali, A.P. India.

Abstract

In this paper, the notion of an ordered Γ -semigroup is introduced and some examples are given. Further the terms commutative ordered Γ -semigroup, quasi commutative ordered Γ -semigroup, normal ordered Γ semigroup, left pseudo commutative ordered Γsemigroup, right pseudo commutative ordered Γsemigroup are introduced. It is proved that (1) if S is a commutative ordered Γ -semigroup then S is a quasi commutative ordered Γ -semigroup, (2) if S is a quasi commutative ordered Γ -semigroup then S is a normal ordered Γ -semigroup, (3) if S is a commutative ordered Γ -semigroup, then S is both a left pseudo commutative and a right pseudo commutative ordered Γ -semigroup. Further the terms; left identity, right identity, identity, left zero, right zero, zero of an ordered Γ-semigroup are introduced. It is proved that if a is a left identity and b is a right identity of an ordered Γ -semigroup S, then a = b. It is also proved that any ordered Γ semigroup S has at most one identity. It is proved that if a is a left zero and b is a right zero of an ordered Γ semigroup S, then a = b and it is also proved that any ordered Γ -semigroup S has at most one zero element. ordered Γ-subsemigroup, ordered Γ-The terms; subsemigroup generated by a subset, α -idempotent, Γ -idempotent, strongly idempotent, midunit, *r*-element, regular element, left regular element, right regular element, completely regular element, (α, β) -inverse of an element, semisimple element and intra regular element in an ordered Γ -semigroup are introduced. Further the terms idempotent ordered Γ -semigroup and generalized commutative ordered Γ-semigroup are introduced. It is proved that every α -idempotent element of an ordered Γ -semigroup is regular. It is also proved that, in an ordered Γ -semigroup, *a* is a regular element if and only if a has an (α, β) -inverse. It is proved that, (1) if a is a completely regular element of

an ordered Γ -semigroup S, then *a* is both left regular and right regular, (2) if '*a*' is a completely regular element of an ordered Γ -semigroup S, then *a* is regular and semisimple, (3) if '*a*' is a left regular element of an ordered Γ -semigroup S, then *a* is semisimple, (4) if '*a*' is a right regular element of an ordered Γ -semigroup S, then *a* is semisimple, (5) if '*a*' is a regular element of an ordered Γ - semigroup S, then *a* is semisimple and (6) if '*a*' is a intra regular element of an ordered Γ semigroup S, then *a* is semisimple. The term separative ordered

Γ-semigroup is introduced and it is proved that, in a separative ordered Γ-semigroup S, for any *x*, *y*, *a*, *b* ∈ S, the statements (i) xΓa ≤ xΓb if and only if aΓx ≤ bΓx, (ii) xΓxΓa ≤ xΓxΓb implies xΓa ≤ xΓb,(iii) xΓyΓa ≤ xΓyΓb implies yΓxΓa ≤ yΓxΓb hold.

1. Introduction

Γ- semigroup was introduced by Sen and Saha [15] as a generalization of semigroup. Anjaneyulu. A [1], [2] and [3] initiated the study of ideals and radicals in semigroups. Many classical notions of Γ-semigroups heve been extended to semigroups to Γ-semigroups by Madhusudhana Rao, Anjaneyulu and Gangadhara Rao [11]. The concept of partially ordered Γ-semigroup was introduced by Y. I. Kwon and S. K. Lee [10] in 1996, and it has been studied by several authors. In this paper we introduce the notions of ordered Γsemigroups and characterize ordered Γ-semigroups.

2. PRELIMINARIES :

DEFINITION 2.1: Let S and Γ be any two non-empty sets. S is called a Γ -*semigroup* if there exist a mapping from $S \times \Gamma \times S$ to S which maps $(a, \alpha, b) \rightarrow a \alpha b$ satisfying the condition : $(a\gamma b)\mu c = a\gamma(b\mu c)$ for all $a,b,c \in M$ and $\gamma,\mu \in \Gamma$.

NOTE 2.2: Let S be a Γ -semigroup. If A and B are subsets of S, we shall denote the set { $a\alpha b : a \in A$, $b \in B$ and $\alpha \in \Gamma$ } by A Γ B.

DEFINITION 2.3: A Γ -semigroup S is said to be *commutative* provided $a\gamma b = b\gamma a$ for all $a, b \in S$ and $\gamma \in \Gamma$.

NOTE 2.4: If S is a commutative Γ -semigroup, then $a \Gamma b = b \Gamma a$ for all $a, b \in S$.

DEFINITION 2.5 : A Γ -semigroup S is said to be *quasi* commutative provided for each $a,b \in S$, there exists a natural number *n* such that $a\gamma b = (b\gamma)^n a \quad \forall \gamma \in \Gamma$.

NOTE 2.6 : If a Γ -semigroup S is *quasi commutative* then for each $a, b \in S$, there exists a natural number *n* such that, $a\Gamma b = (b \Gamma)^n a$.

THEOREM 2.7: If S is a commutative Γ -semigroup then S is a quasi commutative Γ -semigroup.

DEFINITION 2.8 : A Γ -semigroup S is said to be *normal* provided $a\alpha S = S\alpha a \quad \forall \alpha \in \Gamma \text{ and } \forall a \in S$

NOTE 2.9 : If a Γ -semigroup S is *normal* then $a\Gamma S = S\Gamma a$ for all $a \in S$.

THEOREM 2.10 : If S is a quasi commutative Γsemigroup then S is a normal Γ-semigroup.

COROLLARY 2.11 : Every commutative Γsemigroup is a normal Γ-semigroup.

DEFINITION 2.12 : A Γ -semigroup S is said to be *left pseudo commutative* provided $a\Gamma b\Gamma c = b\Gamma a\Gamma c$ for all $a,b,c \in S$.

DEFINITION 2.13 : A Γ -semigroup S is said to be *right pseudo commutative* provided $a\Gamma b\Gamma c = a\Gamma c\Gamma b$ for all $a,b,c \in S$.

THEOREM 2.14 : If S is a commutative Γ semigroup, then S is both a left pseudo commutative Γ -semigroup and a right pseudo commutative Γ semigroup.

DEFINITION 2.15 : An element *a* of a Γ -semigroup S is said to be a *left identity* of S provided $a\alpha s = s$ for all $s \in S$ and $\alpha \in \Gamma$.

DEFINITION 2.16 : An element '*a*' of a Γ -semigroup S is said to be a *right identity* of S provided $s\alpha a = s$ for all $s \in S$ and $\alpha \in \Gamma$.

DEFINITION 2.17 : An element 'a' of a Γ -semigroup S is said to be a *two sided identity* or an *identity* provided it is both a left identity and a right identity of S.

