
Partial Query Processor For Compressed Xml
 Vijay Gulhane1, Dr. M. S. Ali 2

Sipna COET, Amravati, Rpof. Ram Meghe COEM,Badnera

Abstract

Query processor plays a very important role in xml

database systems. However, efficient work has been

done to study query processing in XML database

systems. Query to xml database refers to a

information or data that search where data is

located in xml source file. The basic components of

any query processor is an indexing scheme .query

processing strategies attempt to investigate a more

effective auxiliary structure, such as an indexing

scheme, to aid querying compressed XML

databases. The queriable compressors are

themselves strengthened to support efficient

querying over compressed XML data. This means

the goal here is an analytical model for querying

compressed databases, which optimize the query

engine of a compressor.

1. Introduction

Query processor palys an important role in the

database management system. This paper first

introduces the concept of query processing and

Parsing, and takes the review of the parsering

technologies for the XML documents. A new

query processor is scheme based on LZ free

algorithm and SAX parser approach . Next the

Query processor, and to start an XML parse

From the XML compresser compressed XML

document is loded in the loder of query processor .

Depending on the type of query fired query engine

processes the query. Timer keeps the the record of

query processing required timing.

After evalution it was found that our approach

gives improved performance , Query response time

of XVSGC is better than the XGRIND and the

more than Xqzip and Xqzip+ as it is a non

quarable compressor. comparisions with the

existing qurable Xml compressor, XVSGC

achieves significantly improved query performance

compared to Xpress also.

The compression in xml file and the indexing

for query processor affects response time in two

ways. First, before a compressor starts its

execution, memory space has to be allocated to the

process. These memory are used to store the

execution code, copies of files, and any temporary

objects produced which is intermediate step for the

compressor and query processor. Second, some

applications, such as DBLP complete dataset, have

high demands on memory. Their executions will be

significantly slowed down. The Approach use uses

SAX interfaces and classes also Lample –Ziv to

achieve a partial decompression.

2. Related Work

As shown in figure 2.1 there are few

compressors which are qurable sence from 2000 to

2011.

Figure:2.1: Distribution of Compressor over the year

A program or module that checks a well-formed

syntax and provides a capability to manipulate

XML data element. Navigate through the XML

document .extract or query data elements

Add/delete/modify data elements.

These SAX classes and interfaces fall into five

groups:

1.interfaces implemented by the parser:Parser

and AttributeList (required), and Locator (optional)

2.interfaces implemented by the

application:DocumentHandler, ErrorHandler,

DTDHandler, and EntityResolver (all optional:

DocumentHandler will the most important one for

typical XML applications)

3.standard SAX classes:InputSource,

SAXException, SAXParseException, HandlerBase

(these are all fully implemented by SAX)

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

357

4.optional Java-specific helper classes in the

org.xml.sax.helpers package:ParserFactory,

AttributeListImpl, and LocatorImpl (these are all

fully implemented by the SAX Java distribution)

5.Java demonstration classes in the nul

package:SystemIdDemo, ByteStreamDemo,

CharacterStreamDemo, and EntityDemo, all of

which can be run as Java applications; there is also

a DemoHandler class that all four share

3. EFFECTIVE QUERY PROCESSING

 Figure: 2-2 Partal query processor

We base our work on the principle of LZF that

XML compression partial query processing

techniques (like operators,indexes, values for query

optimization etc.can be used together when

properly combined. This principle has been stated

and forcefully validated in the domain of relational

query processing [1],[3].Thus, it is important in the

XML dataset for the partial efficient qury

processing. Above figure shows the query

processor . In the query processor we has the input

from the xml compresser and qury processor loads

the compressed file by the loder. This compressed

file processes for the parsing and query by the user

is handel by the Query engine . once qurey is

obtain then data or values are serched by the

search engine that is by the index values. In the

optimization phase partial qurey is optimize and

exicuts the results with find data or not found. In

additional to this we are designed a timers for the

both in the time format(HH:MM:SS:MS) viz at

compressor side and one at query processig side. It

contains the following modules:

1.The loader and compressor converts XML

documents in acompressed , yet queryable format,

using compression algorithms and the query work

loader acess that file.2.The compressed repository

stores the compressed documents and provides: (i)

compressed data

3.The queryprocessor processes the compressed

documents and provides: :(i) compressed data

Elements

(ii) Values,evaluates queries over compressed

documents, Allows For efficient evaluation over

the compressed repository .

