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Abstract—Parallel programming and the design of efficient
parallel programs is a development area of growing importance.
Parallel programming models are almost used to integrate
parallel software concepts into a sequential code. These models
represent an abstraction of the hardware capabilities to the
programmer. In fact, a model is a bridge between the
application to be parallelized and the machine organization. Up
to now, a variety of programming models have been developed,
each having its own approach. This paper enumerates various
existing parallel programming models in the literature. The
purpose is to perform a comparative evaluation of the mostly
used ones, namely MapReduce, Cilk, Cilk++, OpenMP and
MPI, within some extracted features.
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. INTRODUCTION

Over the last decades, the need to solve large problems in
different fields such as sciences, engineering or business has
been increasingly developed. Moreover, these problems may
process large amount of data, which can reach the order of
terabytes or even petabytes. Other applications are very highly
compute-intensive, and involve applying a multitude of
complex treatments. These kinds of problems require
powerful platforms that enable them to accomplish their tasks
in a reasonable amount of time. On the other side, Moore’s
law — the processor speeds will double every two years — has
reached its physical limits and therefore, became no more
applicable. In fact, increasing the processors frequencies
beyond a particular threshold would result in energy
dissipation problems. This had lead researchers to turn to
parallel architecture designs in order to satisfy advanced
programs requirements. However, all parallel characteristics
of these new architectures are misused due to the sequential
programming style of our algorithms. In this context, parallel
computing has emerged as the alternative solution to exploit
the maximum use of the underlying parallel architecture, thus
enabling to run such applications efficiently, reliably and
quickly. “It strikes me that in terms of future development, the
magnitude of the change that software developers are going to
experience will be substantial. A decade from now, we’ll be
looking back and thinking how much differently we approach
writing program code. Parallelism, for everyone, is going to
be ubiquitous.” confirmed James Reinders, director of
marketing and business in Intel Software Development
Products Division.

Parallel programming models (PPM) aim to provide a
mechanism with which the programmer can specify parallel
programs. In the recent years, a variety of parallel

programming models have been founded providing several
development tools in order to achieve the best performance
possible of parallel applications. Each model has its proper
strategy to treat the problem, as a consequence, has its
advantages as well as limitations.

In the following, we present the most significant parallel
programming models existing in the literature, including
MapReduce, Cilk, Cilk++, OpenMP and MPI. Each model is
explained by an example that illustrates using of its paradigms
to implement parallel algorithms. Section 2 gives a brief
overview of MapReduce some basic concepts. Section 3
presents the fundamental idea upon Cilk and Cilk++. Section
4 deals with the main principles of OpenMP. Section 5
describes the MPI programming model. Section 6 discusses
some criteria by which the mentioned PPMs can differ aiming
at their classification.

II. MAPREDUCE

MapReduce was originally introduced by Google to run on
a cluster of machines. It targets data intensive application. In
the recent years, it has emerged as one of the most powerful
and widely used parallel computing platforms for processing
big data. Over 70 companies including Facebook, Yahoo,
Adobe and IBM have adopted Hadoop, an open-source
implementation of MapReduce [5].

A. Description

As the name implies, MapReduce is based on two main
phases: the map phase, and the reduce one. In the map phase,
data is first split into chunks with fixed data size (typically 64
megabytes), then passed to the “map” function as sets of
<key,value>, denoted <k;, v;>. The “map” function, written
by the user, takes a pair <k;, v;>, performs the specified
treatments to generate sets of intermediate pairs list<k,, v,>.
Note that this operation is done in parallel by many
workstations forming the cluster. Then, the run-time system
groups together, all intermediate values, from the output of the
map function, sharing the same key as input to the “reduce”
function. The later, also written by the user, takes a key and a
list of its corresponding value <k,, list<v,>>, applies the
specified treatments to produce a smaller set of values
(typically one value) [1].

Map <kq, v> — list <k,, v,>
Reduce <k, list <v,>> — list <v,>

It is important to mention that the input keys and values
types are usually different from those of the output, unlike the
intermediate keys and values which are from the same type of
the output ones.
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For a better understanding of MapReduce, the following
example concretizes the theoretical aspects described above. It
illustrates an application that counts the number of
occurrences of each word in a set of text documents.

