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Abstract—The notion of a Semigraph is a new concept 

introduced by E. Sampathkumar, generalizing the concept of a 

graph. The edges of semigraph contain atleast two vertices and 

are classified as full edge, subedge and partial edge. In this 

paper partial edge incidence matrix of semigraph over GF(22) is 

defined.  Also the ranks of two types of semigraphs are obtained.  
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I.  INTRODUCTION  

A matrix is often an eloquent and efficient way of 
representing a graph for analysis. There is a relationship 
between many graph-theoretical properties and matrix 
properties, which makes the problem easier to visualize and 
solve. The authors [2], [4] have studied properties of 
semigraph matrices. The author [2] defines the incidence 
matrix and consecutive adjacent matrix of semigraph, but 
these matrices alone cannot represent semigraph uniquely. As 
specialty of semigraphs lie in the varieties of definitions and 
concepts, in this paper partial edge incidence matrix of 
semigraph over GF(2

2
) is defined, which represent semigraph 

uniquely. The results of incidence matrix of graph G [3] are 
generalized in this paper. 

 

II. PRELIMINARIES  

Definition 2.1 [2]: Semigraph  

A semigraph G is an ordered pair (V, X) where V is a non-
empty set, whose elements are called vertices of G and a set X 
is a set of n–tuples, called edges of G, of distinct vertices, for 
various n ≥ 2, with the following conditions :  

SG1: Any two edges have at most one vertex in common.  

SG2: Two edges   𝑢1, 𝑢2,   .  .    , 𝑢𝑛  and   𝑣1 , 𝑣2,   .  ..  ,
𝑣𝑚     

          are equal if and only if 

i) m = n  and 

ii) either  ui = vi  or  ui = vn-i+1  for i = 1, 2, 3,  . . ., n. 

Thus the edge   𝑢1, 𝑢2,   .  .    , 𝑢𝑛  is the same as the 
edge   𝑢𝑛 , 𝑢𝑛−1,   .  .    , 𝑢1  

 Let G = (V, X) be semigraph and 𝐸 =    𝑣1, 𝑣2 ,   .  .  .  ,
𝑣𝑛−1, 𝑣𝑛  is an edge of G. Then the vertices v1 and vn are 

called the end vertices of E, represented by thick dots, the 
vertices v2 , . . . , vn-1 are called the middle vertices or m–

vertices of E , represented by small hollow circles. A vertex v 
in G which appears as end vertex of one edge and middle 
vertex of the other edge is known as the middle–cum–end 
vertex or ((m,e)) vertex, represented by a small tangent to the 
hollow circle of middle vertex. 

Example 2.2:  

Let G = ( V, X ) be a semigraph (Figure 1) , where              
V = {1, 2, 3, 4, 5, 6, 7, 8 } and X = { (1, 2), ( 2, 3, 4, 5 ), ( 5, 6 
), ( 2, 7, 6 ), ( 1, 7 ), ( 5, 7 ) } In G, 1, 2, 5, 6 are end vertices, 3 
and 4 are middle vertices , 7 is middle–cum–end vertex and     
8 is isolated vertex. 

 

 

 

 

 

 

 

Fig.1 Semigraph G 

In a semigraph, two edges are adjacent if they have a 
vertex in common. Any two vertices in semigraph are 
adjacent if they belong to the same edge. In addition if they 
are consecutive in order then are called as consecutive 
adjacent vertices. 

 Definition 2.3 [2]: Subedge  

A subedge of an edge 𝐸 =  𝑣1 , 𝑣2 , .  .  . 𝑣𝑛  is a k–tuple  

𝐸′ = ( 𝑣𝑖1
, 𝑣𝑖2

,   .  .  . 𝑣𝑖𝑘
) where 1 ≤  i1 <  i2 < · ·  < ik  ≤  n    or 

1  ≤  ik <  ik−1  < · ·  < i1 ≤  n.  

Definition 2.4 [2]: Partial Edge 

A  partial   edge  of    𝐸 =  𝑣1 , 𝑣2 ,   .  .  . 𝑣𝑛    is  a                
( j− i +1 )–tuple   𝐸′ (vi , vj) = (vi , vi+1, . . . , vj ), where 1≤ i ≤  
n. 

Definition 2.5 [2]: fs–edge and fp–edge  

fs–edge is an edge which is either a full edge or a subedge 
and fp–edge is an edge which is either a full edge or a partial 
edge. 

