

Partial Homomorphic Encryption for Secure Log Management

Using Tor Network

Mr.M.Rathinraj
Assistant Professor, Department of Computer Science & Engineering,

Dr. S.J.S Paul Memorial College of Engineering and Technology, Puducherry – 605 502

Miss. J.Ramya Rajalakshmi
#2

Master of Technology, Department of Computer Science & Engineering,

Dr. S.J.S Paul Memorial College of Engineering and Technology, Puducherry – 605 502

Miss. M. Saranya
#3

Master of Technology, Department of Computer Science & Engineering,

Dr. S.J.S Paul Memorial College of Engineering and Technology, Puducherry – 605 502

Abstract

Logging is closely related to Forensic Computing.

Log files helps cyber forensic process in probing and

seizing computer, obtaining electronic evidence for

criminal investigations and maintaining computer

records for the federal rules of evidence. To make the

logs useful for the use in court, there is a necessity to

prove that the logs have not been modified after

being generated. Moreover, since the logs contain

confidential information, they must be protected

strictly. Therefore a secure logging scheme that

ensures the integrity and confidentiality of the logs is

needed. Partial Homomorphic Encryption is

proposed for implementing secure log management

system. Homomorphic Encryption systems are used

to perform operations on encrypted data without

knowing the private key (without decryption) the

client is the only holder of the secret key. Tor

Network improves the privacy and security of log

data while transmission.

Key Terms: Logging, Log Management,

Homomorphic Encryption, Partial Homomorphic

encryption, Tor Network.

1. Introduction
Log is a record of events occurring when a user is

active and used for statistical purposes as well as

backup and recovery. Log files are registered by the

operating system or other control program for

recording the details about incoming dialogs, error

and status messages and certain transaction. Start and

stop times of routine jobs may also be recorded. Any

program might generate a log file. Logging is the

processes of collecting the log files [1]. An

application may generate a log that the user can refer

to if necessary or that may be helpful in the event of a

failure. For example, an FTP program may generate a

log file showing the date, time and source and

destination paths for each file transferred. In

Windows, the log files are stored in (Control

Panel/System and Security/Administrative

Tools/Event Viewer).In Fedora, the log files are

stored in (Computer/Var/Log).

 Log management is the process of generating,

transmitting, analyzing, storing and disposing of

computer security log data. Log management [6]

(LM) comprises an approach to dealing with large

volumes of computer generated log messages (also

known as audit records, audit trails, event-logs, etc).

Log management is driven by reasons of security,

system and network operations (such as system or

network administration) and regulatory compliance.

Log management defines what you need to log, how

to log it and how long to retain this information.

And, it is important to carry out the log management

process in a secure manner.

System logs are an important part of any secure IT

system. They record significant events happened in

the past such as user activity, program execution

status, system resource usage, data changes, etc. They

provide a valuable view of the past and current states

of almost any type of complex system. In conjunction

3231

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121255

with appropriate tools and procedures audit logs can

be used to enforce individual accountability,

reconstruct events, detect intrusions and identify

problems. Because of their forensic value, system

logs are an obvious target for attackers. An attacker

who gains access to a system naturally wishes to

remove traces of her presence in order to hide attack

details or frame innocent users. The first target of an

experienced attacker would often be the logging

system. To make the audit log secure, the log data

must be prevented from modification by the attacker.

Secure versions of audit logs should be designed to

defend against such damages.

Log data [5] can only be used if it is “correct”.

Log management can generate reports that are helpful

for system maintenance [2], security management

and many other purposes. Uses for log data include

marketing, forensics and hr accounting. As they

identify goals, companies would do well to consider

the broader advantages of log management and

analysis and look for systems or services that will

allow a migration toward a more complete use of log

data in the future.

