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Abstract—Parallel programming and the design of efficient 
parallel programs is a development area of growing importance. 
Parallel programming models are almost used to integrate 
parallel software concepts into a sequential code. These models 
represent an abstraction of the hardware capabilities to the 
programmer. In fact, a model is a bridge between the 
application to be parallelized and the machine organization. Up 
to now, a variety of programming models have been developed, 
each having its own approach. This paper enumerates various 
existing parallel programming models in the literature. The 
purpose is to perform a comparative evaluation of the mostly 
used ones, namely MapReduce, Cilk, Cilk++, OpenMP and 
MPI, within some extracted features. 
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I.  INTRODUCTION 
 
Over the last decades, the need to solve large problems in 

different fields such as sciences, engineering or business has 
been increasingly developed. Moreover, these problems may 
process large amount of data, which can reach the order of 
terabytes or even petabytes. Other applications are very highly 
compute-intensive, and involve applying a multitude of 
complex treatments. These kinds of problems require 
powerful platforms that enable them to accomplish their tasks 
in a reasonable amount of time. On the other side, Moore’s 
law – the processor speeds will double every two years – has 
reached its physical limits and therefore, became no more 
applicable. In fact, increasing the processors frequencies 
beyond a particular threshold would result in energy 
dissipation problems. This had lead researchers to turn to 
parallel architecture designs in order to satisfy advanced 
programs requirements. However, all parallel characteristics 
of these new architectures are misused due to the sequential 
programming style of our algorithms. In this context, parallel 
computing has emerged as the alternative solution to exploit 
the maximum use of the underlying parallel architecture, thus 
enabling to run such applications efficiently, reliably and 
quickly. “It strikes me that in terms of future development, the 
magnitude of the change that software developers are going to 
experience will be substantial. A decade from now, we’ll be 
looking back and thinking how much differently we approach 
writing program code. Parallelism, for everyone, is going to 
be ubiquitous.” confirmed James Reinders, director of 
marketing and business in Intel Software Development 
Products Division. 

Parallel programming models (PPM) aim to provide a 
mechanism with which the programmer can specify parallel 
programs. In the recent years, a variety of parallel 

programming models have been founded providing several 
development tools in order to achieve the best performance 
possible of parallel applications. Each model has its proper 
strategy to treat the problem, as a consequence, has its 
advantages as well as limitations. 

In the following, we present the most significant parallel 
programming models existing in the literature, including 
MapReduce, Cilk, Cilk++, OpenMP and MPI. Each model is 
explained by an example that illustrates using of its paradigms 
to implement parallel algorithms. Section 2 gives a brief 
overview of MapReduce some basic concepts. Section 3 
presents the fundamental idea upon Cilk and Cilk++. Section 
4 deals with the main principles of OpenMP. Section 5 
describes the MPI programming model. Section 6 discusses 
some criteria by which the mentioned PPMs can differ aiming 
at their classification. 

II. MAPREDUCE 
 
MapReduce was originally introduced by Google to run on 

a cluster of machines. It targets data intensive application. In 
the recent years, it has emerged as one of the most powerful 
and widely used parallel computing platforms for processing 
big data. Over 70 companies including Facebook, Yahoo, 
Adobe and IBM have adopted Hadoop, an open-source 
implementation of MapReduce [5]. 

A. Description 
As the name implies, MapReduce is based on two main 

phases: the map phase, and the reduce one. In the map phase, 
data is first split into chunks with fixed data size (typically 64 
megabytes), then passed to the “map” function as sets of 
<key,value>, denoted <��, ��>. The “map” function, written 
by the user, takes a pair <��, ��>, performs the specified 
treatments to generate sets of intermediate pairs list<��, ��>. 
Note that this operation is done in parallel by many 
workstations forming the cluster. Then, the run-time system 
groups together, all intermediate values, from the output of the 
map function, sharing the same key as input to the “reduce” 
function. The later, also written by the user, takes a key and a 
list of its corresponding value <��, list<��>>, applies the 
specified treatments to produce a smaller set of values 
(typically one value) [1]. 

