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Abstract—This paper presents Prony method to monitor and 

to analyse Low Frequency Oscillations (LFO) in large 

interconnected power system. In power system stability problems 

are more due the electromechanical oscillations or swinging of 

generators. The power network increasing rapidly, so the 

complexity of power system and also the power system stability 

problems are increases. Oscillations can be low damped or 

undamped with amplitude constant or increasing. In the recent 

advancements in power system as wide area measurement, 

phasor measurement unit to analyse and to take correct control 

auction on stability problems requires an accurate knowledge of 

these low frequency oscillations. 

Keywords—Low Frequency Oscillations, Power system, Prony 

Method, Phasor measurement Unit,Wide area Measurment System 

(WAMs).  

I.  INTRODUCTION 

 Power systems are subjected to wide range of disturbances, 
which causes the stability problems and it must be able to 
adjust the changing conditions. Electromechanical oscillations 
are the result of disturbances either large or small. To maintain 
the stability of power system has number of monitoring, 
protection and controlling devices. If the system is unstable 
which causes the progressively increase in the power angle i.e. 
generator rotor angle and in same way decrease in the bus 
voltage or the system frequency deviation. 

In power system, Oscillations are classified by the system 
components that they affect.Electromechanical oscillations are 
of following types [1]. 

1. Inter area oscillation mode (02-0.7 Hz) when a group 
of synchronous generators in an area are linked by the 
long tie line oscillates against the group of generators 
in another area.It is observed over a large part of the 
power system network 

2. Intra Plant mode (2-3Hz) in this mode of oscillation, 
synchronous generators within the plant are 
oscillating against each other. 

3. Local mode (0.8-1.6Hz)when a synchronous 
generator swings against the large system (as single 
machine infinite bus system) 

4. Control mode oscillation 

5. Torsional modes 

As the WAMs technology are developing very rapidly and also 
the Phasor Measurement Units (PMU) places at various 
locations to measure the correct system data. So the lot of data 
is coming to the control centre and to take correct control 
action the control system operator requires the accurate 
knowledge of parameters like amplitude, frequency, phase 
angle and main important is damping factor of low frequency 
oscillation.  

II. MODAL ANALYSIS – SMALL SIGNAL 

STABILITY OF MULTIMACHINE SYSTEM 

Monitoring and analysis of transient oscillations in power 
system is done by different methodological approaches. Each 
method has its own advantages and applications, provides a 
different view of systems dynamic behavior. Eigenvalue 
analysis technique is based on the linearization ofthe nonlinear 
equations that represent the power system aroundan operating 
point which is the result of electromechanicalmodal 
characteristics: frequency, damping and shape. 

Analysis of practical power system network involves the 
simultaneous solution of mathematical equations representing 
the (i) synchronous machines, and the associated excitation 
systems and prime movers, (ii) interconnecting transmission 
network (iii) dynamic (motor) and static loads and (iv) other 
devices (FACT devices )such, as HVDC converters, static 
VAR compensators [2]. Electromechanical low frequency 
oscillations range from less than 1 Hz to 3 Hz other than those 
with sub-synchronous resonance. In this frequency range the 
dynamic behavior multi-machine power system is usually 
expressed as a set of non-linear differential and algebraic 
equations. The algebraic equations result from the network 
power balance and generator stator current equations. When 
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the analysis is focused on low frequency electromechanical 
oscillations then the high frequency network and stator 
transients are ignored. The initial operating state of the 
algebraic variables such as bus voltages and angles are 
obtained through a standard power flow solution. The initial 
values of the dynamic variables are obtained by solving the 
differential equations through simple substitution of algebraic 
variables into the set of differentialequations. The set of 
differential and algebraic equations isthen linearized around the 
equilibrium point and a set of lineardifferential and algebraic 
equations is obtained: 

𝑥 = 𝑓(𝑥, 𝑧, 𝑢)(1) 

0 = 𝑔(𝑥, 𝑧, 𝑢)(2) 

𝑦 = 𝑕(𝑥, 𝑧, 𝑢)(3) 

Where f and g are vectors of differential and 
algebraicequations and h is a vector of output equations. The 
inputs arenormally reference values such as speed and voltage 
atindividual units and can be voltage, reactance and power 
flowasset in FACTS devices. The output can be unit power 
output,bus frequency, bus voltage, line power or current etc. 
Bylinearizing the (1) to (3) around the equilibrium point 
followingequations (4) to (6) are obtained: 

∆𝑥 =
𝜕𝑓

𝜕𝑥
∆𝑥 +

𝜕𝑓

𝜕𝑧
∆𝑧 +

𝜕𝑓

𝜕𝑢
∆𝑢                           (4) 

0 =
𝜕𝑔

𝜕𝑥
∆𝑥 +

𝜕𝑔

𝜕𝑧
∆𝑧 +

𝜕𝑔

𝜕𝑢
∆𝑢                       (5) 

