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Abstract—The notion of a Semigraph is a new concept
introduced by E. Sampathkumar, generalizing the concept of a
graph. The edges of semigraph contain atleast two vertices and
are classified as full edge, subedge and partial edge. In this
paper partial edge incidence matrix of semigraph over GF(2?) is
defined. Also the ranks of two types of semigraphs are obtained.
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. INTRODUCTION

A matrix is often an eloguent and efficient way of
representing a graph for analysis. There is a relationship
between many graph-theoretical properties and matrix
properties, which makes the problem easier to visualize and
solve. The authors [2], [4] have studied properties of
semigraph matrices. The author [2] defines the incidence
matrix and consecutive adjacent matrix of semigraph, but
these matrices alone cannot represent semigraph uniquely. As
specialty of semigraphs lie in the varieties of definitions and
concepts, in this paJoer partial edge incidence matrix of
semigraph over GF(2°) is defined, which represent semigraph
uniquely. The results of incidence matrix of graph G [3] are
generalized in this paper.

Il.  PRELIMINARIES

Definition 2.1 [2]: Semigraph

A semigraph G is an ordered pair (V, X) where V is a non-
empty set, whose elements are called vertices of G and a set X
is a set of n—tuples, called edges of G, of distinct vertices, for
various n > 2, with the following conditions :

SG1: Any two edges have at most one vertex in common.

SG2: Two edges (uqy, uy, . .
VUn)

) un) and (vll Uy vy

are equal if and only if
i) m=n and
ii) either u;=v;or uj=vy fori=1,2,3, ..., n.

Thus the edge (uy, uy, ..
edge (u,, Up—q, - - , Up)

Let G = (V, X) be semigraph and E = (vy, vy, ...,
Vn_1, Vy) Is an edge of G. Then the vertices v, and v, are
called the end vertices of E, represented by thick dots, the
vertices v, , . . ., Vo1 are called the middle vertices or m—

, U,) is the same as the
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vertices of E , represented by small hollow circles. A vertex v
in G which appears as end vertex of one edge and middle
vertex of the other edge is known as the middle—cum-end
vertex or ((m,e)) vertex, represented by a small tangent to the
hollow circle of middle vertex.

Example 2.2:

Let G = (V, X ) be a semigraph (Figure 1) , where
vV={1,23,4,56,7,8}and X={(1,2),(2,3,4,5),(5,6
), (2,7,6),(1,7),(57)}InG, 1, 2,5, 6 are end vertices, 3
and 4 are middle vertices , 7 is middle-cum-end vertex and
8 is isolated vertex.

8
1 o 6
.

)

2 O O
3 4 5

Fig.1 Semigraph G

In a semigraph, two edges are adjacent if they have a
vertex in common. Any two vertices in semigraph are
adjacent if they belong to the same edge. In addition if they
are consecutive in order then are called as consecutive
adjacent vertices.

Definition 2.3 [2]: Subedge

A subedge of an edge E = (vy,v,,.. .v,) is a k-tuple
E =(vy,vy,, -..v;)Wherel< i< ip<-- <iy <n or
1 <i<ip,<--<iz<n
Definition 2.4 [2]: Partial Edge

A partial edge of E=(v,vy ...v) s a
(j—i+1)—tuple E (vi,vj) = (i, Visy, . .., Vj), Where 1<i <
n.
Definition 2.5 [2]: fs—edge and fp—edge

fs—edge is an edge which is either a full edge or a subedge
and fp—edge is an edge which is either a full edge or a partial
edge.

Definition 2.6 [5]: Consecutive subedges and consecutive
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partial edges

LetE = (v, v, ... .1 ) beanedge of a semigraph G.
Two subedges S=(v i, Vijyo Vi, where
1< j1< jz < . <jnand Sk—(l?lk, iy ""vikm)

where 1 <k; < . < kn < nof E are said to be consecutive
subedges if Vi, = Vi, -

Two partial edges Pj = (v; vy ....vijl) and
P = ( Vig o Viyaqr - - - '”ikm) of E are said to be

consecutive partial edges if Vi, = Vg,

Anedge E = (v .v;, ) has n - 1 partial edges

i Vigr + + -
of cardlnallty two namely P, = (vll,vlz) s Pa= (v, vy,
; Poa = (v;,_,,v;,) such that P; and Py, are consecutive

n-2.