Map <��, ��> → list <��, ��> 
Reduce <��, list <��>> → list <��> 

It is important to mention that the input keys and values 
types are usually different from those of the output, unlike the 
intermediate keys and values which are from the same type of 
the output ones.  
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map(String key, String value): 
     // key: document name 
     // value: document contents 
     for each word w in value: 
     EmitIntermediate(w, "1"); 

reduce(String key, Iterator values): 
     // key: a word 
     // values: a list of counts 
     int result = 0; 
     for each v in values: 
     result += ParseInt(v); 
     Emit(AsString(result)); 

 

For a better understanding of MapReduce, the following 
example concretizes the theoretical aspects described above. It 
illustrates an application that counts the number of 
occurrences of each word in a set of text documents. 

Fig. 1. WordCount example implemented in MapReduce [1] 

 
The map function sends each word as a key followed by 

the value 1, whereas the reduce function sums together all the 
values corresponding to the same word. 

B. Google implementation 
When the user calls the MapReduce program, the later 

starts many copies of the program consisting in a master, and 
workers split into mappers and reducers. It’s the master job to 
assign a worker either a map or reduce task. Once assigned, 
mappers begin execution, store intermediate values into local 
disks and notify the master about their locations. This last 
invoke the reducers which perform remote reads, accomplish 
their execution then notify the master. Note that each single 
reduce function may be assigned many different keys, but 
produces a single output file stored in the global file system. 

In addition to the basic functionalities offered by 
MapReduce, it provides several extensions that contribute to 
enhance its performances. One of the most important ones is 
the “combiner” function. Once the map function has 
accomplished its task, the “combiner” function, also written 
by the user, performs a partial merging of data. Typically, it 
carries out the same work as the reduce function, but locally 
on the mapper’s machine. This is useful to save the network 
bandwidth needed for data transfer. 

Many applications are compliant to this programming 
model and can be expressed using MapReduce, such as 
distributed Grep, Count of URL Access frequency, Reverse 
Web-link Graph, inverted index, distributed sort, etc. [1, 3] 

At first sight, MapReduce seems to cover only applications 
that are computationally straightforward. But for some cases, 
the overall distributed problem can be split into not just single 
map and reduce phase, but it can handle a sequence of map-
reduce phases, so that the output of a single map-reduce step is 
the input of the next map-reduce algorithm. Many real-world 
applications are adopting such a mechanism, namely the 
Google indexing system. 

III. CILK / CILK++ 

A. Cilk 
Cilk is a shared memory task based language that 

facilitates the development of parallel applications. Initially 
founded by the MIT (Massachusetts Institute of Technology) 

laboratory for computer science, it was among the pioneering 
models that invoke multithreaded programming style. Cilk 
provides a set of extensions to the C language that enables the 
developer to create, synchronize and schedule threads. It 
presents an efficient tool to write dynamic, asynchronous, 
tree-like, MIMD computations. 

As shown in “Fig. 2,” a Cilk computation can be simulated 
as a directed acyclic graph (DAG) where each vertice 
corresponds to a thread. Sequences of threads connected 
horizontally constitute procedures forming the Cilk program. 
Once it has been invoked, a Cilk thread can run to completion 
without any suspending. As long as a thread proceeds running, 
it may alternatively spawn a child, connected to its parent 
thread by a downward edge. This is similar to a subroutine 
call, with the difference that a spawn child will not return any 
value to its parent. Rather, the parent spawns in parallel a 
successor that receives the return value of the child. In the 
DAG, the successor is linked horizontally to the creating 
thread. Note that the successor cannot begin execution unless 
the missing parameters are received. This creates data 
dependencies between threads, represented by an upward edge 
in the DAG. 

Fig. 2. Directed acyclic graph of a Cilk computation 

 

1) Implementation 
Cilk represents a thread as a “closure” that handles a data 

structure involving: a pointer to the C function for the thread, 
a set of its arguments as well as a “join counter” dealing with 
the number of missing arguments. A closure may have two 
possible states: it is “ready” if the number of missing 
arguments is equal to zero, “waiting” otherwise. Another data 
type provided by the Cilk language is the continuation, 
defined by the keyword “cont”. The later represents a global 
reference to an empty argument slot of a closure. Having the 
same type of the argument it references, this structure is used 
to communicate data between threads. 

