Parametric studies on the cutouts in moderately loaded aircraft beams

PRIYA P
Department of Civil Engineering,
GSKSJTI
Bangalore, Karnataka State, India
priyagopi23@gmail.com

SUBRAMANYA K G
Department of Civil Engineering,
GSKSJTI
Bangalore, Karnataka, India
mail2subbu.kg@gmail.com

SUBRAMANYA SASTRY S S
AGM (Tech), Engineering
Vertical, Infotech Enterprises
Limited
Hyderabad, Karnataka, India
Subramanya.Sastry@Infotech-Enterprises.com
http://Infotech-Enterprises.com

Abstract: Cutouts or openings provided in the parts of the aircraft are grouped into two distinct groups. The first group is called the lightening cutouts, provided to reduce the weight of the components without compromising on the functionality and structural integrity of the component. The second group is called the functional cutouts, provided to serve the intended purpose of carrying the Environmental Control Systems, electrical wires etc. This class of cutouts not only maintains the functionality but also reinforce the affected area adequately for proper load transfer. In this paper, a systematic study of the various factors affecting the margin of safety of a typical beam with cutouts are presented. It is to be noted that the beams are assumed to be sufficiently stiff and stable so that the strength, stiffness and stability are accounted in the design. This paper concentrates the studies on the moderately loaded beams. Two Aluminum alloys 7075-T6 and 2024-T4 are selected for the studies.

Keywords: Moderately loaded beams, Cutout, Margin of Safety, Lightening holes

I. INTRODUCTION

The aircraft structure needs to be designed accommodating many cutouts of variable sizes. These cutouts are required to provide access to control rods / cables, hydraulic lines, electrical lines etc.

The beams are classified into three classes namely, lightly loaded, medium load and heavily loaded beams. The definitions are as follows.

Lightly loaded beams

These beams are able to carry loads in their virgin form like I, ELL, TEE beams with 45° flange or dough nut doubler stiffeners around the cutouts.

These cutouts are small to medium in size and their stress concentration effect is localized. The stresses in the immediate vicinity of the cutouts will be appreciably changed. Stresses in the far off region (beyond 2.5D, D is the diameter of the cutout) are less affected. This class of cutouts is reinforced with a doughnut doubler, forming a lip around the cutout [1]. Lightly loaded beams are also called very shallow beams. They mainly carry loads by the tension field created by the applied load. They are classified into two types as shown in Fig. 1 and Fig. 2 [2, 3].

Fig.1: Cutout in the lightly loaded beams – Type 1

Fig.2: Cutout in the lightly loaded beams – Type 2

Moderately Loaded beams

This is the second class of beams where the beam carrying shear characterized by a flanged hole with web stiffeners between the flanged holes. In this
paper a detailed study of moderately loaded beam is presented (Fig. 3). The other two classes of beams are described for the sake of completeness only.

![Fig. 3: Cutout in moderately loaded beams](image)

Heavily Loaded beams

The large holes in the beams are generally not recommended, but if unavoidable they must be carefully reinforced. To properly reinforce holes in heavily loaded beams, the beam has to be framed. The increase in weight due to framing can be as high as 50% as the same beam without holes. Framing means providing flanged holes reinforced by vertical and horizontal stiffeners (Fig. 4, [2]).

![Fig. 4: Cutout in heavily loaded beams](image)

The description of the problem and various parameters used in the mathematical modeling of the medium loaded beams are presented in the next section.

II. ANALYTICAL MODELING

The beam considered for the study at present is described below.

- **Type of the beam:** Simply supported beam
- **Length of the beam:** 39.37 inch (1 m)
- **Shear flow in the web:** 570 lb/in (99843.88 N/m)
- **Height of the web:** 12 in (0.3048 m)

A list of parameters used in this study is provided below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fs</td>
<td>Ultimate allowable gross shear stress</td>
</tr>
<tr>
<td>f_s</td>
<td>Shear stress</td>
</tr>
<tr>
<td>F0</td>
<td>Ultimate allowable web stress of beam without holes</td>
</tr>
<tr>
<td>K_2</td>
<td>Correction factor for aluminum alloy webs with stiffeners and flanged lightening holes</td>
</tr>
<tr>
<td>q</td>
<td>Shear flow</td>
</tr>
<tr>
<td>t</td>
<td>Thickness of web</td>
</tr>
<tr>
<td>MS</td>
<td>Margin of safety</td>
</tr>
<tr>
<td>n_h</td>
<td>No of holes</td>
</tr>
<tr>
<td>n_s</td>
<td>No of stiffeners</td>
</tr>
<tr>
<td>L, b_s, h</td>
<td>Length of beam, Spacing between stiffeners, Depth of beam</td>
</tr>
<tr>
<td>D</td>
<td>Diameter of cutout</td>
</tr>
<tr>
<td>V(single), V(Tstiff), V(spar), V(uncut), V(remain), V(reduct)</td>
<td>Area of single stiffener, Total stiffener volume, Volume of beam, Volume of uncut sheet, Volume removed, Volume reduction</td>
</tr>
</tbody>
</table>

A typical drawing of the cutouts under study is shown in Fig. 5.

![Fig. 5: Pictorial view of a problem under study](image)

III. Loads and Boundary Conditions

The beam under study is assumed to be a simply supported beam. This beam represents typical beams like

- Flap beams
- Control surface beams
- Ribs and formers
- Floor supports beams
The loading on the beam is assumed in the form of a shear flow (numerical value is given under Section 2). This shear flow is a typical characteristic of a class of beams called shear beams. Shear beams are short beams which fail primarily by shear than bending.