 Definition 2.6 [5]: Consecutive subedges and consecutive   
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partial edges  

 Let E = (𝑣𝑖1
, 𝑣𝑖2

,   .  .  .  . 𝑣𝑖𝑛 ) be an edge of a semigraph G.  

Two  subedges    Sj = ( 𝑣𝑖𝑗1
, 𝑣𝑖𝑗2

,   .  .  .  . 𝑣𝑖𝑗 𝑙
)    where                

1  ≤   j1 <  j2  < .  .  .  < jn and Sk = ( 𝑣𝑖𝑘1
, 𝑣𝑖𝑘2

,   .  .  .  . 𝑣𝑖𝑘𝑚
) 

where 1 < k1 <  .  .  .  <  km  ≤  n of E are said to be consecutive 
subedges if  𝑣𝑖𝑗 𝑙

= 𝑣𝑖𝑘1
 . 

Two partial edges Pj = (𝑣𝑖𝑗1
, 𝑣𝑖𝑗1+1

,   .  .  .  . 𝑣𝑖𝑗 𝑙
) and          

Pk = ( 𝑣𝑖𝑘1
, 𝑣𝑖𝑘1+1

,   .  .  .  . 𝑣𝑖𝑘𝑚
) of E are said to be 

consecutive partial edges if 𝑣𝑖𝑗 𝑙
=  𝑣𝑖𝑘1

. 

An edge E = ( 𝑣𝑖1
, 𝑣𝑖2

,   .  .  .  . 𝑣𝑖𝑛 ) has n - 1 partial edges 

of cardinality two namely P1 = ( 𝑣𝑖1
, 𝑣𝑖2

) ; P2 = ( 𝑣𝑖2
, 𝑣𝑖3

) .  .  .  

; Pn-1 = ( 𝑣𝑖𝑛−1
, 𝑣𝑖𝑛 ) such that Pi and Pi+1 are consecutive 

partial edges for i = 1, 2,  .  .  . , n – 2 . 

 The partial edge P1 = ( 𝑣𝑖1
, 𝑣𝑖2

) is e – partial edge if both 

𝑣𝑖1
 and  𝑣𝑖2

 are end vertices and forms an edge. It is mm – 

partial edge if both 𝑣𝑖1
 and  𝑣𝑖2

 are middle vertices and me – 

partial edge if one vertex is middle and other is end. 

Definition 2.7 [2]: Dendroid 

 A dendroid is a connected semigraph without strong 
cycles. (all edges of strong cycle are fp – edges). 

Definition 2.8 [6] [7] [8]: Galois Field of prime power GF( 
2

2
) 

Galois Field of prime power GF(2
2
) is the field of 

polynomials of degree less than 2 over GF(2)                   
modulo (α

2
 + α +1) contains four elements { 0, 1, α, α

2
= α+1 

} where α is a root of the polynomial  x
2
 + x + 1 ( with 

coefficients in GF(2) ). The addition and multiplication 
operation on GF(2

2
) are as shown in the Table 1. 

+ 0 1 α α
2
  × 0 1 α α

2
 

0 0 1 α α
2
  0 0 0 0 0 

1 1 0 α
2
 α  1 0 1 α α

2
 

α α α
2
 0 1  α 0 α α

2
 1 

α
2
 α

2
 α 1 0  α

2
 0 α

2
 1 α 

TABLE 1 

III. MAIN RESULTS 

Now we define the partial edge incidence matrix 
representation of semigraph.  

Definition 3.1: Partial Edge Incidence Matrix of a Semigraph 

The partial edge incidence matrix B of a semigraph G is a 
matrix of order   n×m, where n is number of vertices and m is 
number of consecutive partial edges 𝑃𝑖  of cardinality 2 of 
semigraph G, is defined as 

bij    = 1, if e – partial edge or me – partial edge 𝑃𝑗  is    

  incident on end vertex vi 

    = α,    if me – partial edge 𝑃𝑗  is incident on middle  

              vertex vi 

        = α
2
,   if mm – partial edge 𝑃𝑗  is incident on middle  

                 vertex vi 

        = 0,    otherwise  

The above definition is illustrated in example 3.2 
 

Example 3.2:  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Semigraph G 

For the semigraph G (Figure 2), the partial edge incidence 
matrix B(G) is  

B(G )=

 
 