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
Emitintermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt(v);
Emit(AsString(result));

Fig. 1. WordCount example implemented in MapReduce [1]

The map function sends each word as a key followed by
the value 1, whereas the reduce function sums together all the
values corresponding to the same word.

B. Google implementation

When the user calls the MapReduce program, the later
starts many copies of the program consisting in a master, and
workers split into mappers and reducers. It’s the master job to
assign a worker either a map or reduce task. Once assigned,
mappers begin execution, store intermediate values into local
disks and notify the master about their locations. This last
invoke the reducers which perform remote reads, accomplish
their execution then notify the master. Note that each single
reduce function may be assigned many different keys, but
produces a single output file stored in the global file system.

In addition to the basic functionalities offered by
MapReduce, it provides several extensions that contribute to
enhance its performances. One of the most important ones is
the “combiner” function. Once the map function has
accomplished its task, the “combiner” function, also written
by the user, performs a partial merging of data. Typically, it
carries out the same work as the reduce function, but locally
on the mapper’s machine. This is useful to save the network
bandwidth needed for data transfer.

Many applications are compliant to this programming
model and can be expressed using MapReduce, such as
distributed Grep, Count of URL Access frequency, Reverse
Web-link Graph, inverted index, distributed sort, etc. [1, 3]

At first sight, MapReduce seems to cover only applications
that are computationally straightforward. But for some cases,
the overall distributed problem can be split into not just single
map and reduce phase, but it can handle a sequence of map-
reduce phases, so that the output of a single map-reduce step is
the input of the next map-reduce algorithm. Many real-world
applications are adopting such a mechanism, namely the
Google indexing system.

III. CiLK/ CILK++

A. Cilk

Cilk is a shared memory task based language that
facilitates the development of parallel applications. Initially
founded by the MIT (Massachusetts Institute of Technology)

laboratory for computer science, it was among the pioneering
models that invoke multithreaded programming style. Cilk
provides a set of extensions to the C language that enables the
developer to create, synchronize and schedule threads. It
presents an efficient tool to write dynamic, asynchronous,
tree-like, MIMD computations.

As shown in “Fig. 2,” a Cilk computation can be simulated
as a directed acyclic graph (DAG) where each vertice
corresponds to a thread. Sequences of threads connected
horizontally constitute procedures forming the Cilk program.
Once it has been invoked, a Cilk thread can run to completion
without any suspending. As long as a thread proceeds running,
it may alternatively spawn a child, connected to its parent
thread by a downward edge. This is similar to a subroutine
call, with the difference that a spawn child will not return any
value to its parent. Rather, the parent spawns in parallel a
successor that receives the return value of the child. In the
DAG, the successor is linked horizontally to the creating
thread. Note that the successor cannot begin execution unless
the missing parameters are received. This creates data
dependencies between threads, represented by an upward edge
in the DAG.

Level 0 .J_’ > . > ‘g > Q
.,.

Level 1 o
Level 2 ,} Thread

— Spawn of a child

Y =p Spawn of a successor
. - -9 Data d d

Level 3 ,}—y o Q _>Q ¥ Data dependency

Fig. 2. Directed acyclic graph of a Cilk computation

1) Implementation

Cilk represents a thread as a “closure” that handles a data
structure involving: a pointer to the C function for the thread,
a set of its arguments as well as a “join counter” dealing with
the number of missing arguments. A closure may have two
possible states: it is “ready” if the number of missing
arguments is equal to zero, “waiting” otherwise. Another data
type provided by the Cilk language is the continuation,
defined by the keyword “cont”. The later represents a global
reference to an empty argument slot of a closure. Having the
same type of the argument it references, this structure is used
to communicate data between threads.

During execution, a thread can spawn a child using the
function “spawn”. It can possibly spawn a successor within
the function “spawn_next”. Usually, a parent procedure
containing a subroutine call is coded as two threads. The first
spawns a child procedure, passing it a continuation pointing to
the successor thread’s closure. Missing arguments are
specified inside the spawning function by the name of the
argument preceded by a question mark. The child thread sends
data value to the waiting successor by means of the function
“send_argument”. As a consequence, the corresponding
counter of the successor is decremented. This procedure is
called “explicit continuation passing”.
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Fig. 3 shows a Cilk program that computes the maximum
value of elements in a table.

