Parametric Analysis of Various Working Fluids for Solar Pond Electricity Generation

Piyush Jain¹¹ M.Tech in Production Engg., RIET, Jaipur, Rajasthan (India) Simple Agarwal² ²Assistant Professor, Mechanical department, Gurgaon Institute of Technology & Management, Bilaspur, Haryana (India) Hemant Bansal ³ ³ M.Tech in Production Engg., Poornima College, Jaipur, Rajasthan (India)

ABSTRACT-Solar-thermal power plants have enjoyed limited success in the energy market till date. The ability to better characterize the performance of existing solar-thermal technologies as well as investigate the potential of new technologies is a crucial step in developing more economically viable designs. Organic Rankine cycle is primarily used to generate power from low temperature applications. Organic Rankine cycle similar to conventional Rankine cycle the only change is that instead of water as working fluid, organics fluids like refrigerates and azeotropes are used. ORC proves to be a good option for a small and medium sized plant, generally of less than 10 KW

The objective of this report is to evaluate the various working fluids to extract the energy from a low grade and low temperature heat sources like solar power, geothermal and waste heat recovery. Organic Rankine cycles have unique properties that are well suited to solar power generation. The thermodynamic potential of a variety Organic Rankine cycle working fluids and configurations are analyzed. To check for appropriate working fluid various working fluids have been analyzed like R-236fa,R-236ea,R-245ca and toluene

The parametric study of various working fluids on excel sheet for turbine inlet pressure is being done along with it, efficiency calculation based on recuperation and no recuperation is being done and the graphs are plotted as the result of the study

INTRODUCTION

The global demand for energy continues to increase while traditional energy resources are becoming scarcer. Exacerbating the situation is growing realization that the use of traditional fuels carries a significant environmental burden. Adoption of environmentally benign and renewable energy conversion technologies is essential if our society is to retain its advanced lifestyle in the face of global development Economic opportunity drives the energy market just as it drives every market

Maximizing the economic opportunity associated with safe and renewable energy technologies is an essential step towards increasing their use. Taxes, penalties, incentives, public awareness and government mandates can all influence the economic opportunity associated with renewable energy technology. The principle focus of this thesis, however, is improving economic opportunity by providing tools for the evaluation and optimization of several specific renewable technologies: organic Rankine power cycles and thermal energy storage

Parabolic trough solar-thermal power generation is a proven technology. With several utility scale plants in operation for nearly 20 years. Current large-scale systems rely on traditional steam based Rankine cycles for power production. Organic Rankine cycle per plant are more compact and less costly than traditional steam cycle power plants and are able to better exploit lower temperature thermal resources. Utilizing organic Rankine cycles allows solar-thermal power generation to become a more modular versatile means of supplanting traditional fuels. While they have great potential, organic Rankine cycles have received relatively little attention

ORGANIC RANKINE CYCLE

Organic Rankine cycles are analogous to traditional steam Rankine cycles with an organic fluid as the working fluid in place of water. Many different organic fluids have been proposed and utilized as ORC working fluids, and fluids of particular interest for solar power applications .The following is a brief list of fluids that have been used or proposed for use in Rankine cycles: Toluene, Xylene, nbutane, R-11, R-22, R-248

The component processes that occur between the state points labeled as shown in fig are as follows:

1-2 The working fluid is expanded through a turbine

2-3 The turbine exhaust is used to preheat the working fluid exiting the pump

4-5 The working fluid is pumped from to high pressure

3-4 The working fluid is condensed

- 5-6 The working fluid is heated by turbine exhaust
- 6-1 Heat is added to the working fluid

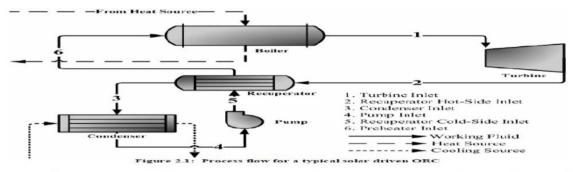


Figure 2.2 shows the general shape of a T-s diagram corresponding to the typical ORC configuration just described.