THEOREM 2.18 : If *a* is a left identity and *b* is a right identity of a Γ -semigroup S, then *a* = *b*.

DEFINITION 2.19 : An element *a* of a Γ -semigroup S is said to be a *left zero* of S provided $a\alpha s = a$ for all $s \in S$ and $\alpha \in \Gamma$.

DEFINITION 2.20 : An element *a* of a Γ -semigroup S is said to be a *right zero* of S provided $s\alpha a = a$ for all $s \in S$ and $\alpha \in \Gamma$.

DEFINITION 2.21 : An element *a* of a Γ -semigroup S is said to be a *two sided zero* or *zero* provided it is both a left zero and a right zero of S.

DEFINITION 2.22: An element *a* of Γ - semigroup S is said to be a Γ - *idempotent* provided $a\alpha a = a$ for all $\alpha \in \Gamma$.

NOTE 2.23: If an element *a* of Γ - semigroup S is *a* Γ -*idempotent*, then $a\Gamma a = a$.

DEFINITION 2.24: A Γ - Semigroup S is said to be an *idempotent* Γ -*semigroup* or a *band* provided every element in S is a Γ - idempotent.

DEFINITION 2.25 : An element *a* of Γ -semigroup S is said to be a *midunit* provided $x\Gamma a\Gamma y = x\Gamma y$ for all $x, y \in S$.

NOTE 2.26 : Identity of a Γ - semigroup S is a midunit.

DEFINITION 2.27 : An element '*a*' of Γ - semigroup S is said to be *an r-element* provided $a\Gamma s = s\Gamma a$ for all $s \in S$ and if $x, y \in S$, then $a\Gamma x\Gamma y = b\Gamma y\Gamma x$ for some $b \in S$.

DEFINITION 2.28 : A Γ - semigroup S with identity 1 is said to be *a generalized commutative* Γ - *semigroup* provided 1 is an r-element in S.

DEFINITION 2.29 : An element *a* of a Γ -semigroup S is said to be *regular* provided $a = a\alpha x\beta a$, for some $x \in S$ and α , $\beta \in \Gamma$. i.e, $a \in a\Gamma S\Gamma a$.

DEFINITION 2.30 : A Γ -ideal A of a Γ -semigroup S is said to be *regular* if every element of A is regular in A.

DEFINITION 2.31 : A Γ - semigroup S is said to be *a regular* Γ - *semigroup* provided every element is regular.

DEFINITION 2.32 : An element *a* of a Γ -semigroup S is said to be *left regular* provided $a = a\alpha\alpha\beta x$, for some $x \in S$ and $\alpha, \beta \in \Gamma$. i.e, $a \in a\Gamma a\Gamma S$.

DEFINITION 2.33 : An element *a* of a Γ -semigroup S is said to be *right regular* provided $a = x \alpha \alpha \beta a$, for some $x \in S$ and $\alpha, \beta \in \Gamma$. i.e, $a \in S\Gamma a\Gamma a$.

DEFINITION 2.34 : An element *a* of a Γ -semigroup S is said to be *completely regular* provided, there exists an element $x \in S$ such that $a = a\alpha x\beta a$ for some $\alpha, \beta \in \Gamma$ and $a\alpha x = x\beta a$ i.e., $a \in a\Gamma x\Gamma a$ and $a\Gamma x = x\Gamma a$.

DEFINITION 2.35 : A Γ -semigroup S is said to be *completely regular* Γ -semigroup provided every element of S is completely regular.

DEFINITION 2.36 : An element *a* of Γ - semigroup S is said to be *semisimple* provided $a \in \langle a \rangle \Gamma \langle a \rangle$, that is, $\langle a \rangle \Gamma \langle a \rangle = \langle a \rangle$.

DEFINITION 2.37 : A Γ - semigroup S is said to be *semisimple* Γ - *semigroup* provided every element of S is a semisimple element.

DEFINITION 2.38 : An element *a* of a Γ -semigroup S is said to be *intra regular* provided $a = x\alpha a\beta a\gamma y$ for some *x*, $y \in S$ and α , β , $\gamma \in \Gamma$.

THEOREM 2.39 : If 'a' is a completely regular element of a Γ - semigroup S, then a is regular and semisimple.

THEOREM 2.40 : If 'a' is a intra regular element of a Γ - semigroup S, then a is semisimple.

3. ORDERED Γ-SEMIGROUP :

DEFINITION 3.1 : A Γ -semigroup S is said to a partially ordered Γ -semigroup if S is partially ordered set such that $a \le b \Longrightarrow a\gamma c \le b\gamma c$ and $c\gamma a \le c\gamma b \ \forall a, b, c \in S$ and $\gamma \in \Gamma$.

NOTE 3.2 : A partially ordered Γ -semigroup simply called po- Γ -semigroup or ordered Γ -semigroup.

EXAMPLE 3.3: Let $S = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\} \}$ and $\Gamma = \{\emptyset, \{a\}, \{a, b, c\} \}$. If for all A, C \in S and B \in Γ , ABC = A \cap B \cap C and A \leq C \Leftrightarrow A \subseteq C, then S is an ordered Γ -semigroup.

EXAMPLE 3.4: 1.1.8 : Let $S = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$ and $\Gamma = \{\{a, b, c\}\}$. If for all A, C \in S and B \in Γ , ABC = A \cap B \cap C and A \leq C \Leftrightarrow A \subseteq C, then S is an ordered Γ -semigroup.

NOTE 3.5: In general, let P(X) be the power set of any nonempty set X and Γ a topology on X. If we define for all A, C \in S and B \in Γ , ABC = A \cap B \cap C and A \leq C \Leftrightarrow A \subseteq C, then P(X) is an ordered Γ -semigroup.

EXAMPLE: 3.6 : Let S be the set of all 2×3 matrices over Q, the set of positive integers and Γ be the set of all 3×2 matrices over the same set. Define $A\alpha B =$ usual matrix product of A, α , B; for all A, B \in S and for all $\alpha \in \Gamma$. Then S is a Γ -semigroup. Note that S is not a semigroup. Also S and Γ are posets with respect to " \leq " defined by $(a_{ik}) \leq (b_{ik})$ if and only if $a_{ik} \leq b_{ik}$ for all i, k. Then S is an ordered Γ -semigroup.

EXAMPLE: 3.7 : Let S be the set of all integers of the form 4n+1 where *n* is an integer and Γ denote the set of all integers of the form 4n+3. If $a\gamma b$ is $a+\gamma+b$ (usual sum of the integers) and $a \le b$ means *a* is less than or equal to *b*, for all *a*, $b \in S$ and $\gamma \in \Gamma$, then S is an ordered Γ -semigroup.