thread tab_max(cont int res, int T[], int begin, int end) {
if (begin !=end) {
int middle = (begin + end) div 2;
cont max_left, max_right;
spawn_next t_max(res, ?max_left, ?max_right);
spawn tab_max(max_left, T, begin, middle);
spawn tab_max(max_right, T, middle + 1, end);
}
else
{
send_argument(T[begin]);
}
}

Thread t_max (cont int res, int max_left, int max_right)

{

send_argument(res, max(max_right, max_left));

}

Fig. 3. Example of a Cilk program

2) Work-stealing scheduler

Cilks’s runtime system uses a work-stealing scheduler,
where each processor running out of work (thief) steals work
from another processor (victim).

Each processor has a local queue that contains ready
closures. For a ready closure is assigned a level corresponding
to the number of spawns (within the level axis in fig. 2)
beginning from the root (level 0). A ready queue is an array
whose L’th element is a linked list of ready closures having
level L and assigned to the processor. A thief chooses a victim
processor at random. Whenever chosen, it selects a closure
from the list with the lowest level in the processor’s local
queue. This mechanism allows the thief to take a large amount
of work from the victim as much as possible, since the stolen
thread may spawn children while running, thus reducing the
overall time required for the program execution.

As a cilk program begins execution, it places the root
thread in the ready queue of a processor. Note that all ready
queues are initially empty. While running, a thread with the
level L may spawn a child or a successor. In this case, the
scheduler allocates a closure for the new thread, fill in
arguments as well as the join counter to the number of the
missing arguments.  Alternatively, it may initialize
continuations to point to the missing arguments. Otherwise it
attributes the level L+1 to the child thread (resp. L to the
successor) before posting them to the processor’s ready queue.

When a processor terminates a thread execution, it checks
the existence of other threads in its ready queue, from which
it selects the one having the highest level. Otherwise it
performs work stealing.

3) Performance

Cilk guarantees to the user two major performance
quantities to characterize the performance of applications.
The first one, called the “work”, corresponds to the minimum
amount of time needed for serial execution of the
multithreaded application (i.e. on one processor). The second
measure, called “critical path”, is the minimum execution
time of the same program on an infinite number of processors
[23], which corresponds to the longest path execution time

among any path of the DAG. In fact, these quantities can be
used to predict the runtime of a Cilk program. Denoting T; as
the work, T,, as the critical path, Cilk guarantees that the
execution time of the program on P processors is very near to
the sum of these two measures [23].

B. Cilk++

Similarly like Cilk, Cilk++ is an extension to the C++
programming language that offers a reliable way for
multithreaded parallel programming. Intuitively, the developer
does not need to restructure applications significantly in order
to add parallelism.

Cilk++ was originally built by Cilk Arts, after it was
licenced the Cilk technology by the MIT laboratory. Today,
both open sources as well as commercial versions are
available, after Intel has acquired Cilk Arts.

1) Description

Cilk++ programming language can be merely summarized
in three key words: “cilk spawn”, “cilk sync” and “cilk for”.
The “cilk spawn” statement precedes the invocation of a
function, thus allowing the creation of a spawn child. The
“cilk_sync” statement acts like a barrier, where all children
must achieve the same point and complete execution before
the caller proceeds. Unlike other programming models, this
barrier is local to its calling function, meaning that all threads
created by this function must reach this execution point
without affecting other threads spawn by other functions. Note
that any function embodies an implicit “cilk_sync” at its end,
ensuring all its spawned children terminate before it does. The
“cilk_for” statement represents a major improvement of
Cilk++ upon Cilk. It enables automatic parallelization of
loop’s iterations. Note that a “cilk_for” can be expressed as a
for loop using cilk spawn and cilk sync in MIT Cilk system
to create parallelism over iterations. The Cilk++ runtime
system provides several other enhancements such as mutual
exclusion locks, support for exceptions etc. The example in
fig. 4 can help understand the basic Cilk++ concepts. It
contains the same function as in the previous paragraph, but
written with Cilk++.

int tab_max(int T[], int begin, int end) {

if (begin !=end) {
int max_left, max_right;
int middle = (begin + end) div 2;
max_left = cilk_spawn tab_max(T, begin, middle);
max_right = tab_max(T, middle + 1, end);
cilk_sync
return max(max_left, max_right);