SOLAR POND

They are large shallow bodies of water that are arrange so that the temperature gradient are reversed from the normal. This allows the use for collection and storage of solar energy which may, under ideal conditions, be delivered at temperature 40-50 C above normal

ZONE OF SOLAR POND

1. UCZ (Upper Convecting Zone) : Top layer

1. This is a zone, typically .3m thick, of almost low salinity which is almost close to ambient temperature

2. UCZ is the result of evaporation, wind induced mixing, and surface flushing

3. Usually this layer is kept as thin as possible by use of wave suppressing mesh or by placing wind breaks near the ponds

2. NCZ (Non Convecting Zone) : Middle layer

1. In this zone both salinity and temperature increases with depth

2. The vertical salt gradient in the NCZ inhibits convection and thus gives insulation effect

3LCZ (Lower Convecting Zone) : Top layer

1. This is a zone of almost constant, relatively high salinity (typically 20% by weight) at high temperature.

2. Heat is stored in the LCZ, which should be sized to supply energy continuously throughout the year

ORGANIC RANKINE MODEL

The model is designed to compare and evaluates the potential organic Rankine cycle configuration

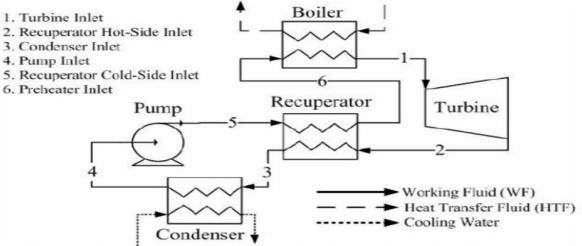


Figure 3.1: Modeled components in an ORC with single-stage expansion and recuperation

 $\boldsymbol{\mathcal{K}}$

THERMODYNAMIC ANALYSIS AND PARAMETRIC STUDY

In research work, thermodynamic analysis of various working fluids like toluene, R-236fa, R236ea, R-245fa and

R-134a is done. A parametric study was carried out to obtain the cycle efficiency of ORC along various saturation pressures. This is done to find the effect of turbine inlet pressure on the efficiency of the cycle

4.2 Thermo-physical Properties of various working fluids

Parameters	Toluene	R-236fa	R-236ea	R-245Ca
Chemical	C ₇ H ₈ or			
Formula	C ₆ H ₅ CH ₅	CF3CH2CF3	C3H2F6	C3H3 F5
Molecular weight (g/mol)	92.1381	152.04	152.0383	134.05
Slope of				
saturated vapor		Almost		
line	Negative	Isentropic	Negative	Negative
Critical				
temperature				
(°C)	318.6	124.92	139.29	174.42
Critical				
Pressure (MPa)	4.1263	3.2	3.50198	3.925
Boiling point at 1 atm (⁰ C)	110.6	-1.44	6.19	25.13