EXAMPLE 3.8 : Let M be the set of all isotone mappings from a poset P into another poset Q and Γ the set of all isotone mappings from the poset Q into the poset P. Let $f, g \in M$ and $\alpha \in \Gamma$. Define by $f\alpha g$, the usual mapping composition of f, α and g. Then M is a

Γ-semigroup. We define a relation ≤ on M by f ≤ g if and only if af ≤ ag, for all a ∈ P. This relation is a partial order on M and as such M is a poset. We also define a relation ≤ on Γ by α ≤ β if and only if xα ≤ xβ, for all x ∈ Q. For this relation Γ is a poset. Then M is an ordered Γ-semigroup.

EXAMPLE 3.9: For $a, b \in [0,1]$, let M = [0, a] and $\Gamma = [0, b]$. Then M is an ordered Γ -semigroup under usual multiplication and usual partial order relation.

EXAMPLE 3.10 : Fix $m \in \mathbb{Z}$, and let M be the set of all integers of the form mn + 1 and Γ denotes the set of all integers of the form mn + m - 1 where *n* is an integer. Then M is a ordered Γ -semigroup under usual addition and usual partial order relation.

In the following we introduce the notion of a commutative ordered Γ -semigroup.

DEFINITION 3.11 : An ordered Γ -semigroup S is said to be *ordered commutative* Γ -semigroup provided S is a commutative Γ -semigroup.

NOTE 3.12 : An ordered Γ -semigroup S is said to be ordered commutative Γ -semigroup provided $a\gamma b = b\gamma a$ for all $a, b \in S$ and $\gamma \in \Gamma$.

NOTE 3.13 : If S is an ordered commutative Γ -semigroup then $a\Gamma b = b\Gamma a$ for all $a, b \in S$.

NOTE 3.14: Let S be a Γ -semigroup and $a, b \in S$ and $\alpha \in \Gamma$. Then $a\alpha a\alpha b$ is denoted by $(a\alpha)^2 b$ and consequently $a \alpha a \alpha \alpha \alpha \alpha \dots (n \text{ terms})b$ is denoted by $(a\alpha)^n b$.

In the following we introduce a quasi commutative ordered Γ -semigroup.

DEFINITION 3.15 : An ordered Γ -semigroup S is said to be *ordered quasi commutative* Γ -semigroup provided S is a quasi commutative Γ -semigroup.

NOTE 3.16 : An ordered Γ -semigroup S is said to be ordered quasi commutative Γ -semigroup provided for

each $a, b \in S$, there exists a natural number *n* such that $a\gamma b = (b\gamma)^n a \quad \forall \gamma \in \Gamma$.

NOTE 3.17 : If an ordered Γ -semigroup S is ordered quasi commutative Γ -semigroup then for each $a, b \in S$, there exists a natural number n such that, $a\Gamma b = (b \Gamma)^n a$.

THEOREM 3.18 : If S is an ordered commutative Γ -semigroup then S is an ordered quasi commutative Γ -semigroup.

Proof: Suppose that S is an ordered commutative Γ -semigroup.

Then S commutative Γ -semigroup. Let $a, b \in S$.

Now $a\alpha b = b\alpha a \Rightarrow a\alpha b = (b \alpha)^1 a$. Therefore S

is a quasi commutative Γ -semigroup.

Therefore S is an ordered quasi commutative Γ -semigroup.

In the following we introduce the notion of an ordered normal Γ -semigroup.

DEFINITION 3.19 : An ordered Γ -semigroup S is said to be *ordered normal* Γ -semigroup provided S is normal Γ -semigroup.

NOTE 3.20 : An ordered Γ -semigroup S is said to be ordered normal Γ -semigroup provided $a\alpha S = S\alpha a \quad \forall \alpha \in \Gamma \text{ and } \forall \alpha \in S$

NOTE 3.21 : If an ordered Γ -semigroup S is ordered normal Γ -semigroup then $a\Gamma S = S\Gamma a$ for all $a \in S$.

THEOREM 3.22 : If S is an ordered quasi commutative Γ -semigroup then S is a normal ordered Γ -semigroup.

Proof: Suppose that S is an ordered quasi commutative Γ - semigroup.

Then S is quasi commutative Γ -semigroup.

Let $a \in S$ and $\alpha \in \Gamma$

Let $x \in a \alpha$ S. Then $x = a \alpha$ b, where $b \in S$

Since S is quasi commutative, $a \alpha b = (b\alpha)^n a$ for some $n \in \mathbb{N}$

Therefore, $x = a \alpha b = (b\alpha)^n a = (b\alpha)^{n-1} b\alpha a \in S \alpha a$

$$a \alpha S \subseteq S \alpha a \dots (1)$$

Let $x \in S \ \alpha \ a$. Then $x = t \ \alpha \ a$, for some $t \in S$ Since S is quasi commutative, $t \ \alpha \ a = (a\alpha)^n t$ for some $n \in \mathbb{N}$ Now, $x = t \alpha a = (a\alpha)^n t = a \alpha (a\alpha)^{n-1} t \in a \alpha S$

 \therefore S $\alpha a \subseteq a \alpha$ S ----(2)

From (1) and (2), $a \alpha S = S \alpha a$ for all $\alpha \in \Gamma$ and for all $b \in S$

Hence S is a normal Γ -semigroup. Therefore S is an ordered normal Γ -semigroup.

COROLLARY 3.23 : Every ordered commutative Γ-semigroup is a normal ordered Γ-semigroup.

Proof: Let S be an ordered commutative Γ -semigroup. By theorem 3.18, S is an ordered quasi commutative Γ semigroup. By theorem 3.22, S is an ordered normal Γ -semigroup. Therefore every ordered commutative Γ -semigroup is an ordered normal Γ -semigroup.

In the following we are introducing ordered left pseudo commutative Γ -semigroup and ordered right pseudo commutative Γ -semigroup.

DEFINITION 3.24 : An ordered Γ -semigroup S is said to be *ordered left pseudo commutative* Γ -*semigroup* provided S is left pseudo commutative Γ -semigroup.

NOTE 3.25: An ordered Γ -semigroup S is said to be ordered left pseudo commutative provided $a\Gamma b\Gamma c = b\Gamma a\Gamma c$ for all $a,b,c \in S$.

DEFINITION 3.26 : An ordered Γ -semigroup S is said to be *ordered right pseudo commutative* Γ -*semigroup* provided S is right pseudo commutative Γ -semigroup.

NOTE 3.27 : An ordered Γ -semigroup S is said to be *ordered right pseudo commutative* Γ -*semigroup* provided $a\Gamma b\Gamma c = a\Gamma c\Gamma b$ for all $a,b,c \in S$.

THEOREM 3.28 : If S is an ordered commutative Γ -semigroup, then S is both an ordered left pseudo commutative Γ -semigroup and an ordered right pseudo commutative Γ -semigroup.