During execution, a thread can spawn a child using the 
function “spawn”. It can possibly spawn a successor within 
the function “spawn_next”. Usually, a parent procedure 
containing a subroutine call is coded as two threads. The first 
spawns a child procedure, passing it a continuation pointing to 
the successor thread’s closure. Missing arguments are 
specified inside the spawning function by the name of the 
argument preceded by a question mark. The child thread sends 
data value to the waiting successor by means of the function 
“send_argument”. As a consequence, the corresponding 
counter of the successor is decremented. This procedure is 
called “explicit continuation passing”. 

Level 0 

Level 1 

Level 2 Thread 

Spawn of a child 

Spawn of a successor 

Data dependency 
Level 3 
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thread tab_max(cont int res, int T[], int begin, int end) { 
  if (begin != end) { 
    int middle = (begin + end) div 2; 
    cont max_left, max_right; 
    spawn_next t_max(res, ?max_left, ?max_right); 
    spawn tab_max(max_left, T, begin, middle); 
    spawn tab_max(max_right, T, middle + 1, end); 
  } 
  else 
  { 
    send_argument(T[begin]); 
  } 
} 

Thread t_max (cont int res, int max_left, int max_right) 
{ 
  send_argument(res, max(max_right, max_left)); 
}  

int tab_max(int T[], int begin, int end) { 
  if (begin != end) { 
    int max_left, max_right; 
    int middle = (begin + end) div 2; 
    max_left = cilk_spawn tab_max(T, begin, middle); 
    max_right = tab_max(T, middle + 1, end); 
    cilk_sync 
    return max(max_left, max_right); 
  } 
  else 
  { 
    return(T[begin]); 
  } 
} 

Fig. 3 shows a Cilk program that computes the maximum 
value of elements in a table. 

 

Fig. 3. Example of a Cilk program 

 

2) Work-stealing scheduler 
Cilks’s runtime system uses a work-stealing scheduler, 

where each processor running out of work (thief) steals work 
from another processor (victim). 

Each processor has a local queue that contains ready 
closures. For a ready closure is assigned a level corresponding 
to the number of spawns (within the level axis in fig. 2) 
beginning from the root (level 0). A ready queue is an array 
whose L’th element is a linked list of ready closures having 
level L and assigned to the processor. A thief chooses a victim 
processor at random. Whenever chosen, it selects a closure 
from the list with the lowest level in the processor’s local 
queue. This mechanism allows the thief to take a large amount 
of work from the victim as much as possible, since the stolen 
thread may spawn children while running, thus reducing the 
overall time required for the program execution. 

As a cilk program begins execution, it places the root 
thread in the ready queue of a processor. Note that all ready 
queues are initially empty. While running, a thread with the 
level L may spawn a child or a successor. In this case, the 
scheduler allocates a closure for the new thread, fill in 
arguments as well as the join counter to the number of the 
missing arguments. Alternatively, it may initialize 
continuations to point to the missing arguments. Otherwise it 
attributes the level L+1 to the child thread (resp. L to the 
successor) before posting them to the processor’s ready queue. 

When a processor terminates a thread execution, it checks 
the existence of other threads in its ready queue, from which 
it selects the one having the highest level. Otherwise it 
performs work stealing. 

3) Performance 
Cilk guarantees to the user two major performance 

quantities to characterize the performance of applications. 
The first one, called the “work”, corresponds to the minimum 
amount of time needed for serial execution of the 
multithreaded application (i.e. on one processor). The second 
measure, called “critical path”, is the minimum execution 
time of the same program on an infinite number of processors 
[23], which corresponds to the longest path execution time 

among any path of the DAG. In fact, these quantities can be 
used to predict the runtime of a Cilk program. Denoting �� as 
the work, �� as the critical path, Cilk guarantees that the 
execution time of the program on � processors is very near to 
the sum of these two measures [23]. 