}

else

{
return(T[begin]);

}

Fig. 4. Example of a Cilk++ program

In this example, “cilk_sync” acts like a local barrier where
the calling function must wait the completion of its children,
corresponding to the calculation of the maximum of its two
split sub-tables, before it returns. This is mandatory to
guarantee the consistency of the final result. This
synchronization is achieved by means of the continuation type
in the previous example written with Cilk.
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As Cilk++ is an evolution of the MIT Cilk model, it shares
the same principles on which Cilk is based like the work
stealing scheduler and the directed acyclic graph. In fact, a
cilk spawn invocation of a function creates two edges: ones
goes from the instruction preceding the cilk spawn, whereas
the other goes to the first instruction of the spawned function.
The cilk_sync creates edges from the final instruction of each
spawned function to the instruction following the cilk sync
[26].

2) Hyperobjects

Cilk++ introduces the concept of hyperobjects to handle
data race bugs in code with non local variables. A data race
takes place when two strands (sequential execution of
instructions) have access to the same shared location, outside
the use of any lock, with at least one strand modifies the value
of the location. Although using nonlocal variables simplifies
the coding task for the programmer, their management
remains a problematic issue in the context of parallel
computing. Applying traditional methods like the mutual
exclusion lock is unfortunately unpractical and inefficient
since it may cause bottleneck during execution. Rather,
Cilk++ provides additional entities called “hyperobjects” that
allows different strands to have their local view of the same
nonlocal variable. During the strand’s execution, these views
are private so that the threads can modify their states without
any synchronization. When different strands join, they
coordinate to update the value of the shared variable. Several
hyperobjects are supplied by the Cilk++ runtime system,
namely the “reducers”. When the branches synchronize, a
reducer performs a combining operation to local views of each
thread and the result is assigned to the shared variable. Unlike
other programming models, the reduction operation can be
fulfilled progressively as long as some strands are done and
does not require that the overall threads to be completed.
Besides, the reduction function has only to be associative,
commutativity is an option. Another type of hyperobjects
provided by the Cilk++ runtime system is the “splitter”. This
last is useful for some cases where a global variable exhibit no
change from immediately before a cilk_spawn to immediately
after the cilk spawn when executed serially, either because
the subroutine does not change the variable’s value, or it turns
it back after modification before the function returns. An
example of such variable is the local depth of a node inside a
binary tree. In this particular case this variable can be declared
as a splitter so as to attribute different views to the various
nodes during tree traversal [27].

IV. OPENMP

OpenMP is considered as one of the most popular shared
memory parallel programming models in use today. Several
vendors are creating products as compilers, development tools
and performance analysis tools for OpenMP, including Intel,
IBM, HP, Fujutsu, AMD, ARM, etc. OpenMP has been well
used to standardize SMP machine programming over the last
fifteen years.

OpenMP Application Programming Interface is a portable
standard which offers a simple and straightforward
programming environment to write parallel multithreaded
applications. In fact, a developer can easily transform a
sequential code into a parallel one. This is simply done by

inserting a set of directives into the sequential code. OpenMP
is not a language by itself, but an extension to existing
languages like C, C++ and Fortran.

It is important to say that it is not mandatory to parallelize
the entire application. Instead, just putting directives to loops
or statements in the programs is enough to parallelize some
regions of the code, thus offering an incremental approach of
parallelization. In practice, OpenMP is principally used to
parallelize loops which are too much time-consuming.

A. The OpenMP Application Programming Interface

OpenMP provides several directives that can be classed
into three main types dealing with parallelism / work sharing,
data environment and synchronization.

e Parallel directives: OpenMP uses the fork-join model

of parallel execution. An OpenMP program starts
execution as a single thread, called the master thread.
The “parallel” construct is the fundamental directive to
express parallelism. When the master reaches this point
of execution, it creates a number of child threads with
the fork statement. The child threads along with the
master work in parallel and execute a given part of the
program. By leaving the parallel region all threads
synchronize and join the master. The master then
proceeds execution of the serial code, whereas the
remaining threads terminate.
Work-sharing directives, like the “for” directive, split
the overall set of iterations into threads, each of which
processes a subpart of the computation. “Section”
directive attributes a different structured block to a
different thread.