Proof : Suppose that S is ordered commutative Γ -semigroup.

Then S is commutative Γ -semigroup.

Then $a\Gamma b\Gamma c = (a\Gamma b)\Gamma c = (b\Gamma a)\Gamma c = b\Gamma a\Gamma c$.

Therefore S is left pseudo commutative Γ -semigroup. Therefore S is an ordered left pseudo commutative Γ -semigroup.

Again $a\Gamma b\Gamma c = a\Gamma(b\Gamma c) = a\Gamma(c\Gamma b) = a\Gamma c\Gamma b$.

Therefore S is a right pseudo commutative Γ -semigroup.

Therefore S is an ordered right pseudo commutative Γ -semigroup.

NOTE 3.29 : The converse of the above theorem is not true. i.e., if S is an ordered left and right pseudo commutative Γ -semigroup then S need not be an ordered commutative Γ -semigroup.

EXAMPLE 3.30 : Let $S = \{a, b, c\}$ and $\Gamma = \{x, y, z\}$ Define a binary operation '.' in S as shown in the following table:

•	a	b	С
а	а	а	а
b	а	а	а
С	а	b	С

Define a mapping $S \times \Gamma \times S \rightarrow S$ by $a\alpha b = a.b$ for all $a, b \in S$ and $\alpha \in \Gamma$. It is easy to see that S is a ordered Γ -semigroup. Now S is an ordered left and right pseudo commutative Γ -semigroup. But S is not an ordered commutative Γ semigroup.

In the following we are introducing left identity, right identity and identity of a ordered Γ -semigroup.

DEFINITION 3.31 : An element *a* of an ordered Γ semigroup S is said to be a *left identity* of S provided $a\alpha s = s$ and $s \leq a$ for all $s \in S$ and $\alpha \in \Gamma$.

DEFINITION 3.32 : An element *a* of an ordered Γ semigroup S is said to be a *right identity* of S provided $s\alpha a = s$ and $s \le a$ for all $s \in S$ and $\alpha \in \Gamma$.

DEFINITION 3.40 : An element 'a' of an ordered Γ -semigroup S is said to be a *two sided identity* or an *identity* provided it is both a left identity and a right identity of S.

NOTE 3.41 : An element 'a' of an ordered Γ semigroup S is said to be a *two sided identity* or an *identity* provided $s\alpha a = a\alpha s = s$ and $s \leq a$ for all $s \in S$ and $\alpha \in \Gamma$. **EXAMPLE 3.42** : **1.1.7** : Let $S = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\} \}$ and $\Gamma = \{\emptyset\}$. If for all A, C \in S and B $\in \Gamma$, ABC = A \cup B \cup C and A \leq C \Leftrightarrow A \subseteq C, then S is a partially ordered Γ -semigroup with identity.

EXAMPLE: 3.43 : Let $S = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$ and $\Gamma = \{\{a, b, c\}\}$. If for all A, C \in S and B $\in \Gamma$, ABC = A \cap B \cap C and A \leq C \Leftrightarrow A \subseteq C, then S is a partially ordered Γ -semigroup with identity.

THEOREM 3.44 : If *a* is a left identity element and *b* is a right identity element of an ordered Γ -semigroup S, then a = b.

Proof: Since a is a left identity of S, $\alpha \alpha s = s$ and $s \leq a$ for all $s \in S$ and $\alpha \in \Gamma$ and hence $a \alpha b = b$ and $b \leq a$ for all $\alpha \in \Gamma$. Since b is a right identity of S, $s\alpha b = s$ and $s \leq b$ for all $s \in S$ and $\alpha \in \Gamma$ and hence $a \alpha b = a$ and $a \leq b$ for all $\alpha \in \Gamma$. Now $b \leq a$ and $a \leq b$ $\Rightarrow a = b$.

THEOREM 3.45 : Any ordered Γ -semigroup S has at most one identity.

Proof: Let *a*, *b* be two identity elements of the ordered Γ -semigroup S. Now *a* can be considered as a left identity and *b* can be considered as a right identity of S. By theorem 3.44, *a* = *b*. Then S has at most one identity.

NOTE 3.46 : The identity (if exists) of an ordered Γ -semigroup is usually denoted by 1 or *e*.

DEFINITION 3.47 : A partially ordered Γ -semigroup S with identity is called a partially ordered Γ -*monoid*.

In the following we are introducing left zero, right zero and zero of an ordered Γ -semigroup.

DEFINITION 3.48: An element *a* of an ordered Γ -semigroup S is said to be a *left zero* of S provided $a\alpha s = a$ and $a \leq s$ for all $s \in S$ and $\alpha \in \Gamma$.

DEFINITION 1.1.36 : An element *a* of an ordered Γ semigroup S is said to be a *right zero* of S provided $s\alpha a = a$ and $a \leq s$ for all $s \in S$ and $\alpha \in \Gamma$. **DEFINITION 3.49 :** An element *a* of an ordered Γ -semigroup S is said to be a *two sided zero* or *zero* provided it is both a left zero and a right zero of S.

NOTE 3.50 : An element *a* of an ordered Γ -semigroup S is said to be a *two sided zero* or *zero* provided $a\alpha s = s\alpha a = a$ and $a \leq s$ for all $s \in S$ and $\alpha \in \Gamma$.

EXAMPLE3.51 : Let $S = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$ and $\Gamma = \{\{a, b, c\}, \emptyset, \{a\}\}$. If for all A, C \in S and B $\in \Gamma$, ABC = A \cap B \cap C and A \leq C \Leftrightarrow A \subseteq C, then S is a partially ordered Γ -semigroup with zero.

EXAMPLE 3.52 : Let $S = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, b\}, \{c\}, \{a, b\}, \{a,$

 $\{b, c\}, \{a, c\}, \{a, b, c\}\}$ and $\Gamma = \{\{a, b, c\}\}$. If for all A, C \in S and B \in Γ , ABC = A \cap B \cap C and A \leq C \Leftrightarrow A \subseteq C, then S is a partially ordered Γ -semigroup with zero and identity.

NOTE 3.53 : In general, let P(X) be the power set of any non-empty set X and Γ a topology on X. If we define for all A, $C \in S$ and $B \in \Gamma$, $ABC = A \cap B \cap C$ and $A \leq C \Leftrightarrow A \subseteq C$, then P(X) is a partially ordered Γ -semigroup with zero.

We are now introduce left zero ordered Γ -semigroup, right zero ordered Γ -semigroup and zero ordered Γ -semigroup.

DEFINITION 3.54 : An ordered Γ -semigroup in which every element is a left zero is called a *left zero* ordered Γ -semigroup.