Parameters	Toluene	R-236fa	R-236ea	R-245ca
Assumptions of the cycle 1.Turbine inlet temperature	70 ⁰ C	70 ⁰ C	70 [°] C	70 [°] C
2.Turbine inlet pressure				
3.Condenser saturation temperature 4.Condenser saturation pressure	0.074246 Mpa 40 ⁰ C	1.9396 Mpa 1.5720Mpa .928191 40 ° C 40 ° C 40 ° C		
5.Carnot efficiency = $(T_{boiler}-T_{condenser})/T_{boiler}$	0.0078923 Mpa	0.4377 Mpa	0.33765 Mpa	0.17347 Mpa
(* boner * condenser/ * boner	olooroy20 htpu	oner, npa	olection inpu	on ron mpa
	42.857%	42.857%	42.857%	42.857%
Turbine and Generator Calculation				
1.W _{Turbine} =W _{Electric} /generator efficiency(.85)	1176.47 KW	1176.47 KW	1176.47 KW	1176.47 KW
2.inlet condition	11/0.1/ 11/0	1170.17 110	11/0.1/ 11/0	11/0.1/ 11/0
h 1= S1=	638.95 KJ/Kg	291.87 KJ/Kg	460.08 KJ/Kg	365.45 KJ/Kg
3. turbine efficiency = $(h_1-h_{2a})/(h_1-h_2)$	1.8661KJ/Kg	0.89125KJ/Kg	1.7481KJ/Kg	1.0988KJ/Kg
Therefore h _{2a}	575 500KI/K-	270 221 1/1/12-	427 0525 V I/V -	225 72 CV 1/V-
4.Turbine work per kg of working fluid	575.599KJ/Kg	270.331KJ/Kg	437.0535KJ/Kg	335.736KJ/Kg
$=h_1-h_{2a}$ 5. turbine work = $(M_{wf}*W_t)$	63.3505 KJ/Kg	21.539 KJ/Kg	23.0265KJ/Kg	29.93KJ/Kg
Therefore M_{wf} =	Ũ		0	Ũ
	18.570kg/sec	54.620kg/sec	51.092kg/sec	39.307kg/sec
Calculation of Condenser				
$Q_{rejected} = M_{wf}(h_2 - h_3)$ We also know that	8267.169 KW	9469.9609 KW	9560.09KW	9162.12KW
$Q_{\text{rejected}} = M_{\text{of}} C_p(T_{\text{exhaust}} - T_{\text{inlet}})$ Therefore M_{of}	197.44 Kg/sec	226.175 Kg/sec	226.35 Kg/sec	216.82Kg/sec
Therefore M _{ot}	197.44 Kg/sec	220.175 Kg/sec	220.33 Kg /sec	210.82Kg/sec
Calculation of pump	0011752	000746	00070702	00074201
$V_{f3} = P_5 =$.0011752 .074246	.000746 1.9396	.00072723 1.572	.00074201 .92619
$P_4 = 1.W_p = V_{f3}(p_5 - p_4)$.0076923 .07797 KJ/kg	.43777 1.1405 KJ/kg	.55765 .89765 KJ/kg	.177347 .56001KJ/kg
We also know that	.0//// 13/16	1.1403 10/85	.07703 Кылкд	.5000113/85
$W_p=(h_3-h_4)$ 2.Therefore $h_g=$	130.48797KJ/Kg	98.1005 KJ/Kg	250.817 KJ/Kg	103.026 KJ/Kg
3.Pump efficiency = $(h_g-h_4)/(h_{ba}-h_4)$				-
Therefore	100 500 1014	00 7102 W14	251 202 1/1	102 222 844
$H_{ba}=h_4+(W_p/pump efficiency)$	130.529 KJ/kg	98.7192 KJ/kg	251.202 KJ/kg	103.322 KJ/kg
Recuperator Design				
Effectiveness				
$e=(h_2-h_3)/(h_2-h_{3,min})$ e=	0.85	0.85	0.85	0.85
h _{3,min} = therefore	534.41KJ/Kg	233.65KJ/Kg	397.2KJ/Kg	295.15KJ/Kg
$h_3 = (e^*(h_2 - h_{3,min}))$	542.8895KJ/Kg	239.184KJ/Kg	403.17KJ/Kg	301.237KJ/Kg
$Q_{recuperator}=M_{wf}(h_2-h_3)=M_{wf}(h_6-h_8)$ Therefore $h_6=$				
Calculation of Boiler	164.439 KJ/Kg	129.9592 KJ/Kg	283.8035 KJ/Kg	135.790 KJ/Kg
$Q_{\text{boiler}} = M_{wf}(h_2 - h_6)$	8983.20811 KW	8843.567KW	9005.966KW	9028.15KW
Efficiency of cycle =(W _{turbine} -w _{pump})/Q _{boile} r	13.0802%	12.462%	12.554%	12.787%
-\ urbine pump// Vboilet	15.000270	12.702/0	12.337/0	12.70770