e Data environment directives define the visibility inside
a parallel region of variables declared outside this
block. They specify whether these wvariables are
“shared” by all threads, or “private”. In the last case,
each thread creates a local copy of the variable. Unless
explicitly specified, variables default to shared since
OpenMP works on shared memory architecture. In the
opposite side, variables of a subroutine stack called
inside a parallel block are private.

e Synchronisation: several synchronization directives are
provided by OpenMP. The “critical” directive allows
only to one thread to enter a region at the same time. A
particular case of critical sections is the “atomic”
directive. It is used only for assignment to ensure that
the specific storage location is accessed atomically.
The “barrier” directive states that all threads must wait
each others to reach this point of execution before
proceeding. By default, an implicit barrier resides at
the end of parallel blocks like the “for” loop, the
“parallel” bloc, the “section” bloc. The “nowait” clause
removes this barrier.

Applications written using OpenMP directives can be
compiled by OpenMP compilers as well as non-OpenMP
compilers. Besides, OpenMP give the possibility to build a
program without directives interpretation.

B. Example

Fig. 5 shows a simple OpenMP pseudo-code where three
threads execute distinct functions in parallel. Each thread
executes a different code block delimited by the directive
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section. An implicit wait is existing at the end of the section
region. After they join (when leaving the parallel section
region) the master runs a function that depends on the result of
parallel threads execution, and uses the last result to run
another function.

main(int argc, char **argv) {
inta, b, cs;
#pragma omp parallel sections

#pragma omp section /* Optional */
a = alice();

#pragma omp section
b = bob();

#pragma omp section
c=cy();

}

s = boss(a, b);

printf("%6.2f\n", bigboss(s,c));

Fig. 5. Example of a program implemented in OpenMP
V. MPI

Message Passing Interface (MPI) is at present the most
widely adapted framework for programming parallel
applications for distributed memory and clustered parallel
systems [14]. Over 40 organizations, between vendors,
developers, researchers and users are members of the MPI
forum.

MPI is a standard for message passing models having a
variety of implementations. It defines the manner how its
features should behave among different implementations.
Moreover, MPI is a portable API which supports almost every
distributed memory architecture, meaning that there is no need
to modify your code when you port your application to a
different platform that is compliant with the MPI standard.
MPICH and Open MPI are examples of implementation of
MPI. Besides, MPI handles both SPMD and MPMD
execution modes of parallel units.

In this message passing model, a parallel program is a
combination of processes performing cooperative operations,
working on different address spaces (In contrast to threads that
share a common address space, thus are the most suitable for
shared memory architecture). In fact, processes send data to
one another as messages that may have tags useful to sort
them.

A. The MPI Application Programming Interface

An MPI program is organized as follows: An alternative
serial code may be existing at the beginning and/or the end of
the program. Parallel region of the code is managed by several
routines. MPI Init (resp. MPI_finalize) is used to initialize the
parallel execution environment (resp. to terminate the parallel
execution environment). It is important to mention that these
functions can be called once — and only once — in an MPI
program.

MPI uses groups to define a collection of processes that
communicate with each others. A “communicator” per group
is mandatory to enable processes communication within the
same group. By default, “MPI COMM_ WORLD” is the
predefined communicator that contains all processes of the
program. When the process initializes, a corresponding rank

for every communicator is attributed by the system. In other
words, a process may have several ranks (or identifiers), but
once per communicator. Note that data exchange is explicitly
specified by the programmer, and ranks are useful for him to
define source and destination processes whenever he needs to
send or receive a message.

Communication operations within a group involve point-
to-point as well as collective communication routines. In
point-to-point operations messages are passed between only
two cooperative processes: the first performs a send and the
other carry out the matching receive operation. Point-to-point
routines can be classified into several types: blocking / non-
blocking send, blocking / non-blocking receive, combined
send / receive, synchronous send, buffered send, etc. Take
into consideration that the last type is useful for asynchronous
communication. The system buffer space is completely
managed by the MPI library so that it is fully opaque to the
programmer. Collective communication routines involve all
processes scoped to a group. They can be classified into three
types: synchronization, data movement and collective
computation. In synchronization operations, a process must
wait until other processes belonging to the same group reach a
synchronization point. Data movement operations involve
message broadcast, scatter / gather, etc. In collective
computation, a member of the group collects data from the
other members and performs an operation on that data (such
as min, max, add, multiply, etc.). It is the programmer’s
responsibility to check that all processes within a group
participate in the collective operation.

