
Parallel Block-Based Architecture for Improved

Edge Detection in Verilog

S. Neethu Raj

Embedded Systems

Sree Buddha College of Engineering,

 Pattoor, India.

Alex. V

Electronics and Communication

Sree Buddha College of Engineering,

 Pattoor, India.

Abstract— The purpose of edge detection is to reduce the

amount of information in an image, while preserving the

structural properties to be used for further image processing.

Most often edge detection algorithms are implemented in

software tools .The advancements in VLSI technology made the

hardware implementations a good alternative. Exploiting the

parallelism in algorithms and assigning complex task to

hardware yields significant speedup in running times. The

Canny edge detector is widely used in many applications due to

its ability to extract significant edges with better detection,

localization and performance for noise contaminated edges. But

the frame level processing of image makes the computation of

Canny algorithm complex and increases its latency. Hence a

block based design with a block classification and adaptive

threshold unit was considered. The latency for the block based

algorithm now becomes the function of block size instead of

frame size. In addition to the above design, the input image will

be given a contrast boost with help of histogram equalization, in

order to detect more edges. Further-more, hardware

architecture of the proposed algorithm is also presented. The

architecture design is also capable of processing blocks in

parallel and supports fast edge detection of images and videos.

The proposed design is coded in Verilog hardware description

language and synthesized on Xilinx Virtex-5 FPGA using Xilinx

ISE design suite 14.2. Simulation results are presented to

illustrate the performance of block-based edge detector.

Keywords— Canny Edge detector; Block-based Processing;

Histogram equalization; FPGA.

I. INTRODUCTION

The most important task in any vision based system is the
detection of proper edges in digitized images. A good edge
detector responds to true edges and should be insensitive to
noise. The realization of edge detector should be
computationally efficient and effective. The most modern
image processing applications requires more power and
storage space. Edge detection is one among the preprocessing
steps in many computer vision applications. It is used to detect
sharp discontinuities in an image. Typical edge detection
algorithms are implemented using software tools.

The advancements in Very Large Scale Integration (VLSI)
technology made the hardware implementations, a better
alternative for real-time applications. Edge detection identifies
and locates sharp discontinuities in the image. The
discontinuities include abrupt changes in pixel intensity which
defines the boundaries of objects in an image. Existing edge
detection algorithms involve, convolution of the image with

edge detector operator, which is sensitive to maximum
gradients in the image and returns values of zero in uniform
and smooth regions. There is large number of edge detection
operators available, each designed to be sensitive to peculiar
type of edges.

Canny edge detector is considered as a standard edge
detector because of its superior performance. The high
performance is due to the hysteresis thresholding concept
which computes high and low thresholds based on the whole
image statistics. Unfortunately, the specified feature makes the
Canny algorithm more computationally complex and
additional pre-processing steps needs to be done on the entire
frame image. Hence, direct implementation of the Canny
algorithm has high latency and cannot be used in real-time
applications. Canny algorithm is highly dependent on a correct
setting of the threshold. They will miss some edges or detect
some spurious edges when the threshold is not set a proper
value. Hence, this algorithm is not good for mobile robot
vision system in which all of the operation should be done by
the robot controller and the environment changes rapidly.
Another disadvantage of the commonly used Canny algorithm
is the high computation cost. To solve the problems of Canny
algorithm, an adaptive threshold selection unit, which
calculates high and low thresholds for each block, was
utilized. Each block can be executed in parallel, thereby
decreasing the latency involved. The block based architecture
allows distributed Canny edge detector to be pipelined with
other block-level based codecs, and improves the timing
performance of video/image processing applications.

Recently there has been an increased demand for good
quality images in various research areas. Most of the
applications such as image registration, region separation, and
segmentation use edge detection as a pre-processing step for
feature extraction. The real challenge is to find a way to
enhance the noisy images and thereby extracting edges
properly. The proposed design consists of mainly two steps.
The first step is to enhance the contrast of the input block
image and second is to extract the details of the edges. Image
enhancement can be performed using histogram equalization
technique.