B. Cilk++ 
Similarly like Cilk, Cilk++ is an extension to the C++ 

programming language that offers a reliable way for 
multithreaded parallel programming. Intuitively, the developer 
does not need to restructure applications significantly in order 
to add parallelism. 

Cilk++ was originally built by Cilk Arts, after it was 
licenced the Cilk technology by the MIT laboratory. Today, 
both open sources as well as commercial versions are 
available, after Intel has acquired Cilk Arts. 

1) Description 
Cilk++ programming language can be merely summarized 

in three key words: “cilk_spawn”, “cilk_sync” and “cilk_for”. 
The “cilk_spawn” statement precedes the invocation of a 
function, thus allowing the creation of a spawn child. The 
“cilk_sync” statement acts like a barrier, where all children 
must achieve the same point and complete execution before 
the caller proceeds. Unlike other programming models, this 
barrier is local to its calling function, meaning that all threads 
created by this function must reach this execution point 
without affecting other threads spawn by other functions. Note 
that any function embodies an implicit “cilk_sync” at its end, 
ensuring all its spawned children terminate before it does. The 
“cilk_for” statement represents a major improvement of 
Cilk++ upon Cilk. It enables automatic parallelization of 
loop’s iterations. Note that a “cilk_for” can be expressed as a 
for loop using cilk_spawn and cilk_sync in MIT Cilk system 
to create parallelism over iterations. The Cilk++ runtime 
system provides several other enhancements such as mutual 
exclusion locks, support for exceptions etc. The example in 
fig. 4 can help understand the basic Cilk++ concepts. It 
contains the same function as in the previous paragraph, but 
written with Cilk++. 

Fig. 4. Example of a Cilk++ program 

 
In this example, “cilk_sync” acts like a local barrier where 

the calling function must wait the completion of its children, 
corresponding to the calculation of the maximum of its two 
split sub-tables, before it returns. This is mandatory to 
guarantee the consistency of the final result. This 
synchronization is achieved by means of the continuation type 
in the previous example written with Cilk. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

PEMWN - 2015 Conference Proceedings

Volume 4, Issue 04

Special Issue - 2016

3



As Cilk++ is an evolution of the MIT Cilk model, it shares 
the same principles on which Cilk is based like the work 
stealing scheduler and the directed acyclic graph. In fact, a 
cilk_spawn invocation of a function creates two edges: ones 
goes from the instruction preceding the cilk_spawn, whereas 
the other goes to the first instruction of the spawned function. 
The cilk_sync creates edges from the final instruction of each 
spawned function to the instruction following the cilk_sync 
[26]. 

2) Hyperobjects 
Cilk++ introduces the concept of hyperobjects to handle 

data race bugs in code with non local variables. A data race 
takes place when two strands (sequential execution of 
instructions) have access to the same shared location, outside 
the use of any lock, with at least one strand modifies the value 
of the location. Although using nonlocal variables simplifies 
the coding task for the programmer, their management 
remains a problematic issue in the context of parallel 
computing. Applying traditional methods like the mutual 
exclusion lock is unfortunately unpractical and inefficient 
since it may cause bottleneck during execution. Rather, 
Cilk++ provides additional entities called “hyperobjects” that 
allows different strands to have their local view of the same 
nonlocal variable. During the strand’s execution, these views 
are private so that the threads can modify their states without 
any synchronization. When different strands join, they 
coordinate to update the value of the shared variable. Several 
hyperobjects are supplied by the Cilk++ runtime system, 
namely the “reducers”. When the branches synchronize, a 
reducer performs a combining operation to local views of each 
thread and the result is assigned to the shared variable. Unlike 
other programming models, the reduction operation can be 
fulfilled progressively as long as some strands are done and 
does not require that the overall threads to be completed. 
Besides, the reduction function has only to be associative, 
commutativity is an option. Another type of hyperobjects 
provided by the Cilk++ runtime system is the “splitter”. This 
last is useful for some cases where a global variable exhibit no 
change from immediately before a cilk_spawn to immediately 
after the cilk_spawn when executed serially, either because 
the subroutine does not change the variable’s value, or it turns 
it back after modification before the function returns. An 
example of such variable is the local depth of a node inside a 
binary tree. In this particular case this variable can be declared 
as a splitter so as to attribute different views to the various 
nodes during tree traversal [27]. 