∆𝑦 =
𝜕𝑕

𝜕𝑥
∆𝑥 +

𝜕𝑕

𝜕𝑧
∆𝑧 +

𝜕𝑕

𝜕𝑢
∆𝑢                             (6) 

The vector algebraic variable Δzis eliminated from (4) and (6), 

gives: 

∆𝑥 = 𝐴∆𝑥 + 𝐵∆𝑢                                                 (7) 

∆𝑦 = 𝐶∆𝑥 + 𝐷∆𝑢                                                 (8) 

Where A, B, C and D are the matrix of partial derivatives in 

(4) to(6) evaluated at equilibrium. Normally power system 

state spacerepresentation is linearized around an operating 

point which is the result of electromechanical modal 

characteristics.The symbol A from (7) and (8) is omitted so as 

to follow thestandard state space making x and u into the 

incremental values.This is the representation of a linearized 

differential andalgebraic equations model of a power system 

on which standardlinear analysis tools. 

III. PRONY ANALYSIS 

Prony analysis isclassical approach to the model 

identification and oscillation monitoring in the system. It is a 

signal processing method which extends the Fourier analysis 

by directly estimating the frequency, damping, amplitude, and 

relative phase of modal components present in agiven signal. In 

prony analysis signal sampled at regular interval is expressed 

as a linear combination of exponential terms.  It has a close 

relationship with the algorithm(least square prediction 

algorithm) used for AR (Auto Regressive) and ARMA (Auto 

Regressive Moving Average) parameter estimation.Prony 

analysis is a method of fitting a signal into a linear combination 

of complex damped sinusoidal exponential. Each exponential 

term with different frequency is termed as mode of the signal. 

Each mode has four element/ parameter as Amplitude, 

frequency, phase angle and damping factor. 

The mathematical formulation of prony method is derived 
using linear time invariant (LTI) dynamic system is shown 
below Fig.1. 

LTI System

x(t)
u(t) y(t)

 

Fig. 1. LTI System 

In Fig.1, signal are  reffered to as  y(t) the system response, 

u(t) is system input and x(t) is state of the LTI system.the 

evalution of system state is expressed as  

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴 𝑥 𝑡 + 𝐵 𝑢 𝑡 (9) 

 

Where A and B are constant matrices. If there is no input i.e. 

u(t)=0 and there are no subsequent input to the system then (9) 

becomes 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴 𝑥 𝑡                                       (10) 

Where, A is a n×n matrics and eigenvalues of A are λ𝑖, right 

and left eigenvectors are piand qi respectively. The system 

order is reprented by „n‟. The solution to (10) is expressed as 

sum of n components as (11): 

𝑥 𝑡 =  (𝑞𝑖
𝑇𝑥) 𝑝𝑖𝑒

λ𝑖𝑡

𝑛

𝑖=1

                               (11) 

    

Output y(t) for the LTI system is express as 

𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡)         (12) 

Where, C and D are constant matrices. If there is no input 

u(t)=0, then the output of system (12) is given as (13) 

𝑦 𝑡 = 𝐶𝑥 𝑡           (13) 

The Prony analysis directly estimates the parameters of the 

eigen structure described in (11) by fitting a sum of complex 

damped sinusoids exponentials to evenly spaced samples (in 

time) values of the output as: 

𝑦  𝑡 =  𝐴𝑖𝑒
 𝜎𝑖𝑡 cos 2𝜋𝑓𝑖𝑡 + ∅𝑖 

𝐿

𝑖=1

                             (14) 

In (14) we have used the following notations  

Ai: Amplitude of the component i 

fi  : Frequency of the component i 

∅i: Phaseangle of the component i 
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σi: Damping factor of the component i 

L: total number of damped exponential component  

y  t : estimated data for y(t) having N samples y(tk)=y(k), 

k=0,1,2,…..(N-1) that are evenly  sampled. 

Using Euler‟s theoremand letting t=kT, T is the sampling 

period less than Nyquistperiod, then the samples of y  t  in (14) 

are 

𝑦 𝑘 =  𝐶𝑖𝜇𝑖
𝑘

𝐿

𝑖=1

                                               (15) 

𝐶𝑖 =
𝐴𝑖

2
𝑒𝑗∅𝑖   (16) 

𝜇𝑖 = 𝑒(𝜎𝑖+𝑗2𝜋𝑓𝑖)𝑇(17) 

𝐶𝑖 is the output residue for the poles  λ𝑖  (λ𝑖=𝜎𝑖 + 𝑗2𝜋𝑓𝑖). The 

objective is to find the poles, residue and L of the system that 

force the system to fit y(t). The prony analysis computes 

residue 𝐶𝑖  and 𝜇𝑖  in three basic steps. First, construct the linear 

prediction model (LPM) (17) using observed data set y(t) and 

then compute the coefficient of Linear Prediction Model. 