The Canny algorithm has been implemented on wide
variety hardware platforms. The algorithm was implemented
using Handle-C software in [3], but the tool couldn’t synthesis
the algorithm, as it did not provide the synthesis. The
implementation in [5] takes more memory access as it works
on 4 pixels in parallel. The algorithmic level implementation

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS070778

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 07, July-2015

995

of a similar edge detector without the synthesis results were
highlighted in [6]. An improved version of Verilog
implementation of Canny edge detector without equalization
was presented in [7].

The paper is organized as follows. Section II gives an
overview of the parallel block based edge detector. Section III
explains the FPGA implementation of the parallel block based
architecture with histogram equalization. Section IV presents
the obtained results, and compared with traditional canny
detector, in both Matlab and Xilinx tools. It computes the
PSNR (peak signal to noise ratio) values for quality analysis
of proposed edge detector and also presents the synthesis
results on Virtex 5 FPGA. Finally, conclusions are presented
in section V.

II. PARALLEL BLOCK BASED CANNY EDGE

DETECTION ALGORITHM

The important steps in the original Canny algorithm

includes 1) Calculates the horizontal and vertical gradients

(Gx and Gy) after convolving with gradient matrix. 2) The

magnitude gradient and direction at each pixel location is

computed. 3) A technique of non-maximal suppression is

used to convert the blurred edges to sharp edges. 4) The high

and low thresholds are calculated for determining the

potential edges of the entire image. 5) The final edges are

obtained by performing hysteresis thresholding so that the

final edges are obtained by suppressing all edges that are not

connected to strong edges. The basic block representation of

Canny edge detection algorithm is shown in Fig. 1.

Fig. 1 Canny edge detector

The basic algorithm aims at three criteria as in [1]:

detecting edges, locating proper edges, and responses from

the input image. Comparison of this algorithm with other

edge detectors like Sobel, Prewitt, Roberts etc., shows that

Canny algorithm has better response in presence of noise.

The thresholds are set on the basis of pixel distribution

throughout the image. The Canny algorithm cannot be

applied to blocks of image because of the fact that it assumes

a percentage P1 of total pixels in the block as true edges.

In order to improve the performance of edge detector at

block level, a distributed Canny edge detector algorithm is

considered. The block diagram is shown in Fig. 2. In this

version as in [7], the input image is divided into m x m

overlapping blocks and the blocks will be independently

processed. This design has almost similar steps as the original

algorithm except that it is now applied on blocks of image.

Adaptive threshold calculation step is modified for parallel

processing without affecting the edge detection performance.

Fig. 2 Distributed Canny edge detector

The percentage value P1 should be appropriate for threshold

calculation and the values are selected, as in [7], for each

block as shown in Table 1.

TABLE I

P1 VALUES FOR VARIOUS BLOCK SIZES

Block
size

Block Classification

Uniform Texture Hybrid Medium Strong

8×8 0 0.0312 0.1022 0.2183 0.482

16×16 0 0.0307 0.1016 0.2616 0.483

32×32 0 0.0305 0.1117 0.2079 0.485

64×64 0 0.0318 0.1060 0.2218 0.467

128×128 0 0.0302 0.0933 0.2375 0.484

256×256 0 0.0299 0.0911 0.2304 0.489

The computation of thresholds requires an accurately

quantized magnitude histogram. The non-uniform quantizer,

as proposed in [6], is used to obtain gradient magnitude

histogram. ‘n’ reconstruction levels are computed as shown

in [6], R1=(min+max)/2 and Ri+1 =(min+Ri)/2 (i=2,3,…..n),

where min and max are the minimum and maximum values

of gradient magnitude matrix respectively, and Ri is the

reconstruction level.