CALCULATIONS FOR DIFFERENT WORKING FLUIDS

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 3 Issue 6, June - 2014

		Mass								
		Flow		Mass						
	Turbine	Rate of		Flow				Heat	Heat	
urbine	Work/	The	Condenser	Rate of		Heat		rejection	Addition	Efficiency
nlet	Working	Working	Heat	Cooling	pump	Addition		With	with	with
Pressure	Fluid	Fluid	Rejected	Fluid	Work	in Boiler	Efficiency	Recuperation	Recuperation	Recuperation
0.056246	55.4285	21.225	9634,909	230.1149	0.05701	10809.65	10.882988	8786.902321	9961.643569	11.8094266
0.058246	56.457	20.83834	9436.078	225.3661	0.05937	10610.78	11.086937	8622.166232	9796.868772	12.0080268
0.060246	57.2815	20.53839	9281.475	221.6736	0.06173	10456.13	11.250892	8494.303791	9668.96258	12.16685099
0.062246	57.46	20.47459	9246.94	220.8488	0.06409	10421.53	11.288221	8466.775726	9641.371166	12.20164529
0.064246	58.1485	20.23216	9121.702	217.8577	0.06645	10296.25	11.425552	8363.375785	9537.925261	12.3339565
0.066246	59.007	19.9378	8970.078	214.2364	0.06881	10144.59	11.596343	8237.913815	9412.424066	12.4983871
0.068246	60.2905	19.51336	8752.316	209.0355	0.07116	9926.802	11.850733	8057.17989	9231.666123	12.74308257
0.070246	60.8005	19.34968	8667.097	207.0002	0.07352	9841.535	11.953384	7987.234888	9161.672575	12.84041171
0.072246	61.4635	19.14095	8559.193	204.4231	0.07588	9733.588	12.085924	7898.194838	9072.589964	12.96646409
0.074246		62.1435 18.93151	8450.958	201.838	0.07824		9625.312 12.221856	7808.854057	8983.208109	13.09545262

		Mass		Mass						
	Turbine	Flow		FIOW		1		Heat	Heat	
Turbine	Work/	Rate of	Condenser	Rate of		Heat		Rejection	Addition	Efficiency
Inlet	Working	Working	Heat	Cooling	pump	Addition		with	with	with
Pressure	Fluid	Fluid	Rejection	Fluid	Work	in Boiler	Efficiency	Recuperation	Recuperation	Recuperation
1.7596	20.1875	58.27715	10371.031	247.696	1.010909	1.010909 11442.36	9.7668409	8344.902038	9416.230969	11.86841208
1.7796	20.587	57.14626	10129.803	241.9346	1.026205	11201.92	9.9788778	8176.969387	9249.089934	12.08579706
1.7996	20.6975	56.84116	10051.82	240.0721	1.0415	11123.26	10.044451	8129.728853	9201.164473	12.14270119
1.8196	20.7315	56.74794	10015.813	239.2122	1.056796	11086.18	10.071087	8113.46777	9183.835657	12.15721888
1.8396	20.8845	56.33221	9915.7924	236.8233	1.072092	10985.71	10.159353	8050.031676	9119.94596	12.2377558
1.8596	20.978	56.08113	9848.4077	235.2139	1.087387	10917.57	10.217365	8010.673848	9079.837636	12.28533088
1.8796	21.0035	56.01305	9817.0984	234.4662	1.102683	10885.17	10.240589	7998.045346	9066.11548	12.29529211
1.8996	21.131	55.67507	9732.3928	232.4431	1.117978	10799.9	10.317007	7945.966124	9013.473772	12.36178748
1.9196	21.233	55.40762	9661.7038	230.7548	1.133274	10728.52	10.380533	7904.204536	8971.024918	12.4141667
1.9396	21.3265	55.1647	9595.9825	229.1852		10662.08	1.14857 10662.08 10.439892	7866.046452	8932.142165	12.46184267