IV. OPENMP 
 
OpenMP is considered as one of the most popular shared 

memory parallel programming models in use today. Several 
vendors are creating products as compilers, development tools 
and performance analysis tools for OpenMP, including Intel, 
IBM, HP, Fujutsu, AMD, ARM, etc. OpenMP has been well 
used to standardize SMP machine programming over the last 
fifteen years. 

OpenMP Application Programming Interface is a portable 
standard which offers a simple and straightforward 
programming environment to write parallel multithreaded 
applications. In fact, a developer can easily transform a 
sequential code into a parallel one. This is simply done by 

inserting a set of directives into the sequential code. OpenMP 
is not a language by itself, but an extension to existing 
languages like C, C++ and Fortran. 

It is important to say that it is not mandatory to parallelize 
the entire application. Instead, just putting directives to loops 
or statements in the programs is enough to parallelize some 
regions of the code, thus offering an incremental approach of 
parallelization. In practice, OpenMP is principally used to 
parallelize loops which are too much time-consuming. 

A. The OpenMP Application Programming Interface 
OpenMP provides several directives that can be classed 

into three main types dealing with parallelism / work sharing, 
data environment and synchronization. 

 Parallel directives: OpenMP uses the fork-join model 
of parallel execution. An OpenMP program starts 
execution as a single thread, called the master thread. 
The “parallel” construct is the fundamental directive to 
express parallelism. When the master reaches this point 
of execution, it creates a number of child threads with 
the fork statement. The child threads along with the 
master work in parallel and execute a given part of the 
program. By leaving the parallel region all threads 
synchronize and join the master. The master then 
proceeds execution of the serial code, whereas the 
remaining threads terminate. 
Work-sharing directives, like the “for” directive, split 
the overall set of iterations into threads, each of which 
processes a subpart of the computation. “Section” 
directive attributes a different structured block to a 
different thread.  

 Data environment directives define the visibility inside 
a parallel region of variables declared outside this 
block. They specify whether these variables are 
“shared” by all threads, or “private”. In the last case, 
each thread creates a local copy of the variable. Unless 
explicitly specified, variables default to shared since 
OpenMP works on shared memory architecture. In the 
opposite side, variables of a subroutine stack called 
inside a parallel block are private. 

 Synchronisation: several synchronization directives are 
provided by OpenMP. The “critical” directive allows 
only to one thread to enter a region at the same time. A 
particular case of critical sections is the “atomic” 
directive. It is used only for assignment to ensure that 
the specific storage location is accessed atomically. 
The “barrier” directive states that all threads must wait 
each others to reach this point of execution before 
proceeding. By default, an implicit barrier resides at 
the end of parallel blocks like the “for” loop, the 
“parallel” bloc, the “section” bloc. The “nowait” clause 
removes this barrier. 

Applications written using OpenMP directives can be 
compiled by OpenMP compilers as well as non-OpenMP 
compilers. Besides, OpenMP give the possibility to build a 
program without directives interpretation.  

B. Example 
Fig. 5 shows a simple OpenMP pseudo-code where three 

threads execute distinct functions in parallel. Each thread 
executes a different code block delimited by the directive 
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main(int argc, char **argv) { 
  int a, b, c s; 
  #pragma omp parallel sections  
  { 
  #pragma omp section /* Optional */  
      a = alice(); 
  #pragma omp section  
      b = bob();  
  #pragma omp section  
      c = cy(); 
  } 
  s = boss(a, b); 
  printf("%6.2f\n", bigboss(s,c)); 
} 

 

section. An implicit wait is existing at the end of the section 
region. After they join (when leaving the parallel section 
region) the master runs a function that depends on the result of 
parallel threads execution, and uses the last result to run 
another function. 