IV. MATERIALS

The beam under study is assumed to be made of two different materials.

1. Aluminium alloy 7075-T6
2. Aluminium alloy 2024-T4

V. ANALYSIS

The steps of the analysis are summarized below

1. The shear flow (q) and height (h) of the web are noted.
2. The design process starts by considering a value of (D/b_s) from the working range.
3. By using the relationship between D, b_s, h obtain the value of spacing between the stiffeners (b_s) i.e.,
 \[b_s = \frac{(0.1 \times h)}{(0.85 - (d/b_s)} \]
4. Consider a value for web thickness from the working range and calculate the \((b_s/t) \) value.
5. By using the \((b_s/t) \) value, obtain the value for ultimate allowable web stress of a beam without holes \((F_o) \) from the graph as shown in Fig. 6.
6. Calculate the diameter of hole (D) value by using the \((D/b_s) \) and \(b_s \) values which were obtained earlier.
7. Calculate the \((D/h) \) value for a given h value of 12in.
8. By using the value of \((b_s/t) \) and \((D/h) \), obtain the \(K_2 \) value from the graph shown in Fig. 7.
9. Calculate the ultimate allowable gross shear stress value \((F_s) \) by using the formula,
 \[F_s = K_2 \times F_o \]
10. Calculate the value of shear stress \((f_s) \) in the web by using the formula,
 \[f_s = q/t \]
11. Calculate the margin of safety by using the relation
 \[M.S = \frac{(F_s/f_s)}{-1} \]

The analysis is carried out for the following limiting conditions.

1. Ratio of height of web to the thickness of web \(115 < (h/t) < 1500 \)
2. Ratio of spacing between the stiffeners to the height of web \(0.235 < (b_s/h) < 1 \)
3. Ratio between the diameter of hole to the height of web \(0.1 < (d/h) < 0.75 \)
4. Diameter of hole \(1.2 < D < 9 \) in

VI. RESULTS AND DISCUSSIONS

The results are presented in the form of graphs and tables. Table 1 and 2 show the margin of safety obtained for the two Aluminium alloys under study. Figures 8 shows the variation of margin of safety with the variation of ratio \((b_s/t) \). Figures 9 shows the effect of correction factor \(K_2 \), on the ultimate allowable gross shear stress \(F_o \).

Figures 10 shows the variation of margin of safety with the ultimate allowable gross shear stress \(F_o \).

Table 1: Table showing the various parameters with margin of safety (2024-T4)

<table>
<thead>
<tr>
<th>q (lb/in)</th>
<th>L (in)</th>
<th>h/t</th>
<th>D/b_s</th>
<th>K_2</th>
<th>F_o</th>
<th>F_s = K_2 \times F_o</th>
<th>M.S</th>
</tr>
</thead>
<tbody>
<tr>
<td>570</td>
<td>39.37</td>
<td>210</td>
<td>4.2</td>
<td></td>
<td></td>
<td>2160</td>
<td>125</td>
</tr>
<tr>
<td>570</td>
<td>39.37</td>
<td>210</td>
<td>4.2</td>
<td></td>
<td></td>
<td>1310</td>
<td>12.86</td>
</tr>
<tr>
<td>570</td>
<td>39.37</td>
<td>210</td>
<td>4.2</td>
<td></td>
<td></td>
<td>740</td>
<td>8.49</td>
</tr>
<tr>
<td>570</td>
<td>39.37</td>
<td>210</td>
<td>4.2</td>
<td></td>
<td></td>
<td>400</td>
<td>2.55</td>
</tr>
</tbody>
</table>

Table 2: Table showing the various parameters with margin of safety (7075-T6)
The detailed study of results presented in Table 1 are presented below

1. The study is presented for a constant diameter of the cutout of 4.2 in (106.68 mm).
2. From Table 1 and 2, it is observed that as \(b_s/t \) increases correction factor \(K_2 \) increases. But, \(F_0 \) (ultimate allowable web stress without hole) decreases.
3. Product of \(K_2 \) and \(F_0 \) also reduces. This means that as the cutout size increases, the corrected ultimate allowable stress decreases.
4. The induced stress in the web remains constant. Hence margin of safety decreases because corrected ultimate allowable stress decreases.
5. As the \(b_s/t \) decreases, the stiffness of the beam increases because the number of stiffeners increases. This will also increase the weight of the beam.
6. It is observed that in general for short shear web applications, such as that under study, 7075-T6 gives higher margin safety as compared to 2024-T4.

VII. Conclusions

1. In moderately loaded (short shear) beams for aircraft applications, it is recommended to use 7075-T4 for moderately loaded beams.
2. Proposed procedure in literature gives acceptable results which show significant reduction in weight of the structure. Hence this procedure is adopted in the design of short beams in aircraft parts.

ACKNOWLEDGMENT

We sincerely thank and acknowledge the support and encouragement provided by Mr. M. Lakshmana Rao, VP, Engineering Vertical, Infotech Enterprises Limited, Hyderabad and Dr. M.B. Patil, Professor and Head, Department of Civil Engineering, GSKSJTI, Bangalore in bringing out this work in the form of a technical paper.

REFERENCES