Besides the components mentioned in the figure,

there are number of less import a helper

components in our system. During the

compression, a stream of data is produced. As can

be seen in Figure2.3 the structure of the stream is

very simple. It starts with a short header block

which contains the identication of the XVSGC

format and information about the compressed data.

After the header block, the compressed data

follows.

Figure :2.3 Structure of compressed File

3.2 OUR CORPUS BREAF

SwissPort

SWISS-PORT is a curated protein sequence

database which strives to provide a high level of

annotations (such as the description of the function

of a protein, its domains structure, post-

translational modifications, variants, etc.), a

minimal level of redundancy and high level of

integration with other databases.

Treebank (partially encrypted)
English sentences, tagged with parts of speech.

The text nodes have been encrypted because they

are copy written text from the Wall Street Journal.

Never the less, the deep recursive structure of this

data makes it an interesting case for experiments.

Mondial
World geographic database integrated from the

CIA World Fact book, the International Atlas, and

the TERRA database among other sources.

DBLP Computer Science Bibliography

The DBLP server provides bibliographic

information on major computer science journals

and proceedings. DBLP stands for Digital

Bibliography Library Projects

Shakespeare :
A collection of the plays of William Shakespeare in

XML [5].The first four datasets given above are

regarded as data-centric as the XML documents

have a very regular structure, whereas the last one

is regarded as document-centric as the XML

documents have a less regular structure: Yahoo and

UWN. Table 3.1 Shows Corpus Set Details.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

358

Table:3.1 Corpus Set Details

Testing Environment

The experiments were performed on a windows

Intel® Core™i3 CPU @ 3.10 GHz 3.10 GHz with

installed memory (RAM) 2.00 GB), 32 bit

operating system. In the tests, the compressors

were run under their default settings.

4. Experimental Evaluation:

 The scheme of search engine, PARSER,

proposed LZ base compressed query processing

and studied for different load. The

performance metrics use to mesure the performance

of the query processor are minimum time taken to

execute the result.

The time taken to compress documents is obtained

by running the corresponding processes repeatedly

three times and taking the average of the three runs.

The main reason for doing this is to reduce the disk

I/O influences on the results by loading the whole

document into the physical memory. Calculations

of CR1 and CR2 are done using the following

formules-

The compression ratio is defined as follows:

CR1 =

bits/byte

CR2 =

 X 100

Compression Ratio Factor (CRF):- Normalize the

Compression Ratio of XVSGC with Respect to

XMill and XGRIND

CRF 1=CRXVSGC/XMILL

CRF 2=CRXVSGC/XGRIND

Compression Time Factor (CRT):- Normalize the

Compression Time of XVSGC with Respect to

XMill and XGRIND.

CRT1=CRTXVSGC/XMILLCRT

2=CRTXVSGC/XGRIND

Query Response Time(QRT): Time Required T to

execute the query

Following Table3.4 shows the results of

compression CR1 and CR2 with the time period

and average time over the different types of

document as stated above.

3.4: Auction Dataset

Auction Data KB CS CR1 CR2 T1 T2 T3 TA

Yhoo 24.8 21.7 7 12.5 0.708 0.733 0.725 0.722

Ebay 34.7 41.6 9.59078 -19.885 0.843 0.84 0.84 0.841

Ubid 19.8 13.5 5.45455 31.8182 0.729 0.717 0.715 0.7203

321gnoe 24.9 22.5 7.22892 9.63855 0.729 0.722 0.72 0.7237
From the above table we can observe that Auction

Dataset are tested for the time period . Range of

variation is in between 0.720 to 0.841 The

minimum time required for the UID and

maximum time required for the EBay . Here time

period is in milliseconds

The results of the evaluation for the different

document are shown in following table. And

File

Name

Descript

ion size

Element

s

Attribu

tes

Max

Dept

h

Avg-

Depth

Mondial 1 MB 22423 47423 5 3.59274

Swissport 109 MB 2977031
218985

9
5 3.55671

Treebank 82 MB 2437666 1 36 7.87279

Dblp 127 MB 3332130 404276 6 2.90228

Yahoo 24KB 342 0 5 3.76608

UWN 2 MB 66729 6 5 3.95243

Ebay 34.7 KB 156 0
5 3.7564

Ubid 19.8 KB 342 0
5 3.7661

321gnoe 24.9 KB 311 0
5 3.7653

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

359

comparative graphs are shown.