Fig. 5. Example of a program implemented in OpenMP 

V. MPI 
 
Message Passing Interface (MPI) is at present the most 

widely adapted framework for programming parallel 
applications for distributed memory and clustered parallel 
systems [14]. Over 40 organizations, between vendors, 
developers, researchers and users are members of the MPI 
forum. 

MPI is a standard for message passing models having a 
variety of implementations. It defines the manner how its 
features should behave among different implementations. 
Moreover, MPI is a portable API which supports almost every 
distributed memory architecture, meaning that there is no need 
to modify your code when you port your application to a 
different platform that is compliant with the MPI standard. 
MPICH and Open MPI are examples of implementation of 
MPI. Besides, MPI handles both SPMD and MPMD 
execution modes of parallel units. 

In this message passing model, a parallel program is a 
combination of processes performing cooperative operations, 
working on different address spaces (In contrast to threads that 
share a common address space, thus are the most suitable for 
shared memory architecture). In fact, processes send data to 
one another as messages that may have tags useful to sort 
them. 

A. The MPI Application Programming Interface 
An MPI program is organized as follows: An alternative 

serial code may be existing at the beginning and/or the end of 
the program. Parallel region of the code is managed by several 
routines. MPI_Init (resp. MPI_finalize) is used to initialize the 
parallel execution environment (resp. to terminate the parallel 
execution environment). It is important to mention that these 
functions can be called once – and only once – in an MPI 
program. 

MPI uses groups to define a collection of processes that 
communicate with each others. A “communicator” per group 
is mandatory to enable processes communication within the 
same group. By default, “MPI_COMM_WORLD” is the 
predefined communicator that contains all processes of the 
program. When the process initializes, a corresponding rank 

for every communicator is attributed by the system. In other 
words, a process may have several ranks (or identifiers), but 
once per communicator. Note that data exchange is explicitly 
specified by the programmer, and ranks are useful for him to 
define source and destination processes whenever he needs to 
send or receive a message. 

Communication operations within a group involve point-
to-point as well as collective communication routines. In 
point-to-point operations messages are passed between only 
two cooperative processes: the first performs a send and the 
other carry out the matching receive operation. Point-to-point 
routines can be classified into several types: blocking / non-
blocking send, blocking / non-blocking receive, combined 
send / receive, synchronous send, buffered send, etc.  Take 
into consideration that the last type is useful for asynchronous 
communication. The system buffer space is completely 
managed by the MPI library so that it is fully opaque to the 
programmer. Collective communication routines involve all 
processes scoped to a group. They can be classified into three 
types: synchronization, data movement and collective 
computation. In synchronization operations, a process must 
wait until other processes belonging to the same group reach a 
synchronization point. Data movement operations involve 
message broadcast, scatter / gather, etc.  In collective 
computation, a member of the group collects data from the 
other members and performs an operation on that data (such 
as min, max, add, multiply, etc.). It is the programmer’s 
responsibility to check that all processes within a group 
participate in the collective operation. 

In addition to the intracommunication operations 
previously described, MPI offers the possibility for different 
applications to exchange information via intercommunicators, 
thereby allowing to processes belonging to different groups to 
intercommunicate. 

B. Example 
The example shown in fig. 6 illustrates a simple MPI 

program where two processes exchange messages, perform 
some treatments and print out their rank as well as the 
message received. The rank indicates the identity of the 
running process. 

The MPI_Comm_size routine returns the size of the group 
associated with a communicator, whereas the 
MPI_Comm_rank determines the rank of the calling process 
in the communicator. The MPI_Send (resp. MPI_Receive) 
performs a blocking send operation (resp. a blocking receive 
operation). 