III. FPGA IMPLEMENTATION OF PROPOSED

ALGORITHM

The block diagram of the proposed algorithm is shown in
Fig.3. Each block, obtained by dividing the image, is
provided as an input to the computation engine shown in
Fig.4. Each computation engine executes an m x m

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS070778

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 07, July-2015

996

overlapping block and generates the corresponding edge
maps. There are six units for computation in the engine: 1)
Histogram equalization 2) Block classification unit. 3)
Gradient and magnitude calculation. 4) Directional non-
maximal suppression unit. 5) Adaptive thresholding. 6)
Hysteresis thresholding.

Fig.3 Proposed edge detector

 Fig.4 Block diagram of computation engine

A. Histogram equalization

It is a method used in image processing applications for
adjusting contrast of the image using the histogram of the
image. This method is mainly used for adjusting the image for
easy analysis and improving visual quality. Histogram
represents the frequency of occurrence of each pixel in an
image. The cumulative distribution function is calculated as
follows:

Cdf(i)=∑ p(j) for j=0…..i (1)

where p(j) is the probability of occurrence of a pixel. The
histogram equalization can be performed as follows:

H (n) =((cdf (n)– cdf (min))/ ((M x N)-cdf (min)) × 255) (2)

cdf(min) is minimum non-zero value of cumulative
distribution function.(M x N) is the total number of pixels in
the block of image.

(a) (b)

Fig. 5(a) Input image, (b) Equalized image

Fig.5 represents the necessity of image enhancement for edge
detection. The image enhancement technique improves the
sharpness of pixel values, and thereby highlights the details,
which is an advantage for many edge detection algorithms.
When image is represented by same pixel values it causes the
degradation of the image quality.

B. Block Classification Unit

The architecture consists of two stages, the pixel
classification unit and the block classification unit. For pixel
classification, the variance is calculated as follows:

Variance=1/8 ∑ (xi – mean) 2 (3)

where xi is the pixel intensity. The local variance is then

compared with Tu and Te [2] for pixel classification.

Step:

If (var(x, y) <=Tu)

 Pixel type=uniform;

else if(Tu<var(x,y)<=Te)

 Pixel type=texture;

else if(Te<var(x,y)

 Pixel type=edge;

where var(x,y)= 3 x 3 local variance at each pixel (x, y),

 Tu =100, Te=900, [2].

Based on the number of pixels, the input block image is

classified into either of 5 types as shown in Table II.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS070778

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 07, July-2015

997

TABLE II

BLOCK CLASSIFICATION

Where, Total_Pixel=Total number of pixels in the block,

Nuniform = Number of uniform pixels in the input block,

Nedge = Number of edge pixels in the block.

C. Gradient and magnitude calculation unit

 As these units are independent of each other they can

work in parallel. The input is scanned and convolved with the

3 x 3 gradient mask to obtain the horizontal (Gx) and vertical

gradients (Gy). The modulus of Gx and Gy are added to get

the magnitude as shown in Fig. 6.

Fig. 6 Block diagram of magnitude calculation

D. Directional non-maximum suppression unit

The direction is calculated by dividing Gy by Gx. Here

two intermediate gradient values are calculated along the

direction and each magnitude pixel is compared with these

two values. The gradient of the pixel that has maximum

magnitude is passed to final edge map and others are

suppressed. Architecture of the unit is shown in the Fig. 7.

Fig.7 Architecture of Non-maximum suppression unit

E. Adaptive threshold calculation unit

A non-uniform quantizer is used to obtain the discrete

cumulative distribution function and the thresholds are

calculated based on the CDF. The shifters and adders are

used to calculate the reconstruction levels Ri and the

comparators and counters are used to count the number of

pixels, which have magnitude equal to or less than the

reconstruction level. The P1 value will be multiplied by total

pixels and the counter is initiated. The pixel count of each

reconstruction level is compared with this count and the

closest value is used to select level i. With the help of i, max,

and min, the arithmetic unit computes the corresponding Ri,

which is the high threshold TH. Low threshold is computed

as 40% of TH. The pseudo code for adaptive threshold

calculation unit is as follows:

Step 1:

P1 =percentage of pixels in block that would be classified as

strong edges.