The partial edge P, = ( v;,,v;,) is e — partial edge if both
v;, and v, are end vertices and forms an edge. It is mm —
partial edge if both v; and v;, are middle vertices and me —
partial edge if one vertex is middle and other is end.

partial edgesfori=1,2, . . .,

Definition 2.7 [2]: Dendroid

A dendroid is a connected semigraph without strong
cycles. (all edges of strong cycle are fp — edges).

Dzefinition 2.8 [6] [7] [8]: Galois Field of prime power GF(
2°)

Galois Field of prime power GF(2?) is the field of
polynomlals of degree less than 2 over GF(2)
modulo (a? + a +1) contains four elements { 0,1, 0, a*=a+1
} where « is a root of the polynomial x* + x + 1 ( with
coefficients in GF(2) ). The addition and multiplication
operation on GF(2?) are as shown in the Table 1.

+ 10 1] a]d x| 0]|1]a|a

001 ]a]lcd olojofo0]oO

1 1 0 || o 1 0 1| ald

o |a |01 o |01

o [ | «a 1 0 |01 ]«
TABLE 1

Il.  MAINRESULTS

Now we define the partial
representation of semigraph.

edge incidence matrix

Definition 3.1: Partial Edge Incidence Matrix of a Semigraph

The partial edge incidence matrix B of a semigraph G is a
matrix of order nxm, where n is humber of vertices and m is
number of consecutive partial edges P; of cardinality 2 of
semigraph G, is defined as

bj =1, ife— partial edge or me — partial edge  is
incident on end vertex v;

=0, if me— partial edge B is incident on middle
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vertex v

=« if mm — partial edge P, is incident on middle
vertex v

=0, otherwise

The above definition is illustrated in example 3.2

Example 3.2:

Fig. 2 Semigraph G

For the semigraph G (Figure 2), the partial edge incidence
matrix B(G) is

1 0 0 0 0 0 o 1 11

a« a 0 O 0 0 o 0 O

0 1 1 02 0 0 p 0 0

do 0o «a a2 0 0 0 0 o
BECH 0o 0 0 & @ 00 0 1
0 0 0 0 a2 a0 0 0

0 0 0 0 0 o*® a 0 O

Lo 0 0 0o 0o o1 1 ol

Observations 3.3:
In case of partial edge incidence matrix,
1) The matrix is of order n x m.

2) Each column corresponds to a consecutive partial
edge of cardinality 2 and therefore each column has
two non-zero entries as 1 and 1 or «” and o or 1 and
.

3) The row sums for e—partial edge, mm- partlal edge and
me—partial edge respective are 0, 0 and o with respect
to addition defined on GF(2?) .

4) deg(v;) = Number of edges havmg v; as an end vertex
= Number of 1’s in R; , the i" row .

5) dege(vj)) = Number of edges contalnlng Vi
= { No. of 1’s + »(Number of o’s and ¢*’s) } inR;

6) dege(vi) = Number of vertices
consecutively adjacent to v;
0(2 'S in Ri

which are
= Number of 1’s, a’s and
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7) The row corresponding to end vertex contain all non—
zero entries as 1.

8) The row corresponding to middle vertex contains
entries « or o or both.

9) The row corresponding to middle-cum—end ((m, €))
vertex contains atleast one entry 1 and even number of
other non-zero entries.

10) Semigraph can be redrawn using observations 1 to 9.

11) A row with all 0’s, therefore, represents an isolated
vertex.

12) If a semigraph G is disconnected and consists of two
components G; and G,, then the partial edge incidence
matrix B(G) of semigraph G can be written in a block-
diagonal form as

B(G1) - 0

0 - B(Gy)
The following theorems characterize the partial edge
incidence matrix of a semigraph.

Theorem 3.4:

If G is a semigraph with n vertices and not containing
middle—cum-end vertices then the rank of partial edge
incidence matrix B(G) is n—1.

Proof: Let B(G) be the incidence matrix of a semigraph G,
not containing the middle—cum—end vertex. Then each row of
the incidence matrix B(G) may be regarded as a vector over
GF(2%). Let the vector in the first row be called B;, in the
second row B,, and so on. Thus

B

5, ]

In this case, each column of B consists of exactly two
non-zero entries 1 and « or « and a? or o and . Clearly the
linear combination ax(sum of the rows B;’s corresponding to
end vertices) + (sum of the rows B;’s corresponding to middle
vertices) or {(sum of the rows B;’s corresponding to end
vertices) + o“x(sum of the rows B;’s corresponding to middle
vertices)} is zero with respect to GF(2?).

B(G) =

Thus the vectors By, By, . . .
independent.