In addition to the intracommunication operations
previously described, MPI offers the possibility for different
applications to exchange information via intercommunicators,
thereby allowing to processes belonging to different groups to
intercommunicate.

B. Example

The example shown in fig. 6 illustrates a simple MPI
program where two processes exchange messages, perform
some treatments and print out their rank as well as the
message received. The rank indicates the identity of the
running process.

The MPI_Comm_size routine returns the size of the group
associated  with a  communicator,  whereas the
MPI_Comm rank determines the rank of the calling process
in the communicator. The MPI Send (resp. MPI Receive)
performs a blocking send operation (resp. a blocking receive
operation).

In this example, two processes having ranks 0 and 1
compute the sum of elements of an array table. The first
process (with the rank 0) reads the number of elements as well
as their values from the standard input. Next, the work is split
between both processes: the one ranked O sends the half
portion of the elements introduced by the user to the process
with rank 1. Working in parallel, each process computes a
partial sum of the portion assigned to him. Once completed,
the process ranked 1 sends the result back to the first process
which computes the total sum and prints the final value to the
standard output. Information exchange is fulfilled using
blocking send/receive. In the example, partial sum refer to
two different variables located in two different address spaces
(once per process).
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#include "mpi.h"
#include <stdio.h>
#tdefine MAX_SIZE 10000

main(int argc, char **argv) {
int numtasks, rank, dest, source, rc, tag=1;
int i, sum, partial_sum, num_rows, num_rows_to_send,
num_rows_to_receive;
int array[MAX_SIZE], partial_array[MAX_SIZE];
MPI_Status Stat;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
dest=1;
source = 1;

/* reads the input elements of the table */
printf("please enter the number of elements to sum: ");
scanf("%i", &num_rows);
printf("please enter the values of elements to sum:");
for(i = 0; i < num_rows; i++) {

scanf (“%i”, &arrayl[i]);

}

/* send the half number of the table elements to the process with
rank 1 */

num_rows_to_send = num_rows div 2;

rc = MPI_Send(&num_rows_to_send, 1, MPI_INT, dest, tag,
MPI_COMM_WORLD);

rc = MPI_Send(&array[0], num_rows_to_send, MPI_INT, dest, tag,
MPI_COMM_WORLD);

/* computes the sum of the remaining elements in parallel with the
process ranked 1 */

sum =0;

for(i = num_rows_to_send; i < num_rows; i++) {

sum += array[i];

}

printf("Task %d: The partial sum performed by task %d is %d \n",
rank, rank, sum);

/* receives the partial sum of elements computed by the process
with rank 1 */

rc = MPI_Recv(&partial_sum, 1, MPI_INT, source, tag,
MPI_COMM_WORLD, &Stat);

sum += partial_sum;

printf("Task %d: The partial sum performed by task %d is %d \n",
rank, Stat.MPI_SOURCE, partial_sum);

/* print the final result */
printf("Task %d: The result of treatment is %d \n", rank, sum);

}

else if (rank == 1) {
dest =0;
source = 0;

/* receive the table elements to sum */

rc = MPI_Recv(&num_rows_to_receive, 1, MPI_INT, source, tag,
MPI_COMM_WORLD, &Stat);

rc = MPI_Recv(&partial_array, num_rows_to_receive, MPI_INT,
source, tag, MPI_COMM_WORLD, &Stat);

printf("Task %d: Received %d elements to sum from task %d \n",
rank, num_rows_to_receive, Stat. MPI_SOURCE);

/* computes the partial sum of the elements received */
partial_sum = 0;
for(i = 0; i < num_rows_to_receive; i++) {

partial_sum += partial_array[i];

}

/* sends the partial result back to the process with rank 0 */

rc = MPI_Send(&partial_sum, 1, MPI_INT, dest, tag,
MPI_COMM_WORLD);

} —

MPI_Finalize();
}

Fig. 6. Example of an MPI program consisting of two parallel processes
computing the sum of an array table elements

VI. COMPARING THE PROGRAMMING MODELS

Since its establishment, most of parallel computing is still
being done through multithreading and message passing. In
fact, all of the previously described parallel programming
models have proven a great success from their creation up to
now, each one having its specificity. Depending on the
application needs and the target architecture, some particular
PPM would be the most suitable than others.