 
 
 
 
 
 

  

1
α
 0
 0
 0
 0
 0
 0

    

  0
α
  1
  0
  0
  0
  0
  0

   

   0
   0
   1
  α
   0
   0
   0
   0

     

0
0
0

 α2

α2

0
0
0

     

0
0
0
0
α2

α2

0
0

    

0
0
0
0
0
α2

α2

0

 

   0
   0
   0
   0
   0
   0
   α
   1

    

   1
   0
   0
   0
   0
   0
   0
  1

    

   1
   0
   0
   0
   1
   0
   0
   0

   

 
 
 
 
 
 
 
 

 

Observations 3.3:  

In case of partial edge incidence matrix, 

1) The matrix is of order n × m. 

2) Each column corresponds to a consecutive partial 
edge of cardinality 2 and therefore each column has 
two non-zero entries as 1 and 1 or α

2
 and α

2
 or 1 and 

α. 

3) The row sums for e–partial edge, mm–partial edge and 
me–partial edge respective are 0, 0 and α

2
 with respect 

to addition defined on GF(2
2
) .  

4) deg(vi) = Number of edges having vi as an end vertex    
= Number of 1’s in Ri , the i

th
 row . 

5) dege(vi) = Number of edges containing vi                                     
= { No. of 1’s + ½(Number of α’s and α

2
’s) }  in Ri 

6) degca(vi) = Number of vertices which are  
consecutively adjacent to vi = Number of 1’s , α’s and 
α

2
’s  in Ri 
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7) The row corresponding to end vertex contain all non–
zero entries as 1. 

8) The row corresponding to middle vertex contains 
entries α or α

2 
or both. 

9) The row corresponding to middle–cum–end ((m, e)) 
vertex contains atleast one entry 1 and even number of 
other non-zero entries. 

10) Semigraph can be redrawn using observations 1 to 9. 

11) A row with all 0’s, therefore, represents an isolated  
vertex. 

12)  If a semigraph G is disconnected and consists of two 
components G1 and G2, then the partial edge incidence 
matrix B(G) of semigraph G can be written in a block-
diagonal form as 

B(G) =  
𝐵(𝐺1)

.
0

.

.

.

0
.

𝐵(𝐺2)
  

The following theorems characterize the partial edge 
incidence matrix of a semigraph. 

Theorem 3.4:  
  If G is a semigraph with n vertices and not containing 
middle–cum–end vertices  then the  rank of partial edge 
incidence matrix B(G) is  n – 1. 

Proof: Let B(G) be the incidence matrix of a semigraph G, 
not containing the middle–cum–end vertex. Then each row of 
the incidence matrix B(G) may be regarded as a vector over 
GF(2

2
). Let the vector in the first row be called B1, in the 

second row B2, and so on. Thus 

B(G) = 

 
 
 
 
 
𝐵1

𝐵2

..

.
𝐵𝑛  

 
 
 
 

 

In this case, each column of B consists of exactly two 
non-zero entries 1 and α or α and α

2 
or α

2 
and α

2
. Clearly the 

linear combination α×(sum of the rows Bi’s corresponding to 
end vertices) + (sum of the rows Bi’s corresponding to middle 
vertices) or {(sum of the rows Bi’s  corresponding to end 
vertices) + α

2
×(sum of the rows Bi’s corresponding to middle 

vertices)} is zero with respect to GF(2
2
). 

Thus the vectors B1, B2, . . . ,Bn are not linearly 
independent. 

Therefore, the rank of B is less than n;  

that is rank B(G) ≤ n – 1 

Now consider the sum of any l of these n vectors                
( l  ≤  n – 1 ). If the semigraph is connected, B(G) cannot be 
partitioned, such that B(G1) is with l rows and B(G2) with n – 
l rows . In other words, no submatrix of B(G) can be found , 
for l ≤ n – 1, such that linear combination of those l rows is 
equal to zero. Therefore rank B(G) ≥ n – 1. 

 Hence the rank of B(G) = n – 1. 

Theorem 3.5:  
 If G is a dendroid with n vertices then the rank of partial 
edge incidence matrix B(G) is  n – 1. 

Proof: Let B(G) be represented as in Theorem 3.4  

Now to prove, the rank of B(G) ≤ n – 1 , we show that row 
vectors B1, B2, . . . , Bn of B(G) are linearly dependent.  