DEFINITION 3.55 : An ordered Γ -semigroup in which every element is a right zero is called a *right zero ordered* Γ -semigroup.

DEFINITION 3.56 : An ordered Γ -semigroup S with 0 in which the product of any two elements equals to 0 and $0 \le s$ for all $s \in S$ is called a *zero ordered* Γ -*semigroup* or a *null ordered* Γ -*semigroup*.

THEOREM 3.57 : If *a* is a left zero element and *b* is a right zero element of an ordered Γ -semigroup S, then *a* = *b*.

Proof: Since *a* is a left zero of S, $a\alpha s = a$ and $a \le s$ for all $s \in S$, $\alpha \in \Gamma$ and hence $a \alpha b = a$ and $a \le b$ for all $\alpha \in \Gamma$. Since *b* is a right zero of S, $s\alpha b = b$ and *b*

 $\leq s$ for all $s \in S$ and $\alpha \in \Gamma$ and hence $a \alpha b = b$ and $b \leq a$ for all $\alpha \in \Gamma$. Now $a \leq b$ and $b \leq a \Rightarrow a = b$.

THEOREM 3.58 : Any ordered Γ -semigroup S has at most one zero element.

Proof: Let *a*, *b* be two zeros of the Γ -semigroup S. Now *a* can be considered as a left zero and *b* can be considered as a right zero. By theorem 3.57, *a* = *b*. Thus S has at most one zero.

NOTE 3.59 : The zero (if exists) of an ordered Γ -semigroup is usually denoted by 0.

NOTATION 3.60 : Let S be an ordered Γ -semigroup. If S has an identity, let S¹ = S and if S does not have an identity, let S¹ be the ordered Γ -semigroup S with an identity adjoined usually denoted by the symbol 1. Similarly if S has a zero, let S⁰ = S and if S does not have a zero, let S⁰ be the ordered Γ -semigroup S with zero adjoined usually denoted by the symbol 0.

NOTATION 3.61 : Let S be an ordered Γ -semigroup and T is a nonempty subset of S. If H is a nonempty subset of T, we denote $\{t \in T : t \le h \text{ for some } h \in H\}$ by (H]_T.

{ $t \in T : h \le t$ for some $h \in H$ } by [H)_T. (H]_s and [H)_s are simply denoted by (H] and [H) respectively.

THEOREM 3.62 : Let S be an ordered Γ-semigroup and А ⊆ S, B ⊆ S. Then (i) $A \subseteq (A]$, (ii) ((A]] = (A], (iii) (A] $\Gamma(B] \subseteq (A\Gamma B]$ and (iv) Α ⊆ **(B**] for Α ⊆ B, (v) (A] \subseteq (B] for A \subseteq B. **Proof**: (i) Let $x \in A$. $x \in A \Rightarrow x \in S$ and $x \leq x \Rightarrow x \in$ (A]. Therefore $A \subseteq (A]$. (ii) Let $x \in ((A]] \Rightarrow x \le y$ for some $y \in (A] \Rightarrow y \le z$ for some $z \in A$. $x \le y$, $y \le z \Rightarrow x \le z$. Thus $x \in (A]$. Therefore $((A)] \subseteq (A)$ and from (i) $A \subseteq (A) \Rightarrow (A) =$ ((A]] and hence ((A]] = (A].(iii) Let $x \in (A] \Gamma (B] \Rightarrow x \le a \alpha b$ for some $a \in A, \alpha \in$ $\Gamma, b \in B \Rightarrow x \leq aab$ for some $aab \in A\Gamma B \Rightarrow x \in$ (A Γ B]. Therefore (A] Γ (B] \subseteq (A Γ B]. (iv) From (i) $B \subseteq (B] \Rightarrow A \subseteq B \subseteq (B]$. (v) $A \subseteq B \Rightarrow A \subseteq (B] \Rightarrow (A] \subseteq ((B]] = (B]$ Therefore $(A] \subseteq (B].$

DEFINITION 3.63 : Let S be an ordered Γ -semigroup. A nonempty subset T of S is said to be an

ordered Γ -subsemigroup of S if $a\gamma b \in T$, for all $a, b \in T$ T and $\gamma \in \Gamma$ and $t \in T, s \in S, s \leq t \Rightarrow s \in T$.

EXAMPLE 3.64 : Let S = [0,1] and $\Gamma = \{1/n : n \text{ is a positive integer}\}$. Then S is an ordered Γ -semigroup under the usual multiplication and usual order relation. Let T = [0, 1/2]. Now T is a nonempty subset of S and $a\gamma b \in T$, for all $a, b \in T$ and $\gamma \in \Gamma$. Then T is an ordered Γ -subsemigroup of S.

THEOREM 3.65 : A nonempty subset T of an ordered Γ -semigroup S is an ordered Γ -subsemigroup of S iff (1) $\Gamma\Gamma\Gamma \subseteq T$, (2) (T] $\subseteq T$.

THEOREM 3.66 : The nonempty intersection of two ordered Γ -subsemigroups of an ordered Γ -semigroup S is an ordered Γ -subsemigroup of S.

Proof: Let T_1 , T_2 be two ordered Γ -subsemigroups of S. Let $a, b \in T_1 \cap T_2$ and $\gamma \in \Gamma$.

 $a, b \in T_1 \cap T_2 \Rightarrow a, b \in T_1 \text{ and } a, b \in T_2$

 $a, b \in T_1, \gamma \in \Gamma, T_1$ is an ordered Γ -subsemigroup of S $\Rightarrow a\gamma b \in T_1$ and $(T_1] \subseteq T_1$.

 $a, b \in T_2, \gamma \in \Gamma, T_2 \text{ is a } \Gamma\text{-subsemigroup of } S \Rightarrow a\gamma b \in T_2 \text{ and } (T_2] \subseteq T_2.$

 $a \not b \in T_1, a \not b \in T_2 \Rightarrow a \not b \in T_1 \cap T_2 \text{ and } T_1 \cap T_2 \subseteq T_1,$ $T_1 \cap T_2 \subseteq T_2$

⇒ $(T_1 \cap T_2] \subseteq (T_1] = T_1$ and $(T_1 \cap T_2] \subseteq (T_2] = T_2 \Rightarrow$ $(T_1 \cap T_2] \subseteq T_1 \cap T_2 \Rightarrow (T_1 \cap T_2] = T_1 \cap T_2$. and hence $T_1 \cap T_2$ is an ordered Γ -subsemigroup of S.

THEOREM 3.67 : The nonempty intersection of any family of ordered Γ -subsemigroups of an ordered Γ -semigroup S is an ordered Γ -subsemigroup of S.

In the following we are introducing an ordered Γ -subsemigroup which is generated by a subset and a *cyclic ordered* Γ -subsemigroup of an ordered Γ -semigroup.