Q.											
	Efficiency With Recuperation	11.73163655	11.9417503	12.05734597	12.283411	12.31834579	12.49700396	12.56548731	12.69386358	12.87185164	13.02296115
	Heat Addition With Recuperation	10024.54813	9848.043058	9753.505246	9573.880017	9546.608053	9410.010227	9358.606491	9263.843613	9135.630701	9029.513157
	Heat Rejection With Recuperation	8876.896287	8700.827737	8606.966229	8427.698766	8401.296504	8265.155312	8214.506316	8120.315878	7992.518773	7886.881438
or R 245ca	Efficiency	10.072	10.2813	10.4014	10.6282	10.6719	10.8547	10.932	11.0676	11.2521	11.4113
Table 4.5 Parametric Study for R 245ca	Heat Addition in Boiler	11676.4	11438.5	11306.3	11064.9	11019.4	10833.8	10757	10625.1	10450.7	0.56 10304.8
.5 Param	Pump Work	0.4264	0.4413	0.4561	0.471	0.4858	0.5006	0.5155	0.5303	0.5452	0.56
Table 4	Mass Flow Rate of Cooling Fluid	251.462	245.793	242.651	236.894	235.827	231.404	229.59 0.5155	226.452	222.297	218.823
	Condenser Heat Rejection	10528.71	10291.33 245.793 0.4413	10159.78 242.651 0.4561	9918.762 236.894	9874.094 235.827 0.4858	9688.905 231.404 0.5006	9612.923	9481.529 226.452 0.5303	9307.556 222.297 0.5452 10450.7	29.954 39.2759 9162.122 218.823
	Mass Flow Rate of Working Fluid	43.9252	43.091	42.6528	41.8025	41.6892	41.0463	40.8163	40.3758	39.7725	39.2759
	Turbine Work/ Working	26.7835	27.302	27.5825	28.1435	28.22	28.662	28.8235	29.138	29.58	
	Turbine Inlet Pressue	0.74819	0.76819	0.78819	0.80819	0.82819	0.84819	0.86819	0.88819	0.90819	0.92819