Tor [7] is a network of virtual tunnels that allows

people and groups to improve their privacy and

security on the Internet. It also enables software

developers to create new communication tools with

built-in privacy features. Tor allows organizations

and individuals to share information over public

networks without compromising their privacy. Tor

protects the user against a common form of Internet

surveillance known as traffic analysis. Traffic

analysis can be used to infer who is talking to whom

over a public network. Knowing the source and

destination of your Internet traffic allows others to

track your behavior and interests. Instead of choosing

a direct route between the sender and receiver

2. Homomorphic Algorithm
Homomorphic Encryption systems are used

to perform operations on encrypted data without

knowing the private key (without decryption), the

client is the only holder of the secret key. So on

decryption, the result of any operation, it is the same

as if the calculation is done on the raw data.

The idea of homomorphic computation is to

encrypt some numbers, perform algebraic operations

like add and "multiply on Ciphertext, then decrypt the

result and find it to be exactly the same as if

corresponding "+" and "*" operations were applied to

the plaintexts. In other words, a homomorphic

cryptosystem enables cryptographically secure

computations in an untrusted environment.

Homomorphism decouples the ability to perform

computations from the necessity to view the data as

clear text. This allows owners of sensitive data to

manipulate encrypted secret data while it resides in

an insecure location or to outsource computations on

secret data to an untrusted third party.

3. Partial Homomorphic encryption for

Log Management
An encryption is homomorphic, if: from Enc

(a) and Enc (b) it is possible to compute Enc (f (a,

b)), where f can be: +, ×, ⊕ and without using the

private key. According to the operations that allow

assessing on raw data Homomorphic Encryption has

been distinguished. The additive Homomorphic

encryption (only additions of the raw data) is the

Pailler and Goldwasser-Micalli cryptosystems and

the multiplicative Homomorphic encryption (only

products on raw data) is the RSA and El Gamal

cryptosystems. Different cryptosystems support

varying levels of homomorphism. Table 3.1

summarizes the different partially Homomorphic

Algorithm and its operations.

Table 1: Partially Homomorphic algorithms

Cryptosystem
Homomorphic

Operations

RSA Multiplication mod n

Elgamal Multiplication,

Exponentiation

Paillier Addition, Subtraction,

Multiplication

Goldwasser-Micali XOR

Benaloh Addition, Subtraction

Naccache-Stern Addition, Subtraction,

Multiplication

For managing the collected logs [3], it may

be outsourced to the Third Party. The Third Party

may be responsible for auditing the log data, provides

space for storing the log data for future use etc.So,

our proposed algorithm keeps the log data secure

while we outsource it to the Third Party. We have

chosen RSA Algorithm which is Partially

Homomorphic in nature for encrypting the log file

before giving it to the Third Party .RSA Algorithm is

also called as Multiplicative Homomorphic

Algorithm.

4. Description
A Homomorphic algorithm is

Multiplicative, if

Enc (x⊗y) = Enc(x) ⊗ Enc(y)

EXAMPLE RSA CRYPTOSYSTEM

RSA is a cryptosystem, which is known as

one of the first practicable public-key cryptosystems

and is yet widely used for secure data transmission.

3232

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121255

In such a cryptosystem, the encryption key is public

and differs from the decryption key which is kept

secret. In RSA, this asymmetry is based on the

practical difficulty of factoring the product of two

large prime numbers, the factoring problem.

Working with a public-key encryption

system has mainly three phases:

•Key Generation: Once a receiver wants to

receive secret messages he/she creates a public key

(which is published) and a private key (kept secret).

The keys are generated in a way that conceals their

construction and makes it 'difficult' to find the private

key by only knowing the public key.
•Encryption: A secret message to any

person can be encrypted by his/her public key (that

could be officially listed like phone numbers).

•Decryption: Only the person being

addressed can easily decrypt the secret message using

the private key.

5. Implementation and justification of

RSA as Partially Homomorphic

Algorithm
In this section, we explained the RSA

Algorithm and provided an example for justifying it

as Partially Homomorphic.
Key Generation:

Step-1: Choose two large primes, p and q, randomly

and independently of each other. However, be sure

that they are very large so that their product will be of

sufficient size. Also, the primes are to be kept secret.

Step-2: Compute the product n = pq. The product,

N, is to be made public and is known as the modulus.