In this example, two processes having ranks 0 and 1 
compute the sum of elements of an array table. The first 
process (with the rank 0) reads the number of elements as well 
as their values from the standard input. Next, the work is split 
between both processes: the one ranked 0 sends the half 
portion of the elements introduced by the user to the process 
with rank 1. Working in parallel, each process computes a 
partial sum of the portion assigned to him. Once completed, 
the process ranked 1 sends the result back to the first process 
which computes the total sum and prints the final value to the 
standard output. Information exchange is fulfilled using 
blocking send/receive. In the example, partial_sum refer to 
two different variables located in two different address spaces 
(once per process). 
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#include "mpi.h" 
#include <stdio.h> 
#define MAX_SIZE 10000 
 
main(int argc, char **argv) { 
  int numtasks, rank, dest, source, rc, tag=1;  
  int i, sum, partial_sum, num_rows, num_rows_to_send, 
num_rows_to_receive; 
  int array[MAX_SIZE], partial_array[MAX_SIZE]; 
  MPI_Status Stat; 
 
  MPI_Init(&argc,&argv); 
  MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 
  MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
 
  if (rank == 0) { 
   dest = 1; 
   source = 1; 
 
   /* reads the input elements of the table */ 
   printf("please enter the number of elements to sum: "); 
   scanf("%i", &num_rows); 
   printf("please enter the values of elements to sum: "); 
   for(i = 0; i < num_rows; i++) { 
     scanf (“%i”, &array[i]); 
   }  
    
   /* send the half number of the table elements to the process with 
rank 1 */ 
   num_rows_to_send = num_rows div 2; 
   rc = MPI_Send(&num_rows_to_send, 1, MPI_INT, dest, tag, 
MPI_COMM_WORLD); 
   rc = MPI_Send(&array[0], num_rows_to_send, MPI_INT, dest, tag, 
MPI_COMM_WORLD); 
 
   /* computes the sum of the remaining elements in parallel with the 
process ranked 1 */ 
   sum = 0; 
   for(i = num_rows_to_send; i < num_rows; i++) { 
     sum += array[i];    
   } 
   printf("Task %d: The partial sum performed by task %d  is %d \n", 
rank, rank, sum); 
    
    
   /* receives the partial sum of elements computed by the process 
with rank 1 */ 
   rc = MPI_Recv(&partial_sum, 1, MPI_INT, source, tag, 
MPI_COMM_WORLD,    &Stat); 
   sum  += partial_sum; 
   printf("Task %d: The partial sum performed by task %d is %d \n", 
rank, Stat.MPI_SOURCE, partial_sum); 
 
   /* print the final result */ 
   printf("Task %d: The result of treatment is %d \n", rank, sum); 
   }  
 
  else if (rank == 1) { 
   dest = 0; 
   source = 0; 
 
   /* receive the table elements to sum */ 
   rc = MPI_Recv(&num_rows_to_receive, 1, MPI_INT, source, tag, 
MPI_COMM_WORLD,   &Stat); 
   rc = MPI_Recv(&partial_array, num_rows_to_receive, MPI_INT, 
source, tag, MPI_COMM_WORLD,   &Stat); 
 
   printf("Task %d: Received %d elements to sum from task %d \n", 
    rank, num_rows_to_receive, Stat.MPI_SOURCE); 

 

   /* computes the partial sum of the elements received */ 
   partial_sum = 0; 
   for(i = 0; i < num_rows_to_receive; i++) { 
     partial_sum += partial_array[i];    
   } 

  
  /* sends the partial result back to the process with rank 0 */ 
   rc = MPI_Send(&partial_sum, 1, MPI_INT, dest, tag, 
MPI_COMM_WORLD); 
   } 
 
 
  MPI_Finalize(); 
} 

 

Fig. 6. Example of an MPI program consisting of two parallel processes 
computing the sum of an array table elements 

VI. COMPARING THE PROGRAMMING MODELS 
 
Since its establishment, most of parallel computing is still 

being done through multithreading and message passing. In 
fact, all of the previously described parallel programming 
models have proven a great success from their creation up to 
now, each one having its specificity. Depending on the 
application needs and the target architecture, some particular 
PPM would be the most suitable than others. 

While Cilk, Cilk++ and OpenMP work on platforms with 
shared memory architecture, distributed memory machines are 
strongly connected to message passing models like MPI. 
Although MapReduce was originally developed on distributed 
memory, this model has been ported to shared memory 
systems [3]. 

There are several other criteria by which the parallel 
programming models can differ. Table 1 summarizes some of 
these criteria. 