Induine Mass Mass Induine Flow Rite of Rite of Notk/ Rite of Condenser Rite of Working Working Fund Work Pessare Fluid Rige of Not 1392 21.0665 54.129 10374.98 246.83 0.781 1.412 21.7175 54.172 10334.98 246.83 0.781 1.412 21.7175 54.172 10334.98 245.83 0.781 1.412 21.7175 54.172 10334.98 245.83 0.781 1.412 21.7175 54.172 10334.98 245.4 0.781 1.412 21.7175 54.172 10334.98 245.4 0.781 1.412 21.717 59.09 10377.29 245.8 0.831 1.412 21.215 52.277 9940.511 237.41 0.825 1.412 22.3975 59.04.053 255.4 0.835 1.557 1.532<	L					
Work/ Morking Rate of Rete of Rete of Rete of Rete of Pluid Cooling Ret of Rete of Rete of Cooling Working Rete of Rete of Rete of Rete of Rete of S21205 Cooling 2116665 54.129 10374.89 247.85 211715 54.172 10374.99 245.4 211715 53.96 10074.99 245.4 218025 53.96 10074.99 245.4 218025 53.96 10074.99 245.4 213141 204.051 238.79 236.44 22.3415 52.427 994.053 236.54 22.364 52.269 855.4419 237.41 22.364 51.224 961.9577 236.54 22.366 51.224 961.9577 229.75 22.366 51.224 961.9577 229.75 22.378 51.626 586.54 231.4	52 A			Heat	Heat	
Working Weaking Heat Cooling Fluid Fluid Refection Fluid 21.6665 54.299 10377263 24.155 21.1175 54.172 1033496 245.83 21.1175 53.96 10074.99 245.43 21.8025 53.36 10074.99 245.43 21.8025 53.96 10074.99 245.43 21.3125 52.777 9991.952 238.79 22.341 52.427 9991.051 235.74 22.341 52.427 9904.053 235.53 22.341 52.249 965.5419 235.53 22.341 51.224 961.577 235.35 22.367 51.626 5855.419 235.53 22.366 551.224 961.9577 229.75 22.366 51.626 968.654 231.4 22.378 51.626 968.654 231.4	eof	Heat		Rejection	Addition in	Efficiency
Fluid Fluid Rejection Fluid 21.6665 54.299 10377.28 247.85 21.1175 54.172 10334.98 246.83 21.1175 54.172 10334.98 246.83 21.8025 535.96 10274.99 245.4 21.2155 52.777 9991.957 238.79 22.3975 52.527 9940.511 237.41 22.44 52.427 9940.511 235.41 22.44 52.427 9940.511 235.54 22.367 5940.511 235.53 235.54 22.44 52.427 994.053 235.54 22.44 57.249 865.54.19 235.35 22.46 55.256 965.54 235.53 22.46 51.224 961.577 22.975 22.786 51.224 961.577 22.975 22.786 51.626 968.654 231.4	fing Pump	Addition		with	Boiler with	with
34.299 10377.28 247.85 54.172 10334.98 246.83 53.96 10274.99 245.4 53.96 10274.95 245.4 52.777 9997.952 238.79 52.627 9940.311 237.41 52.247 9940.633 236.54 52.249 9955.419 237.53 51.244 9619.577 220.75 51.224 9619.577 220.75 51.224 9619.577 220.75	d Work	in Boiler	Efficiency	Recuperation	Recuperation	Recuperation
54.172 10334.98 246.83 53.96 10274.99 245.4 52.727 9997.952 238.79 52.727 994.0531 237.41 52.269 9955.419 235.38 52.269 9955.419 235.38 51.224 994.0531 236.54 51.226 995.5419 235.38 51.224 9619.577 229.75 51.224 9619.577 229.75 51.224 9619.577 231.4	7.85 0.767	11494.3	9.87306	8354.17909	9471.17187	
21.8025 33.96 1027.4.99 245.4 22.3125 52.727 9997.952 238.79 22.3975 52.277 9940.311 237.41 22.3975 52.227 9940.053 236.54 22.3076 52.2477 9904.053 236.54 22.487 52.2497 9504.053 236.54 22.5067 51.224 960.577 239.55 22.5078 51.224 960.577 239.75 22.5067 51.224 960.577 229.75 22.5067 51.224 960.577 229.75 22.5067 51.224 960.577 229.75 22.5067 51.224 960.577 229.75 22.5067 51.224 960.577 229.75 22.5078 51.666 968.654 229.75	6.83 0.781	11451	9.90435	8331.87105	9447.87793	12.0042387
22.3125 5.2.717 9997.952 238.79 22.3975 52.277 9940.311 237.41 22.447 994.053 236.54 22.447 994.053 236.54 22.467 994.053 236.54 22.467 995.549 955.55 22.506 955.549 295.55 22.507 9519.577 229.55 22.506 51.224 9619.577 229.55 22.567 51.224 9619.577 229.55 22.567 51.224 9619.577 229.55 22.566 51.266 968.654 29.156	245.4 0.796	11390.1	9.95184	8296.43379	9411.55521	12.0439817
22.3975 5.2527 9940.311 235.44 21.44 52.427 9904.053 286.54 21.508 52.206 9855.419 235.38 22.5067 51.224 9619.577 20375 22.5067 51.224 9619.577 20375 22.508 51.224 9619.577 2314 22.5067 51.224 9619.577 23156 22.7085 51.264 9619.577 2315	8.79 0.81	11113.4	10.2016	8100.47379	9215.9019	12.3020046
22.44 52.427 9904.053 236.54 22.508 52.209 9655.419 235.38 22.967 51.224 9619.577 229.75 22.7085 51.264 9619.577 229.75 22.7085 51.264 9619.577 229.75 22.7085 51.264 9619.577 229.75	7.41 0.825	11054.9	10.2501	8066.77732	9181.34568	12.3417513
22.508 52.269 9855,419 235.38 22.967 51.224 9619,577 229.75 22.7865 51.626 9688,654 231.4	654 0.839	11017.6	10.2786	8048.88451	9162.48078	12.3597355
22.967 51.224 9619.577 22.7885 51.626 9688.654	5.38 0.854	10968.1	10.3193	8021.7608	9134.46097	12.3907817
22.7885 51.626 9688.654	229.75 0.869	10732.5	10.5472	7855.61244	8968.52273	12.6216795
	231.4 0.883	10800	10.4711	7916.20378	9027.54353.	12.5269828
1.572 23.0265 51.092 9561.025 228.35	228.35 0.898	10672	10.5942	7830.25943	8941.21077	12.6448975

CONCLUSION

Various working fluids were analyzed with varying turbine inlet pressure and various graphs were plotted to show the effect of turbine inlet pressure on various parameters

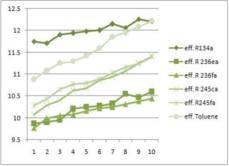
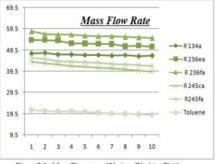
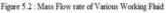
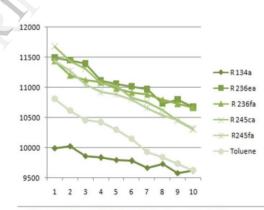
1. The fig 5.1 shows the plot for the efficiency of various working fluids at various turbine inlet pressure from the figure it can be said that the toluene reaches to the maximum efficiency but the effect of turbine pressure is more in case of toluene whereas the effect is much less on the rest of the fluids