Figure: 4.1 Query Performance OF XVSGC With

Others of Textual Documents

 Above figure 4.1 shows the Query response

time for the different compressor. From the above

figure we can conclude that Query response time

of XVSGC is better than the XGRIND and the

more than Xqzip and Xqzip+ as it is a non

quarable compressor.

Figure 4.2 : Query Evaluation Time (From:

XPRESS:AQueriableCompressionforXMLData by

Jun-KiMinMyung-JaeParkChin-WanChung)

Query processor refers to a collective set of

strategies that processes the queries in some sort of

time. The basic component of any query processor

is the parser and the Query engine. Query engine

attempt to resolve the query. Search engine and

the Parser is heart of the query processor. Search

engine searches the exact match for the incoming

queries and then it optimize it for the result.

 After evalution it was found that our

approach gives improved performance , Query

response time of XVSGC is better than the

XGRIND and the more than Xqzip and Xqzip+ as

it is a non quarable compressor. comparisions with

the existing qurable Xml compressor, XVSGC

achieves significantly improved query performance

compared to Xpress also.

5 References

[1]Abramson, N. 1963. Information Theory and Coding.

McGraw-Hill, New York.

[2]AlHamadani, Baydaa “Retrieving Information

from Compressed XML Documents According to

Vague Queries” July, 2011 University of

Huddersfield Repository

http://eprints.hud.ac.uk/[3]

[3]Andrei Arion, Angela Bonifati, Ioana

Manolescu, Andrea Pugliese “XQueC: A Query-

Conscious Compressed XML Database” ACM

Journal Name, Vol. , No. , 20, Pages 1–31.

[4]Andrei Arion1, Angela Bonifati2, Gianni

Costa2, Sandra D’Aguanno1,etel “Efficient Query

Evaluation over Compressed XML Data” E.

Bertino et al. (Eds.): EDBT 2004, LNCS 2992, pp.

200–218, 2004. _c Springer-Verlag Berlin

Heidelberg 2004

[5]Apostolico, A. and Fraenkel, A. S. 1985. Robust

Transmission of Unbounded Strings Using

Fibonacci Representations. Tech. Rep. CS85-14,

Dept. of Appl. Math., The Weizmann Institute of

Science, Rehovot, Sept.

[6]Augeri, C. J., Bulutoglu, D. A., Mullins, B. E.,

Baldwin, R. O. & Leemon C. Baird, I. (2007). An

analysis of XML compression efficiency. Proceedings of

the 2007 workshop on Experimental computer science,

ACM, San Diego, California.

[7]Debra A. Lelewer and Daniel S. Hirschberg “ Data

Compression”

[8] David Salomon, Data Compression: The Complete

Reference, pub-SV, 2004.

[9]Elias, P. 1987. Interval and Recency Rank Source

Coding: Two On-Line Adaptive Variable-Length

Schemes. IEEE Trans. Inform. Theory 33, 1 (Jan.), 3-10.

[10]Faller, N. 1973. An Adaptive System for Data

Compression. Record of the 7th Asilomar Conf. on

Circuits, Systems and Computers (Pacific Grove, Ca.,

Nov.), 593-597.

[11]G. Antoshenkov. Dictionary-Based Order-Preserving

String Compression. VLDB Journal 6, page 26-39,

(1997).

[12]Gllager, R. G. 1978. Variations on a Theme by

Huffman. IEEE Trans. Inform. Theory 24, 6 (Nov.), 668-

674.

[13]Gregory Leighton and Denilson Barbosa

“Optimizing XML Compression (Extended Version)”

arXiv:0905.4761v1 [cs.DB] 28 May 2009

[14]G. Cleary, I.H. Witten, Data compression using

adaptive coding and partial string matching, IEEE Trans.

Commun. OM-32 (4) (1984) 396–402.

[15]GZip Compressor, http://www.gzip.org/.

[16]H. Liefke and D. Suciu. XMill: An Efficient

Compressor for XML Data. Proceedings of the ACM

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

360

SIGMOD International Conference on Management of

Data, pp. 153-164 (2000).

[17]Horspool, R. N. and Cormack, G. V. 1987. A

Locally Adaptive Data Compression Scheme. Commun.

ACM 16, 2 (Sept.), 792-794.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

361