Step-3: Compute the totient).1)(1()( qpn

The totient function is Euler’s phi function (see notes

section).

Step-4: Choose an integer e (which is to be made

public), where),(1 Ne  such that

,1)),(gcd(en or equivalently, e is co-prime or

relatively prime to).(N In general, if

,1),gcd(ba then a and b are relatively prime and

))((mod Nba  is a congruence. Note that this

can be found using the Euclidean Algorithm.

Step-5: Compute the private key, d, which is the

multiplicative inverse of)),((mod ne  i.e., find an

integer d with)).((mod1 Nde  In general,

solve for d in the equation

).1)(1mod(1  qped The existence of d

follows from the fact that if given two integers, a and

b, where the ,1),gcd(ba then b is invertible

(mod a) and b has a multiplicative inverse in n .

This can also be found with the Euclidean Algorithm.

The public key consists of the modulus, N,

and the public exponent, also referred to as the

encryption exponent, e.The private key consists of,

again, the public modulus, N, and the private

exponent, d, which is also called the decryption

exponent. The value of d must be kept secret, as well

as the values of p, q, and).(n

Encryption:
The public key numbers is transferred to the

person that wants to send us their message.

Then, encryption is done by,

c = m
e
 mod n

c is our encrypted Message.

Decryption:
In order to decrypt the message private key n and d is

needed.m= c
d
 mod n

RSA cryptosystem realize the properties of

the multiplicative Homomorphic encryption for

example if we assume that two ciphers C1, C2

corresponding respectively to the messages m1, m2.

The client sends the pair (C1, C2) to the Cloud server,

the server will perform the calculations requested by

the client and sends the encrypted result (C1 × C2) to

the client. If the attacker intercepts two ciphers C1

and C2, which are encrypted with the same private

key he/she will be able to decrypt all messages

exchanged between the server and the client. Because

the Homomorphic encryption is multiplicative i.e. the

product of the ciphers equals the cipher of the

product.

Suppose we have two ciphers C1 and C2 such that:

C1 = m1
e
 mod n

C2 = m2
e
mod n

C1.C2 = (m1m2)
e
 mod n

Example: The application of RSA multiplicative

Homomorphic encryption on two messages m1 and

m2.

Let, for p = 3, q = 5, e = 9 and d = 1 with

block size = 1

Two messages m1 and m2 and their ciphers C1 and

C2 respectively, obtained using the RSA encryption.

m1 = 539625

C1 = 00 05 00 03 00 09 00 06 00 02 00 05

m2 = 216491

C2 = 00 02 00 05 00 06 00 04 00 09 00 01

The ciphers are converted into binary

system, table 2 and 3 represents the conversion of

cipher blocks into Binary System.

The binary multiplication of the ciphers block by

block is represented in table 4.

3233

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121255

If we decrypt the cipher C1 × C2 with the private key,

we get:

C1C2 = 00 10 00 03 00 04 00 05 00 04 00

02 00 04 00 01 00 08 00 05

m1m2 = 10 0 3 5 4 2 4 1 8 5

Table 2: The blocks of C1 in binary system

Blocks of C1 Binary No.

00 05 00 0101

00 03 00 1001

00 09 00 1001

00 06 00 0110

00 02 00 0010

00 05 00 0101

Table 3: The blocks of C2 in binary system

We are multiplying m1× m2 block by block.

m1 = 5 3 9 6 2 5

m2 = 2 1 6 4 9 1

m1 m2 = 10 3 54 24 18 5

 The resultant value is exactly the same raw

message obtained by multiplying m1× m2.

Table 4: Binary multiplication of ciphers
block

00 0101×00 0010 = 00 1010 00 10

00 1000×00 0011 = 00 11000 00 24

00 1001×00 0110 = 00 110110 00 54

00 0110×00 0100 = 00 11000 00 24

00 0010×00 1001 = 00 10010 00 18

00 0101×00 0001 = 00 0101 00 05

6. System Architecture
 Log Generators are machines which

generates Logs. An Organization may contain n

number of systems, each system generates logs. On

the whole, these systems are termed as Log

Generators. The logs generated by the Log

Generators are collected in the centralized area called

Logging Client.