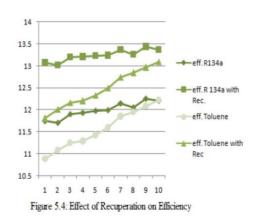
2. Fig 5.2 shows the plot for mass flow rate of the various working fluids required for generation of nominal power 1MW.From the graph it is seen that the toluene requires the most minimal mass flow rate for the same R-236fa requires much more mass flow rate as compare to rest of fluids. Thus the toluene suits the most viable option according to mass flow rate

3. Fig 5.3 depicts the heat addition required in the boiler generation of the same turbine work under different turbine inlet pressure fig 5.3 toluene requires the less heat addition

4. From the above graphs, it is indicated that the toluene gives out to be the best option for a 1 MW solar operated power plant .The other important analysis done here is the effect of recuperate on the overall efficiency of the plant

5. Fig 5.4indicates the increase in the efficiency of the plant with use of recuperation for toluene


Figure 5.1: Efficiency of Various Working Fluid for Different TIP

Vol. 3 Issue 6, June - 2014

REFRENCES

- Barber, R.E. solar powered Rankine cycle engines characteristics. Proceedings of the 1976 IECEC, No.769200(1976).
- Andersen, W.C., Bruno, T.J. Rapid screening fluids for chemical stability in organic rankine cycle applications.Ind.Eng.chem.Res. v.44 (2005) pp.5560-5566
- 3. Cable,R.G., et al.SEGS plant performance 1989-1997.Proceedings of solar98: Renewable energy for the Americas,Albuquerque,NM,p. 445-452(1998).
- Hung, T.C. Waste heat recovery of organic rankine cycle using dry fluids. Energy Conversion and Management, v.42 (2001) pp.539-553
- Hung, T.C., Shai, T.Y., and Wang, S.K.A review of organic rankine cycles(ORCs) for the recovery of low-grade waste heat. Energy v.22, no.7(1997)pp.661-667.
- McMahan,A.C.,Design and optimization of organic rankine cycle solar thermal power plants .M.Tech Thesis, University of Wisconsin-Madison(2006)
- Canada.S,et al. Parabolic trough organic rankine cycle solar power plant .NREL Conference (January 2006)pp.550-558
- Chen, H, et al. A Review of thermodynamic cycle and working fluids for the conversion of low grade heat. Renewable and sustainable review v.14(2020)pp.3059-3067.

- Prabhu,E.solar trough organic rankine electricity system: Power plant optimization and economics,NREL Conference(May 2005)pp.335-365
- Saini, J.et al. 1MW solar power plant using ORMAT.Energy converter, 14 sede boqur symposium on solar electricity production (Feb 19-21,2007)pp.35-39
- Canada scott, et al. APS 1-MWe parabolic trough project status, DOE solar energy technology program review paper, Denver, Colorado, November 2005
- 12. Declaye, S. et al. Design and experimental investigation of a small scale organic cycle using a scroll expander, international refrigeration and air conditioning conference(2010)pp. 49-58
- Brasz, J. J., Assessment of C6F as working fluid for organic rankine cycle applications, proceedings of twelth international Refrigeration Engineering Conference at Purdue, (2008) pp. 23-42
- Lemort, V., s., Quoilin, C., Cuevas, j., Lebrun, Testing and modeling a scroll expander integrated into an organic rankine cycle, Applied Thermal Engineering, vol. 29, Issues 14-15 (2009) pp. 3094-3102
- Cheng Eng Cong, et al. Solar thermal organic rankine cycle as a renewable energy option, Journal Mekanikal (2005) pp.68-77
- Lui,B.T., Chein,K.H. Wang,C.C., Energy: Effect of working fluids on organic rankine cycle for waste heat recovery, 2982004)1207-1217.
- 17. http://webbook.nist.gov/chemistry/fluid.