,Bn are not linearly

Therefore, the rank of B is less than n;
that is rank B(G) <n-1

Now consider the sum of any | of these n vectors
(I < n—1). If the semigraph is connected, B(G) cannot be
partitioned, such that B(G;) is with | rows and B(G,) with n —
I rows . In other words, no submatrix of B(G) can be found ,
for / <n — 1, such that linear combination of those I rows is
equal to zero. Therefore rank B(G) >n — 1.

Hence the rank of B(G) = n —1.
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Theorem 3.5:
If G is a dendroid with n vertices then the rank of partial
edge incidence matrix B(G) is n— 1.

Proof: Let B(G) be represented as in Theorem 3.4

Now to prove, the rank of B(G) <n — 1, we show that row
vectors By, By, . . ., B,of B(G) are linearly dependent.

For this, consider linear combination, b;B; + b,B, + b3B;
+....+byB, for0#b, eGF(2?%, foralli=1,2,3,. .n.
Now the b;s are selected in the following ways.

Let E, be any edge in dendroid G. The scalars b; s for B; s,
corresponding to end vertices and middle vertex (vertices) of
E, are chosen in one of the 3 ways as shown in the Table 2.

Scalar Multiplier by | SCalar Multiplier b;

. . of B; , corresponding
Choice | of B;, corresponding .
. to middle vertex
to end vertices .
(vertices)

1 1 o
2 o 1
3 o’

TABLE 2

If E, is the only edge in G then by using these
selected b;s for B;s and Table 1, we see that

blBl+szz+bng+... . +ann:O-
Therefore, B;s are linearly dependent.
Hence, the rank of B(G) <n-1.

If E, is not the only edge of G, suppose E; is another
edge adjacent to E,, then the selection of scalars b; s for rows
B; s corresponding to the vertices of E; depend on common
vertex of E, , Es and previously selected b; s for rows B; s
corresponding to the vertices of E,.

For the common vertex of E, and Eg, one of the following
cases occurs.

1) If the common vertex is middle vertex of both the edges
E, and E, then pattern of scalar multipliers b; ’s for B;’s
corresponding to vertices of Eg is same as selection for b; ’s
for By’s corresponding to vertices of E, .

2) If the common vertex is end vertex of both the edges E;
and Eg then pattern of scalar multipliers b; ’s for Bj’s
corresponding to vertices of Eg is same as selection for b; ’s
for B;’s corresponding to vertices of E;.

middle vertex of
E;is

f b of B Then we select b; | and b; of B; ,
corresl ondin 'to’ of B; , | corresponding to
P g corresponding to | middle  vertex

end vertices of
E; as

(vertices) of Eg
as

2
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1 1 o
o 1
7 7
o o
TABLE 3
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3) If the common vertex is middle vertex of E, and end
vertex of Es and if B; corresponding to middle vertex of E, is
multiplied by b; then the pattern of b; s for B; s corresponding
to vertices of Es is as shown in Table 3.

4) If the common vertex is end vertex of E, and middle
vertex of E; and if B; corresponding to end vertex of E, is
multiplied by b; then the pattern of b; s for B; s
corresponding to vertices of E; is as shown in Table 4.

Then we select b; | and b; of B; ,
of B; , | corresponding to
corresponding to | end vertex
middle vertices | (vertices) of E

If bi of B; ,
corresponding to
end vertex of E,

is
of Esas as
1 1 o’
1
0(2 0!2
TABLE 4

If E, and E; are the only two edges in dendroid G then for
these selected b; ’s for B;’s and using Table 1, we see that

blBl+szz+b3B3+... . +ann: 0.
Hence the rank of B(G) <n - 1.

If E; and E; are not the only edges of G, suppose E; be one
more edge then the above process can be repeated.

Suppose without loss of generality, if E; is adjacent to E, .
Then selection of b; s for B; s of E; depend on previously
selected by’s of B;’s for E,. Continuing this process for all
edges we see that
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Therefore B; s are linearly dependent.

Hence rank of B(G) <n — 1 in all possible cases.

As in Theorem 3.4, we can show that rank B(G) >n-1
Therefore, rank B(G) = n— 1.

Remark 3.6:

As every graph is a semigraph without middle vertices, by
the Theorem 3.4 its rank is n — 1, which is also proved by
theorem 7-2 [3] page 140. Therefore Theorem 3.4 generalizes
the graph theory result.
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b:B; + b,B, + bsBs + ... . +Db,B,= 0, for any number
of edges.
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