𝑦 𝑘 = 𝑎1𝑦 𝑘 − 1 + 𝑎2𝑦 𝑘 − 2 + ⋯ + 𝑎𝐿𝑦 𝑘 − 𝐿       (18) 

In (18), y(k) is computed for various values of k=L, 

L+1,L+2…., N-1. And we can write the y(k) in matrix form 

for various values of k as 

1

2

(L) (L 1) (L 2) ... (0)

(L 1) (L) (L 1) .... (1)

:: : : : :

(N 1) (N 2) (N 3) ... (N L 1) L

ay y y y

ay y y y

ay y y y

      
    

 
    
    
    

         

(19) 

Co-efficient vector a of linear prediction are calculated by 

solving the over determined least square problem assuming 

N>2L.  

In second step, the roots μ𝑛of characteristics polynomial (20) 

form by the coefficients of LPM (18) are derived. 

1

1 1 1 2... ( )( )...( )L L

L L La a a        

           (20) 

Using the roots derived from (19) is used to calculate the 

damping factor 𝜎𝑛and frequency 𝑓𝑛  according to (17). 

In last step, the magnitudes 𝐴𝑛  and phase angle ∅𝑛are 

calculated by least square sense. Using the roots μ𝑛  of the 

polynomial (20),(21) is built according to (15). 

Y UC           (21) 

Where, 

Y=

(0)

(1)

(2)

:

(k 1)

y

y

y

y

 
 
 
 
 
 
  

,      C=

1

2

3

:

L

C

C

C

C

 
 
 
 
 
 
  

and 

 U

1 1 1

2 2 2

1 2

1 1 1

1 2

1 1 .. .. 1

.. ..

.. ..

: : : : :

.. ..

L

k k k

L

  

  

    

 
 
 
 
 
 
  

 

As C and   are now known, Amplitude, frequency, phase 

angle and important thing damping factor are calculated by 

using (16) and (17). 

 

IV. SIMULATION AND RESULTS 

 
When a disturbance occurs in a power system, it creates 

animbalance between the electrical power beingsupplied to the 
power system and the mechanical power being supplied to a 
generator by its turbine. This imbalance is translated intoa 
change in the kinetic energy of the rotor. In other words 
thegenerators begin to speed up or slow down. Normally 
variousdamping phenomena within the power system will act 
so thatthe system will attain a new steady state operating point. 

To identify the low frequency oscillations, a two area four 
machine interconnected power systems shown in Fig.2 is 
considered. All generators present in this two-area system are 
equipped with a fast static exciter with a gain of 200.Each area 
is equipped with two identical round rotor generators rated 20 
kV/900 MVA. The load is represented as constant impedances 
and split between the areas in such a way that area 1 is 
exporting 413 MW to area 2. Since the surge impedance 
loading of a single line is about 140 MW [4], the system is 
somewhat stressed, even in steady-state. In thispaper for 
analyzing the modes present in the system, key variable of the 
machine-1 of area-1 i.e., accelerating power is used, which is 
also root cause for occurrence of LFOs in power system. Hence 
Prony method uses the accelerating power of machine-1 for 
identification of modes and estimating the parameters of LFO. 

G1

1 5

2

G2 G4

G3

6

8

10 31197

4

Area 1 Area 2  

Fig. 2. Two area system 

The area 1 and area 2 are interconnected by a weak tie line. 

Simulation of two area sysem is done in MATLAB 

SIMULINK. The data for prony analysis is taken by creating 

some disturbance in system is used. It consists of 1200 

samples of accelerating power of machine1 in a time period of 

20 sec to focus on the low frequency modes. 

Below Fig. 3 shows the measured signal of accelerating power 

of machine-1 in area1. Reconstruction of measured signal 

using prony method is shown in Fig.4 
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Fig. 3. Measured Signal 

 

Fig. 4. Reconstructed Signal using prony method 

A modal analysis of accelerating power of machine-1 in two-

area system shows the following dominant modes having 

parameters: 

1)    An Inter-area mode of frequency = 0.64 Hz, damping 

ratio = -0.026 involving the whole area 1 against area 

2. 

2) Local mode of area 1 having frequency = 1.12 Hz, and 

damping ration = 0.08 involving this area's machines 

against each other. 

TABLE I.  PARAMETERS OF LOW FREQUENCY OSCILLATIONS MODES 

Sr. No. 
Frequency 

f (Hz) 

Damping 

Factor (𝛔) 

Phase 

Angle 

(rad) 

Amplitude 

(pu) 

1 0.64 -0.026 0.45881 0.00893 

2 1.12 0.08 1.82819 0.17006 

 

 

 

 

 

V. CONCLUSION 

The low frequency oscillation has been a universal andserious 

problem in modern large-scale power systems.Monitoring and 

studying of large scale power system is a bigchallenge. Thus 

using prony method we can estimate accurately the parameters 

of the low frequency oscillations in power system. The 

parameters as damping ratio of LFO are known so we can 

predict the nature of these dominant low frequency 

oscillations and take corrective control action to damp out 

these oscillations.  
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