DEFINITION 3.68 : Let S be an ordered Γ -semigroup and A be a nonempty subset of S. The smallest ordered Γ -subsemigroup of S containing A is called an *ordered*

C-subsemigroup of *S* generated by *A*. It is denoted by < A >.

THEOREM 3.69 : Let S be an ordered Γ -semigroup and A be a nonempty subset of S. Then $\langle A \rangle$ = the

intersection of all ordered Γ-subsemigroups of S containing A.

DEFINITION 3.70 : Let S be an ordered Γ semigroup. An ordered Γ -subsemigroup T of S is said to be *cyclic ordered* Γ -subsemigroup of S if T is generated by a single element subset of S.

DEFINITION 3.71 : An ordered Γ -semigroup S is said to be a *cyclic ordered* Γ -semigroup if S is a cyclic ordered Γ -subsemigroup of S itself.

4. SPECIAL ELEMENTS OF AN ORDERED Γ-SEMIGROUP

We now introduce α -idempotent element and Γ -idempotent element in an ordered Γ -semigroup.

DEFINITION 4.1 : An element *a* of an ordered Γ semigroup S is said to be a *a*-*idempotent* provided $a \le a\alpha a$.

NOTE 4.2 : The set of all α -idempotent elements in an ordered Γ - semigroup S is denoted by E_{S}^{α} .

THEOREM 4.3 : For any ordered Γ -semigroup S, E_S^{α} with the binary relation defined by $a \le b$ iff $a = a\alpha b = b\alpha a$ is a patially ordered set.

DEFINITION 4.4 : An element *a* of an ordered Γ semigroup S is said to be an *idempotent* or Γ *idempotent* if $a \le a \alpha a$ for all $\alpha \in \Gamma$.

NOTE 4.5: An element *a* of an ordered Γ - semigroup S is said to be an *idempotent* or Γ -*idempotent* if $a \in (a\Gamma a]$

NOTE 4.6 : In an ordered Γ -semigroup S, *a* is an idempotent iff *a* is an α -idempotent for all $\alpha \in \Gamma$.

We now introduce an idempotent ordered Γ semigroup and a strongly idempotent ordered Γ semigroup.

DEFINITION 4.7 : An ordered Γ -semigroup S is said to be an *ordered idempotent* Γ -semigroup provided every element of S is α – idempotent for some $\alpha \in \Gamma$. **DEFINITION 4.8 :** An ordered Γ -semigroup S is said to be an *ordered strongly idempotent* Γ - *semigroup* provided every element in S is an idempotent.

We now introduce a special element which is known as midunit in an ordered Γ -semigroup.

DEFINITION 4.9 : An element *a* of an ordered Γ semigroup S is said to be a *midunit* provided $(x\Gamma a\Gamma y)$ = $(x\Gamma y)$ for all *x*, $y \in S$.

NOTE 4.10 : Identity of an ordered Γ - semigroup S is a midunit.

We now introduce an *r*-element in an ordered Γ -semigroup and also a generalized commutative ordered Γ -semigroup.

DEFINITION 4.11 : An element 'a' of ordered Γ semigroup S is said to be *an r-element* provided $(a\Gamma s] = (s\Gamma a)$ for all $s \in S$ and if $x, y \in S$, then $(a\Gamma x\Gamma y] = (b\Gamma y\Gamma x)$ for some $b \in S$.

DEFINITION 4.12 : An ordered Γ - semigroup S with identity 1 is said to be an ordered generalized commutative Γ - semigroup provided 1 is an *r*-element in S.

We now introduce a regular element in an ordered Γ -semigroup and regular ordered Γ -semigroup.

DEFINITION 4.13 : An element *a* of an ordered Γ semigroup S is said to be *regular* provided $a \le a \alpha x \beta a$, for some $x \in S$ and $\alpha, \beta \in \Gamma$.

NOTE 4.14 : An element *a* of an ordered Γ -semigroup S is said to be regular provided $a \in (a\Gamma S\Gamma a]$.

DEFINITION 4.15 : An ordered Γ - semigroup S is said to be an *ordered regular* Γ - *semigroup* provided every element is regular.

EXAMPLE 4.16: Let $S = \{0, a, b\}$ and Γ be any nonempty set. If we define a binary operation on S as the following Cayley table, then S is a semigroup.

•	0	a	b
0	0	0	0
а	0	a	a
b	0	b	b

Define a mapping from $S \times \Gamma \times S$ to S as aab = ab for all $a, b \in S$ and $\alpha \in \Gamma$. Then S is ordered regular Γ -semigroup under usual partial order relation.

THEOREM 4.17 : Every α -idempotent element in an ordered Γ -semigroup is regular

Proof: Let a be an α -idempotent element in an ordered Γ -semigroup S.

then $a \le a\alpha a$ for some $\alpha \in \Gamma$. Hence $a \le a\alpha a \alpha a$. Therefore *a* is a regular element.

We now introduce left regular element, right regular element, completely regular element in an ordered Γ -semigroup and completely regular ordered Γ -semigroup.

DEFINITION 4.18 : An element *a* of an ordered Γ semigroup S is said to be *left regular* provided $a \leq a \alpha \alpha \beta x$, for some $x \in S$ and $\alpha, \beta \in \Gamma$. i.e, $a \in (a \Gamma \alpha \Gamma S]$.

DEFINITION 4.19 : An element *a* of an ordered Γ semigroup S is said to be *right regular* provided $a \leq x \alpha \alpha \beta a$, for some $x \in S$ and α , $\beta \in \Gamma$. i.e, $a \in (S \Gamma \alpha \Gamma a]$.

DEFINITION 4.20 : An element *a* of an ordered Γ semigroup S is said to be *completely regular* provided, there exists an element $x \in S$ such that $a \leq a \alpha x \beta a$ for some $\alpha, \beta \in \Gamma$ and $a \alpha x = x \beta a$.

NOTE 4.21 : An element *a* of an ordered Γ -semigroup S is said to be *completely regular* provided, there exists an element $x \in S$ such that $a \in (a\Gamma x \Gamma a]$ and $a\Gamma x = x\Gamma a$.

DEFINITION 4.22 : An ordered Γ -semigroup S is said to be **ordered completely regular** Γ -semigroup provided every element of S is completely regular.

DEFINITION 4.23 : Let S be an ordered Γ semigroup, $a \in S$ and α , $\beta \in \Gamma$. An element $b \in S$ is said to be an (α, β) -inverse of a if $a \leq a a b \beta a$ and $b \leq b \beta a a b$.

THEOREM 4.24 : Let S be an ordered Γ **-semigroup** and $a \in S$. If a has an (α, β) -inverse then a is a regular element.