If (smooth block_flag=1)

 P1=0; //no edges

else if (texture block_flag=1)

 P1=0.03; // only few edges

else if (hybrid block_flag=1)

 P1=0.1; //some more edges

else if (medium block_flag=1)

 P1=0.2; //medium number of edges

else

 P1=0.4; //many number of edges

Step 2: Compute non-uniform magnitude histogram and its

corresponding cumulative distribution function.

Step 3: Compute high threshold

Step 4: Compute low threshold

The corresponding architecture is shown in Fig.8.

Minimum magnitude value and output of shifter from

previous stage are the input to the adder units.

Block Type

Pixel type count

Smooth

Nuniform>=(307*Total_Pixel)/1024 & Nedge=0

Texture

Nuniform<(307*Total_Pixel)/1024 & Nedge=0

Hybrid

Nuniform<(665*(Total_Pixel-Nedge)/1024 &

(Nedge>0 & (<307*Total_Pixel/1024))

Medium

Nuniform>=(665*(Total_Pixel-Nedge)/1024 &

(Nedge>0 & (<307*Total_Pixel/1024))

Strong

Nuniform<=(716*Total_Pixel)/1024 &

Nedge>=307*Total_Pixel/1024

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS070778

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 07, July-2015

998

Fig.8 Architecture of adaptive threshold calculation unit

F. Hysteresis thresholding

 If the pixels of NMS output matrix is above the upper

threshold, it is marked as strong edge else as weak edge. The

variable f1 represents strong edge and f2 represents weak

edge. If any of the neighboring pixels is a strong edge then

center weak pixel is marked as strong edge otherwise

considered as non-edge pixel. The architecture is shown in

Fig.9.

Fig.9 Architecture of Hysteresis Thresholding

IV. RESULTS

The edge detection performance can be evaluated by

analyzing the obtained edge maps. Fig. 10 shows the edge

maps of original Canny edge detector and Equalized edge

detector. The algorithm was applied on a set of images shown

below and validated the results. The parameter used for

quantitative analysis is peak signal to noise ratio.

 (a) (b) (c)

Fig. 10 .(a) Lena image (512 x 512) (b) Gray scale image (c) Canny edge

map of original Lena image

(a) (b) (c)

Fig.11 a) Original Lena image b) Enhanced gray scale image c) Equalized

edge map

(a) (b) (c)

Fig.12 a) Boat image (256x256) b) Gray scale image c) Canny edge map

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS070778

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 07, July-2015

999

(a) (b) (c)

Fig.13 a) Boat image b) Enhanced gray image c) Equalized edge map

(a) (b) (c)

Fig. 14 a) House image b) Gray scale image c) Canny edge map

 (a) (b) (c)

Fig. 15 a) House image b) Enhanced image c) Equalized edge map

(a) (b) (c)

Fig.16 a) Coin image b) Gray scale image c) Canny edge map

(a) (b) (c)

Fig. 17 a) Coin image b) Enhanced image c) Equalized edge map

(a) (b) (c)

Fig. 18 a) 32x32 input image b) edge map of distributed canny c) Equalized
edge map

 The above comparisons show that the equalized parallel

block edge detector detects more edges than the conventional

edge detectors. The simulation results were obtained using

Matlab software and FPGA hardware simulation tool (Xilinx

ISE software).

 Peak signal to noise ratio is the ratio of maximum power

of the signal to the power of noise that affects the quality of

representation of the signal. The peak signal to ratio was

computed for the edge detectors as follows:

PSNR=10 log 10 (MAX^2 / MSE) (4)

where MAX=maximum pixel value of the image, and MSE is

the mean of square of errors. Mean square error is the

cumulative squared error between the output image and the

original image.