Scheduling consists in assigning tasks to processes or 
threads, thus fixing the order of their execution. This 
assignment can be done either statically at program start, or 
dynamically during execution. It is different from mapping 
which refer to the attribution of processes or threads to 
physical units (processors, cores). 

Determinism is the use of automatic synchronization tools 
provided by some parallel programming models without any 
programmer intervention. The explicit way leaved to the 
developer to synchronize threads in order to ensure the correct 
execution of the program is named indeterminism [19]. 

Both MapReduce and OpenMP provide a simple way and 
easy to use framework to write parallel applications, unlike 
MPI where the programmer is responsible for determining all 
details of parallelism, including communication and 
synchronization between processes. For MapReduce, all these 
low-level details are hidden so that the programmer just needs 
to concentrate on the sequential code. This implicit 
representation of parallelism is what makes it an easy and 
attractive tool. But it handles applications that can only be 
expressed in particular way (i.e. following MapReduce 
pattern). Despite the fact that parallel application development 
using Cilk/Cilk++ is not as straightforward as other 
programming models, it is suited for divide and conquer  
applications - namely the recursive ones - where problems can 
be divided into parallel independent tasks and the results can 
be  
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TABLE I.  COMPARING THE PARALLEL PROGRAMMING 

MODELS 

 

Criteria 
Parallel Programming Models 

MapReduce Cilk/Cilk++ OpenMP MPI 

Organisation 
of the address 
space 

Distributed / 
Shared 

Shared Shared Distributed 

Representation 
of parallelism 

Implicit Explicit Explicit Explicit 

Data level 
parallelism 

Yes Yes Yes Yes 

Task level 
parallelism 

No Yes Yes Yes 

Data 
decomposition 
support 

Yes No Yes No 

Incremental 
parallelism 

No Yes Yes No 

Deterministic Yes No No No 

Built-in load 
balancing 

Yes Yes Yes No 

Supported 
languages 

All C/C++ 
Fortran, 
C/C++ 

Fortran, 
C/C++ 

Support for 
parallel 
programming 

Library Extension 
Compiler 
directives 

Library 

Static / 
dynamic 
scheduling 

Static Dynamic 
Static / 

Dynamic 
Static / 

Dynamic 

Static / 
dynamic 
mapping 

Dynamic Dynamic 
Static / 

Dynamic 
Static / 

Dynamic 

Complexity Simple Complex Simple Complex 

Level of 
Abstraction 

High Middle Middle Low 

 
combined afterward. Although OpenMP requires an explicit 
parallelism, it resides as a simple model allowing an 
incremental parallelization of an existing code. This model is 
useful for programmers who need to transform quickly a 
sequential code into a parallel one. 

VII. CONCLUSION 
In this paper, we gave a brief overview of several leading 

parallel programming models existing in the literature. We 
introduced the basic concepts behind these models, followed 
by a comparison of some extracted features for each one. 
MapReduce is well known for its simplicity but efficiency to 
solve big data applications. Cilk/Cilk++ is a shared memory 
programming model well suited for problems based on divide 
and conquer strategy. Even though OpenMP is also designed 
for shared memory, it remains the standard that provides an 
incremental approach to the parallelization of a sequential 
code. On the other hand, MPI is the first appeared standard 
application programming interface for distributed memory 
architecture. 

These programming models are not mutually exclusive 
and can be combined to yield systems that exploit most 
benefits and make maximum use of techniques they provide. 
In fact, as a response to the huge advance of technology in 
computer sciences, and in order to achieve the best possible 
performance, axes of research tend to overlap more than one 
parallel programming model. For instance, using MPI to 
coarsely distribute work among machines, and using OpenMP 

to parallelize at finer level on a single machine. But the search 
for better models remains always a research topic. 

Future works would include a more detailed study that 
embodies a performance analysis and allows a comparison of 
these models regarding other runtime criteria like execution 
time, speedup, etc. In addition, we intend to answer the 
following questions: “Can these PPMs be related, associated, 
and/or specific to application domains (such as imaging, 
networks, etc.)? Can PPMs be adapted so as to take into 
account variabilities from one domain to another? And if 
“Yes”, how should it be done? 
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