Proof: Suppose that b is an (α, β) -inverse of a. Then $a \leq a\alpha b\beta a$ and $b \leq b\beta a\alpha b$. Therefore $a \leq a\alpha b\beta a$ and hence a is regular. $\label{eq:rescaled} \begin{array}{ccc} We now introduce a semisimple element of a \\ \Gamma \mbox{-semigroup} & and & a & semisimple \\ \Gamma \mbox{-semigroup}. \end{array}$

DEFINITION 4.25 : An element *a* of an ordered Γ semigroup S is said to be *semisimple* provided $a \in (< a > \Gamma < a >]$, that is, $(< a >] = (< a > \Gamma < a >]$.

DEFINITION 4.26 : A Γ - semigroup S is said to be *ordered semisimple* Γ - *semigroup* provided every element of S is a semisimple element.

We now introduce an intra regular element of an ordered Γ -semigroup.

DEFINITION 4.27 : An element *a* of a Γ -semigroup S is said to be *intra regular* provided $a \le x \alpha a \beta a \gamma y$ for some *x*, $y \in S$ and α , β , $\gamma \in \Gamma$.

NOTE 4.28 : An element *a* of a Γ -semigroup S is said to be intra regular provided $a \in (S\Gamma a\Gamma a\Gamma S)$.

EXAMPLE 4.29 : The Γ -semigroup given in example 4.16 is an intra regular ordered Γ -semigroup.

THEOREM 4.30: If 'a' is a completely regular element of an ordered Γ - semigroup S, then a is regular and semisimple.

Proof: Since *a* is a completely regular element in the Γ - smigroup S, $a = a \alpha x \beta a$ for some $\alpha, \beta \in \Gamma$ and $x \in S$. Therefore *a* is regular.

Now $a \le a a x \beta a \in a \Gamma x \Gamma a \subseteq \langle a \rangle \Gamma \langle a \rangle \Rightarrow a \in (\langle a \rangle \Gamma \langle a \rangle)$. Therefore *a* is semisimple.

THEOREM 4.31 : If '*a*' is a completely regular element of an ordered Γ - semigroup S, then *a* is both a left regular element and a right regular element.

Proof: Suppose that *a* is completely regular. Then $a \in (a\Gamma S\Gamma a]$ and $a\Gamma S = S\Gamma a$.

Now $a \in (a\Gamma S\Gamma a] = (a\Gamma a\Gamma S]$. Therefore a is left regular.

Also $a \in (a\Gamma S\Gamma a] = (S\Gamma a\Gamma a]$. Therefore *a* is right regular.

THEOREM 4.32 : If 'a' is a left regular element of a Γ -semigroup S, then a is semisimple.

Proof: Suppose that *a* is left regular. Then $a \in (a\Gamma a\Gamma x]$ and hence $a \in (\langle a \rangle \Gamma \langle a \rangle)$. Therefore *a* is semisimple.

THEOREM 4.33 : If 'a' is a right regular element of a Γ -semigroup S, then a is semisimple.

Proof: Suppose that *a* is right regular. Then $a \in (a\Gamma a\Gamma x]$ and hence $a \in (< a > \Gamma < a >]$. Therefore *a* is semisimple.

THEOREM 4.34 : If 'a' is a regular element of a Γ -semigroup S, then a is semisimple.

Proof: Suppose that a is regular element of Γ -semigroup S.

Then $a \leq a \alpha x \beta a$, for some $x \in S$, $\alpha, \beta \in \Gamma \Rightarrow a \in (a \Gamma x \Gamma a]$ and hence $a \in (\langle a \rangle \Gamma \langle a \rangle]$. Therefore *a* is semisimple.

THEOREM 4.35 : If 'a' is a intra regular element of a Γ - semigroup S, then a is semisimple.

Proof: Suppose that *a* is intra regular. Then $a \in (x\Gamma a\Gamma a\Gamma y]$ for *x*, *y* \in S and hence $a \in (< a > \Gamma < a >]$ Therefore *a* is semisimple.

DEFINITION 4.36 : An element *a* of an ordered Γ semigroup S is said to be *left a-cancellative* provided for $\alpha \in \Gamma$, $a\alpha b \leq a\alpha c$ implies $b \leq c$.

DEFINITION 4.37 : An element *a* of an ordered Γ semigroup S is said to be *right a-cancellative* provided for $\alpha \in \Gamma$, $b\alpha a \leq c\alpha a$ implies $b \leq c$.

DEFINITION 4.38 : An element *a* of an ordered Γ semigroup S is said to be *a*-cancellative provided *a* is both a left α -cancellative
element and a right α -cancellative element.

DEFINITION 4.39 : An element *a* of an ordered Γ semigroup **S** is said to be *left* Γ -cancellative provided *a* is left α -cancellative for all $\alpha \in \Gamma$.

DEFINITION 4.40 : An element *a* of an ordered Γ semigroup **S** is said to be *right* Γ -*cancellative* provided *a* is right α -cancellative for all $\alpha \in \Gamma$. **DEFINITION 4.41 :** An element *a* of an ordered Γ semigroup S is said to be Γ -cancellative provided *a* is a both left Γ -cancellative and right Γ -cancellative.

NOTE 4.42 : $a\Gamma b \leq c\Gamma d$ if and only if $a\Gamma b \subseteq c\Gamma d$.

DEFINITION 4.43 : An element *a* of an ordered Γ -semigroup S is said to be *strongly left* Γ -cancellative provided $a\Gamma b \le a\Gamma c$ implies $b \le c$.

NOTE 4.44 : An element *a* of an ordered Γ -semigroup S is said to be *strongly left* Γ -cancellative provided $a\alpha b \leq a\beta c$, α , $\beta \in \Gamma \Rightarrow b \leq c$.

DEFINITION 4.45 : An element *a* of an ordered Γ -semigroup S is said to be *strongly right* Γ -cancellative provided $b\Gamma a \leq c\Gamma a$ implies $b \leq c$.

NOTE 4.46 : An element *a* of an ordered Γ -semigroup S is said to be *strongly right* Γ -cancellative provided $b \alpha a \leq c \beta a$, α , $\beta \in \Gamma \Rightarrow b \leq c$.

DEFINITION 4.47 : An element *a* of an ordered Γ -semigroup S is said to be *strongly* **\Gamma-cancellative** provided *a* is a both strongly left **\Gamma**-cancellative and strongly right **\Gamma**-cancellative.

Now we introduce a weakened version of
strongly cancellative ordered
 Γ -semigroup is provided by the following notion.

DEFINITION 4.48 : An ordered Γ -semigroup S is said to be *separative* if for any $x, y \in S$,

(1) $x\Gamma x \le x\Gamma y$ and $y\Gamma y \le y\Gamma x$ imply x = y,

(2) $x\Gamma x \le y\Gamma x$ and $y\Gamma y \le x\Gamma y$ imply x = y.