While Cilk, Cilk++ and OpenMP work on platforms with
shared memory architecture, distributed memory machines are
strongly connected to message passing models like MPI.
Although MapReduce was originally developed on distributed
memory, this model has been ported to shared memory
systems [3].

There are several other criteria by which the parallel
programming models can differ. Table 1 summarizes some of
these criteria.

Scheduling consists in assigning tasks to processes or
threads, thus fixing the order of their execution. This
assignment can be done either statically at program start, or
dynamically during execution. It is different from mapping
which refer to the attribution of processes or threads to
physical units (processors, cores).

Determinism is the use of automatic synchronization tools
provided by some parallel programming models without any
programmer intervention. The explicit way leaved to the
developer to synchronize threads in order to ensure the correct
execution of the program is named indeterminism [19].

Both MapReduce and OpenMP provide a simple way and
easy to use framework to write parallel applications, unlike
MPI where the programmer is responsible for determining all
details of parallelism, including communication and
synchronization between processes. For MapReduce, all these
low-level details are hidden so that the programmer just needs
to concentrate on the sequential code. This implicit
representation of parallelism is what makes it an easy and
attractive tool. But it handles applications that can only be
expressed in particular way (i.e. following MapReduce
pattern). Despite the fact that parallel application development
using Cilk/Cilk++ 1is not as straightforward as other
programming models, it is suited for divide and conquer
applications - namely the recursive ones - where problems can
be divided into parallel independent tasks and the results can
be
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TABLE L COMPARING THE PARALLEL PROGRAMMING
MODELS
Parallel Programming Models
Criteria
MapReduce Cilk/Cilk++ OpenMP MPI
Organisation -
of the address Distributed / Shared Shared Distributed
Shared
space
Representation . . - -
of parallelism Implicit Explicit Explicit Explicit
Data . level Yes Yes Yes Yes
parallelism
Task . level No Yes Yes Yes
parallelism
Data
decomposition Yes No Yes No
support
Incremgntal No Yes Yes No
parallelism
Deterministic Yes No No No
Bmlt_lp load Yes Yes Yes No
balancing
Supported Fortran, Fortran,
languages All c/eH C/C++ C/C++
Support for .
parallel Library Extension ((;ompller Library
. irectives
programming
Static . / . . Static / Static /
dynamic Static Dynamic Dynamic Dynamic
scheduling Y Y
Static . / . . Static / Static /
dynamic Dynamic Dynamic . .
. Dynamic Dynamic
mapping
Complexity Simple Complex Simple Complex
Level of . . .
Abstraction High Middle Middle Low

combined afterward. Although OpenMP requires an explicit
parallelism, it resides as a simple model allowing an
incremental parallelization of an existing code. This model is
useful for programmers who need to transform quickly a
sequential code into a parallel one.

VII. CONCLUSION

In this paper, we gave a brief overview of several leading
parallel programming models existing in the literature. We
introduced the basic concepts behind these models, followed
by a comparison of some extracted features for each one.
MapReduce is well known for its simplicity but efficiency to
solve big data applications. Cilk/Cilk++ is a shared memory
programming model well suited for problems based on divide
and conquer strategy. Even though OpenMP is also designed
for shared memory, it remains the standard that provides an
incremental approach to the parallelization of a sequential
code. On the other hand, MPI is the first appeared standard
application programming interface for distributed memory
architecture.

These programming models are not mutually exclusive
and can be combined to yield systems that exploit most
benefits and make maximum use of techniques they provide.
In fact, as a response to the huge advance of technology in
computer sciences, and in order to achieve the best possible
performance, axes of research tend to overlap more than one
parallel programming model. For instance, using MPI to
coarsely distribute work among machines, and using OpenMP

to parallelize at finer level on a single machine. But the search
for better models remains always a research topic.

Future works would include a more detailed study that
embodies a performance analysis and allows a comparison of
these models regarding other runtime criteria like execution
time, speedup, etc. In addition, we intend to answer the
following questions: “Can these PPMs be related, associated,
and/or specific to application domains (such as imaging,
networks, etc.)? Can PPMs be adapted so as to take into
account variabilities from one domain to another? And if
“Yes”, how should it be done?
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