For this, consider linear combination, b1B1 + b2B2 + b3B3 
+ . . . . + bnBn  for 0 ≠ bi ∈ GF(2

2
), for all i = 1, 2, 3, .  . n. 

Now the bi s are selected in the following ways. 

 Let Er be any edge in dendroid G. The scalars bi s for Bi s, 
corresponding to end vertices and middle vertex (vertices) of 
Er are chosen in one of the 3 ways as shown in the Table 2. 

Choice 

Scalar Multiplier bi 

of Bi , corresponding 

to end vertices 

Scalar Multiplier bi 

of Bi  , corresponding 

to middle vertex 

(vertices) 

1 1 α
2
 

2 α 1 

3 α
2
 α 

 
TABLE 2 

        If Er  is the only edge in G then by using these 
selected   bi s for Bi s and Table 1, we see that   

b1B1 + b2B2 + b3B3 + . . .  .  + bnBn = 0 . 

        Therefore, Bi s are linearly dependent. 

        Hence, the rank of B(G)  ≤ n – 1. 

        If Er  is not the only edge of G, suppose Es is another 
edge adjacent to Er , then the selection of scalars bi s for rows 
Bi s corresponding to the vertices of Es depend on common 
vertex of Er , Es and previously selected bi s for rows Bi s 
corresponding to the vertices of Er. 

For the common vertex of Er and Es, one of the following 
cases occurs.  

1) If the common vertex is middle vertex of both the edges 
Er and Es then pattern of scalar multipliers bi ’s for Bi’s 
corresponding to vertices of Es is same as selection for bi ’s 
for Bi’s corresponding to vertices of Er .  

2) If the common vertex is end vertex of both the edges Er 

and Es then pattern of scalar multipliers bi ’s for Bi’s 
corresponding to vertices of Es is same as selection for bi ’s 
for Bi’s corresponding to vertices of Er.  

If bi of Bi , 

corresponding to 

middle vertex of 

Er is 

Then we select bi 

of Bi , 

corresponding to 

end vertices of 

Es as 

and bi of Bi  , 

corresponding to 

middle vertex 

(vertices) of Es 
as 

1 1 α
2
 

α α 1 

α
2
 α

2
 α 

 
TABLE 3 
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3) If the common vertex is middle vertex of Er and end 
vertex of Es and if Bi corresponding to middle vertex of Er is 
multiplied by bi then the pattern of bi s for Bi s corresponding 
to vertices of Es is as shown in Table 3. 

4) If the common vertex is end vertex of Er and middle 
vertex of Es and if Bi corresponding to end vertex of Er is 
multiplied by bi then the pattern of bi  s  for Bi s 
corresponding to vertices of Es is as shown in Table 4. 

If bi of Bi , 

corresponding to 

end vertex of Er 
is  

Then we select bi 

of Bi , 

corresponding to 

middle vertices 

of Es as 

and bi of Bi  , 

corresponding to 

end vertex 

(vertices) of Es 
as 

1 1 α
2
 

α α 1 

α
2
 α

2
 α 

TABLE 4 

If Er and Es are the only two edges in dendroid G then for 
these selected bi ’s  for Bi’s  and using Table 1, we see that 

b1B1 + b2B2 + b3B3 + . . .  .  + bnBn =  0 . 

Hence the rank of B(G) ≤ n – 1. 

If Er and Es are not the only edges of G, suppose Et be one 
more edge then the above process can be repeated. 

Suppose without loss of generality, if Et is adjacent to Er . 
Then selection of bi s for Bi s of Et depend on previously 
selected bi’s of Bi’s for Er. Continuing this process for all 
edges we see that  

 b1B1 + b2B2 + b3B3 + . . .  .  + bnBn =  0 , for any number 
of edges. 

     Therefore Bi s are linearly dependent. 

Hence rank of B(G) ≤ n – 1 in all possible cases. 

As in Theorem 3.4, we can show that rank B(G)  ≥ n – 1 

Therefore, rank B(G) =  n – 1. 

 

Remark 3.6:  
As every graph is a semigraph without middle vertices, by 

the Theorem 3.4 its rank is n – 1, which is also proved by 
theorem 7-2 [3] page 140. Therefore Theorem 3.4 generalizes 
the graph theory result. 
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