TABLE III
PEAK SIGNAL TO NOISE RATIO

Image Size

Edge detector

MSE

PSNR

256×256

Canny edge detector
0.04

61.99

Equalized detector

0.03

62.82

512×512

Canny edge detector
0.05

61.59

Equalized edge

detector

0.04

62.66

TABLE IV

PSNR VALUES FOR 5 IMAGES

 Table III shows the mean square error values and the peak

signal to noise ratio obtained for the Equalized and original

Canny edge detector. From results, it can be observed that the

Equalized edge detector has more peak to signal ratio and less

mean square error. Thus, the proposed design shows better

results and can be widely used in tool condition monitoring,

and fault detection applications. In such applications low

quality images needs to be processed for fault identification

and the proposed design can be a robust alternative.

Image

Number

PSNR Values

Original Canny Equalized edge detector

1 56.53 59.96

2 58.33 61.60

3 55.10 55.61

4 55.65 58.77

5 56.99 66.49

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS070778

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 07, July-2015

1000

0 50 100

Image 1

Image 2

Image 3

Image 4

Image 5

Equalized
detector

Original Canny

 Fig. 19 Graph comparing PSNR values of 5 (512×512) images

 A set of 5 test images were taken for computing the PSNR

values. The graph shows that, the peak signal to noise ratio is

comparatively higher for the Equalized edge detector than the

original canny edge detector.

 The x-axis of the graph implies the PSNR values and y-

axis implies the image number. The FPGA (field

programmable gate array) simulation result of the proposed

design is shown in Fig. 20.

Fig.20. Verilog simulation of proposed edge detector.

The design was synthesized on Virtex 5 FPGA board using

Xilinx ISE software tool. The obtained synthesis report for

the design is shown in Table V.

TABLE V

SYNTHESIS REPORT

Device utilization summary

Logic utilization Used Available Utilization

No. of slice registers 14045 69120 20%

No. of slice LUTs 40489 69120 58%

No. of bonded IOBs 12 640 1%

No. of DSP48Es 5 64 7%

V. CONCLUSION

Original Canny edge detection algorithm depends on the

entire image frame for threshold calculation and thus the

latency is a function of frame size. But latency in the

proposed design is the function of block size. In order to

enhance the edge detection and reduce the latency involved in

the design, the parallel block based architecture with

equalized input was presented. The proposed design enhances

the quality of the input image block and highlights more

details in the block. The edge map of quality enhanced image

was found to be more precise and resulted in better

performance. The PSNR values also proved the quality of

proposed edge detector. Simulation results presented in both

Matlab and Xilinx software demonstrated that edges are more

effectively detected in proposed design when compared to

traditional Canny edge detector.

REFERENCES

[1] J. F. Canny, “A computation approach to edge detection,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 8, no. 6, pp. 769–798, Nov. 1986.

[2] J. K. Su and R. M. Mersereau, “Post-processing for artefact reduction

in JPEG-compressed images,” in Proc. IEEE ICASSP, vol. 3. May
1995, pp. 2363–2366.

[3] D. V. Rao and M. Venkatesan, “An efficient reconfigurable

architecture and implementation of edge detection algorithm using
handle-C,” in Proc. IEEE Conf. ITCC, vol. 2. Apr. 2004, pp. 843–847.

[4] H. Neoh and A. Hazanchuck, “Adaptive edge detection for real-time

video processing using FPGAs,” Altera Corp., San Jose, CA, USA,
Application Note, 2005.

[5] C. Gentsos, C. Sotiropoulou, S. Nikolaidis, and N. Vassiliadis,

“Realtime canny edge detection parallel implementation for FPGAs,”
in Proc. IEEE ICECS, Dec. 2010, pp. 499–502.

[6] Q. Xu, C. Chakrabarti, and L. J. Karam, “A distributed Canny edge

detector and its implementation on FPGA,” in Proc. DSP/SPE), Jan.
2011, pp. 500–505.

[7] Q. Xu, C. Chakrabarti, and L. J. Karam, “A distributed Canny edge

detector:Algorithm and FPGA implementation,”IEEE Transaction on
image processing,Vol.23,No.7,July 2014.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS070778

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 07, July-2015

1001