An Organization may need a third party for

temporary storage of data (Eg. Cloud is also a third

party model which provides many services to their

clients), Auditing etc.

Initially, the raw log data are collected by

the Logging Client. Then, the logs are encrypted by

the logging client using partial homomorphic

encryption algorithm before outsourcing it to the

third party.

Figure 1: System Architecture for Proposed

System

7. Performance Evaluation
For evaluating the performance of the

proposed system, two criteria have been chosen,

•Effect of encryption of log records over Overall

Performance.

•Effect of Tor Network over Performance.
To calculate the Time Overhead, two log preparation

settings have been prepared.

Table 5: Effect of encryption of log records
over Overall Performance

Log Settings Time(

sec)

Security of

Logs

Without

Encryption

 53 No

security

With Encryption 79 Secured

Blocks of C2 Binary No.

00 02 00 0010

00 01 00 0001

00 06 00 0110

00 04 00 0100

00 09 00 1001

00 01 00 0001

Log Generators

Logging Client
Log Generators

Log Generators

Third Party

(Eg.for storage,

auditing etc.

logs

logs

logs

Tor N/W

Partial

Homomorphic

Algorithm

3234

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121255

Table 4: Effect of Tor Network over
Performance

Log Settings Time

using

Tor(sec)

Time

without

Tor

Without

Encryption

 53 49

With Encryption 79 83

*The time overhead may differ according to the size

of the log data, system configuration and network

bandwidth.

8. Conclusion
This paper has described a novel and

innovative framework called Partial Homomorphic

Algorithm. We have proposed an effective

mechanism for secure logging .It provides

confidentiality, intergrity and privacy of log data. The

aim of homomorphic encryption is to ensure privacy

of data in communication and storage processes such

as the ability to delegate computations to untrusted

parties which fulfils the both the secure logging and

secure auditing needs.

9. References

[1] Indrajit Ray, Kirill Belyaev, Mikhail Strizhov,

Dieudonne Mulamba and Mariappan Rajaram,”

Secure Logging As a Service—Delegating Log

Management to the Cloud”, IEEE Systems

Journal, vol. 7,no. 2,pp. 323-334, 2013.

[2] Karthik Nagaraj, Charles Killian and Jennifer

Neville,” Structured Comparative Analysis of

Systems Logs to Diagnose Performance

Problems”, 9th USENIX Symposium on

Networked Systems Design and Implementation,

pp. 26-29, 2012.

[3] Mayank Saxena ,Nikhil Kumar Singh ,Satyendra

Singh Thakur and Parmalik kumar,” A Review

of Computer forensic & Logging System”,

International Journal of Advanced Research in

Computer Science and Software Engineering,

vol. 2, no. 1, pp. 1- 6, 2012.

[4] R Accorsi,” Towards a secure logging

mechanism for dynamic systems”, Proceedings

in the 7th IT Security Symposium, pp. 1-7, 2005.

[5] Arasteh, Ali Reza, et al. "Analyzing multiple logs

for forensic evidence" International Journal of

Digital Forensics & Incident Response on digital

investigation, vol. 4, pp 82-91, 2007.

[6] Mayol Arnao Reinaldo, Nunez Luis A and Lobo

Antonio, “An Approach to Log Management:

Prototyping a Design of agent for Log

Management “, International Journal on

Networking and Internet Architecture ,vol. 1112,

no. 795, pp. 1- 9, 2011.

[7] Tor Project, Inc. (2011, Sep.) Tor: Anonymity

Online.

[8] Abad C, Taylor J, Sengul C, Yurcik W,

Yuanyuan Zhou and Rowe K, "Log correlation

for intrusion detection: a proof of concept," 19th

Annual Computer Conference on Security

Application., vol. 8, no. 12, pp.255, 264, 2003.

3235

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121255