THEOREM 4.52 : In a separative ordered Γ -semigroup S, for any x, y, a, $b \in S$, the following statements hold.

- (i) $x\Gamma a \le x\Gamma b$ if and only if $a\Gamma x \le b\Gamma x$,
- (ii) $x\Gamma x\Gamma a \leq x\Gamma x\Gamma b$ implies $x\Gamma a \leq x\Gamma b$,
- (iii) $x\Gamma y\Gamma a \le x\Gamma y\Gamma b$ implies $y\Gamma x\Gamma a \le y\Gamma x\Gamma b$.

Proof: (i) If $x\Gamma a \le x\Gamma b$, then $a\Gamma(x\Gamma a)\Gamma x \le a\Gamma(x\Gamma b)\Gamma x$ and $b\Gamma(x\Gamma a)\Gamma x \le b\Gamma(x\Gamma b)\Gamma x$ so that $(a\Gamma x)\Gamma(a\Gamma x) \le (a\Gamma x)\Gamma(b\Gamma x)$ and $(b\Gamma x)\Gamma(a\Gamma x) \le (b\Gamma x)\Gamma(b\Gamma x)$ which by separativity implies $(a\Gamma x) \le (b\Gamma x)$. The opposite implication follows by symmetry. (ii) If $x\Gamma x\Gamma a \le x\Gamma x\Gamma b$, then by part (i), $x\Gamma a\Gamma x \le x\Gamma b\Gamma x$ $\Rightarrow (a\Gamma x)\Gamma(a\Gamma x) \le (a\Gamma x)\Gamma(b\Gamma x)$ and $(b\Gamma x)\Gamma(a\Gamma x) \le$ $(b\Gamma x)\Gamma(b\Gamma x)$ and thus by separativity $(a\Gamma x) \le (b\Gamma x)$. But then by part (i) $x\Gamma a \le x\Gamma b$.

(iii) Let $x\Gamma y\Gamma a \le x\Gamma y\Gamma b$. Then $x\Gamma y\Gamma a\Gamma y \le x\Gamma y\Gamma b\Gamma y$, and thus by part (i), $y\Gamma a\Gamma y\Gamma x \le y\Gamma b\Gamma y\Gamma x$. Multiplying by suitable elements on the right and using part (i), we obtain the following strings of inequalities:

$$\begin{split} & y\Gamma a\Gamma y\Gamma x\Gamma a \leq y\Gamma b\Gamma y\Gamma x\Gamma a \qquad y\Gamma a\Gamma y\Gamma x\Gamma b \leq y\Gamma b\Gamma y\Gamma x\Gamma b \\ & a\Gamma y\Gamma x\Gamma a\Gamma y \leq b\Gamma y\Gamma x\Gamma a\Gamma y \qquad a\Gamma y\Gamma x\Gamma b\Gamma y \leq b\Gamma y\Gamma x\Gamma b\Gamma y \\ & (a\Gamma y\Gamma x)\Gamma (a\Gamma y\Gamma x) \leq (b\Gamma y\Gamma x)\Gamma (a\Gamma y\Gamma x) \end{split}$$

 $(a\Gamma y\Gamma x)\Gamma(b\Gamma y\Gamma x) \le (b\Gamma y\Gamma x)\Gamma(b\Gamma y\Gamma x)$

Which by separativity implies $(a\Gamma y\Gamma x) \leq (b\Gamma y\Gamma x)$. But then by part (i), we have

$y\Gamma x\Gamma a \le y\Gamma x\Gamma b.$

REFERENCES

 Anjaneyulu. A, and Ramakotaiah. D., On a class of semigroups, Simon stevin, Vol.54(1980), 241-249.

[2] **Anjaneyulu. A**., *Structure and ideal theory of Duo semigroups*, Semigroup Forum, Vol.22(1981), 257-276.

[3] **Anjaneyulu.** A., *Semigroup in which Prime Ideals are maximal*, Semigroup Forum, Vol.22(1981), 151-158.

[4] **Clifford. A.H.** and **Preston. G.B.**, *The algebraic theory of semigroups*, Vol-I, American Math.Society, Providence(1961).

[5] **Clifford. A.H.** and **Preston. G.B.**, *The algebraic theory of semigroups*, Vol-II, American Math.Society, Providence(1967).

[6] Chinram. R and Jirojkul. C., On bi- Γ-ideal in Γ
- Semigroups, Songklanakarin J. Sci. Tech no.29(2007), 231-234.

[7] **Giri. R. D.** and **Wazalwar. A. K.,** *Prime ideals and prime radicals in non-commutative semigroup,* Kyungpook Mathematical Journal Vol.33(1993), no.1, 37-48.

[8] **Dheena. P.** and **Elavarasan. B.**, *Right chain po*- Γ -*semigroups*, Bulletin of the Institute of Mathematics

Academia Sinica (New Series) Vol. 3 (2008), No. 3, pp. 407-415.

[9] **Kostaq Hila.**, *Filters in ordered* Γ-semigroups, Rocky Mountain Jjournal of Mathematics Volume 41, Number 1, 2011.

[10] **Kwon. Y. I.** and **Lee. S. K.**, *Some special elements in ordered* Γ-semigroups, Kyungpook Mathematical Journal., 35 (1996), 679-685.

[11] Madhusudhana Rao. D, Anjaneyulu. A and Gangadhara Rao. A, *Pseudo symmetric* Γ -*ideals in* Γ -*semigroups*, International eJournal of Mathematics and Engineering 116(2011) 1074-1081.

[12] Petrch. M., Introduction to semigroups, Merril Publishing Company, Columbus, Ohio,(973).

[13] **Ronnason Chinram and Kittisak Tinpun.**, *A Note on Minimal Bi-Ideals in Ordered* Γ *-semigroups*, International Mathematical Forum, 4, 2009, no. 1, 1-5.

[14] **Samit Kumar Manjumder and Sujit Kumar Sardar.,** *On properties of fuzzy ideals in posemigroups*, Armenian Journal of Mathematics, Volume 2, Number 2, 2009, 65-72.

[15] Sen. M.K. and Saha. N.K., $On \ \Gamma$ - Semigroups-I, Bull. Calcutta Math. Soc. 78(1986), No.3, 180-186.

[16] Sen. M.K. and Saha. N.K., On Γ - Semigroups-II, Bull. Calcutta Math. Soc. 79(1987), No.6, 331-335

 [17] Sen. M.K. and Saha. N.K., On Γ - Semigroups-III, Bull. Calcutta Math. Soc. 80(1988), No.1, 1-12.