
Panorama For Automated Testing Of Aspect-Oriented Programs Based On

Unified Modeling Diagrams

Sunidhi Sharma

Research Student

Geetanjali Babbar

Associate Professor

Abstract

 In all the previous years, object oriented language

has been widely used but today Aspect Oriented

Programming is gaining a lot of popularity because

this language has solved most of the problem of

crosscutting concerns. AOP is an approach for

modularizing the crosscutting concerns, which makes

the code understandable and simplifies software

maintenance and evolution. It provides new

constructs namely join points, point cuts, advices and

aspects in order to improve separation problem.

Because of new constructs, new types of faults may

rise. So, existing testing techniques are not adequate

for testing aspect-oriented programs. As a result, we

need to add new techniques in order to get an

appropriate solution. In this paper, an approach

based upon UML diagrams for testing aspect-

oriented programs automatically is presented. The

approach focuses on generating test sequences based

on the attributes available in input aspect oriented

code. In our research we will propose an automatic

fault detection mechanism with the help of UML

diagrams which can detect various errors. Sequences

will be generated automatically and fault detection in

Aspect-Oriented codes will validate the correct

working and errors.

1. Introduction

In software development life cycle [11], testing is an

important part. The IEEE definition of testing is “the

process of exercising or evaluating a system or

system component by manual or automated means to

verify that it satisfies specified requirements or to

identify differences between expected and actual

results”. The quality of any software product is

checked through the testing. There are many

approaches to software testing, but effective testing

of complex products is essentially a process of

investigation, not merely a matter of creating and

following rote procedure. Another definition

of testing is "the process of questioning a product in

order to evaluate it", where the "questions" are things

the tester tries to do with the product, and the

product answers with its behavior in reaction to the

probing of the tester. More than half of budget of a

software project spend on testing even though, it is

not guaranteeing the correctness of software. There

has been a high level of interest to automate the

testing process in software development. To assuring

the quality of aspect oriented projects, testing is the

only process. The process of automated software

testing requires an approach to select the test case.

The main aim of testing is to cover the programming

features.

 Aspect-oriented programming provides new

features that capture crosscutting concerns into one

separate units known as Aspects [6], The language

introduces new constructs (such as join points,

advice, intertype declarations, point cuts and aspects).

The behavior of an aspect in AspectJ programs can

be categorized into two types [12], first is aspectual

behavior which is defined as behavior implemented

in pieces of advice and second is aspectual

composition which is defined as behavior

implemented in pointcuts for composition between

base and aspectual behavior. In automated software

testing, there are two major activities i.e test-input

generation and test oracles [5]. Test-input generation

generates test inputs for the program under test. After

the test inputs are generated and executed, we need to

have test oracles to determine whether these test

executions are correct. In this paper, testing is

performed over UML diagrams

 A Use Case provides a unit of functionality given

by the system. Use Case Diagrams [22] can be used

to describe the functionality of a system in a

horizontal way. That is, rather than merely

representing the details of individual features of your

system, UCDs can be used to show all of its available

functionality. The main purpose of the use-case

diagram is to develop the functional requirements of

a system, including the relationship of "actors"

(human beings who will interact with the system) to

essential processes, as well as the relationships

among different use cases. Use-case diagrams

generally show groups of use cases -- either all use

2115

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70804

cases for the complete system, or a breakout of a

particular group of use cases with related

functionality (e.g., all security administration related

use cases) [1] [2]. To show a use case on a use-case

diagram, you draw an oval in the middle of the

diagram and put the name of the use case in the

center of, or below the oval. To draw an actor on a

use-case diagram, you draw a stick person to the left

or right of your diagram. Use simple lines to depict

relationships between actors and use cases, as shown

in Fig 1.

Fig.I: Relationship in UML diagram[1]

 A use-case diagram is typically used to

communicate the high-level functions of the system

and the system’s scope. As shown in Figure 1, we

can easily tell the functions that our example system

provides. This system lets the band manager view a

sales statistics report and the Billboard 200 report for

the band’s CDs. It also lets the record manager view

a sales statistics report and the Billboard 200 report

for a particular CD. The diagram also tells us that our

system delivers Billboard reports from an external

system called Billboard Reporting Service [1][2].

 Aspect-Oriented Programming [4] is a software

engineering approach that uses several new

constructs, such as join points, point cuts, advices,

and aspects in order to improve separation of

crosscutting concerns [16]. The new constructs bring

new types of programming faults with respect to

crosscutting concerns, such as incorrect point cuts,

advice, or aspect precedence. In fact, existing object-

oriented testing techniques are not adequate for

testing aspect-oriented programs. Aspect Oriented

Programming (AOP) is an emerging discipline in

Software Engineering. AOP [4] is a programming

paradigm which isolates secondary functions from

the main program’s logic. The definition given by

Gregor Kiczales “Modular units that cross-cut the

structure of other modular units.” The central idea of

Aspect Oriented Programming as an emerging

discipline of post-object technology is to provide

strong support to the separation of the repeated,

scattered or entangled concerns at every stage of

software development, introducing a new modular

unit to encapsulate them to facilitate extensibility,

changeability and reuse.

Fig. II: Structure of Aspect Oriented

programming

 In software engineering if we want to define a

concern, then it is defined as a property or interest

point of a system. From the system point of view,

concerns are defined as those interests belonging to

the system and its operation, or other aspects which

are critical or important for the stakeholders. Simply,

a concern is a kind of requirement needed by the

system. Some concerns can be easily encapsulated

within classes or modules, but some concerns affects

the functionality of several modules, those are called

crosscutting concerns and they are not easy to

separate. They cannot be easily encapsulated into

new functional units as “implicit functionality”

because they crosscut the whole system and are

implemented in many classes or modules producing

an entangled or scattered code, difficult to understand

and maintain. The goal of AOP is to encapsulate

them into a modular unit, called aspect, to handle

these requirements at implementation level. AOP is

an extension of Object oriented programming and it

is a future programming technique.

2116

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70804

2. Related work

Testing of aspect oriented programs is a new

programming approach. Many researchers had

contributed their research in the field of testing AOP.

 Philippe Massicotte, Linda Badri, Mourad Badri

[23] described that Aspect-Oriented Programming is

an emerging software engineering paradigm. It offers

new constructs and tools improving separation of

crosscutting concerns into single units called aspects.

Authors present, in this paper, a new aspects-classes

integration testing strategy and the associated tool.

The adopted approach consists of two main phases:

(1) static analysis: generating testing sequences based

on dynamic interactions between aspects and classes,

(2) dynamic analysis: verifying the execution of the

selected sequences. Authors focus, in particular, on

the integration of one or more aspects in the control

of collaborating classes.

 Swati Tahiliani, Pallavi Pandit [24] explained that

apart from application modeling, the Unified

Modeling Language (UML) is also used for

designing the tests on various levels (unit,

integration, system tests). Authors have listed various

approaches based on UML diagrams, and the Use

Case based approaches have been described too. As

future work, these approaches could be further

compared and analyzed for determining the best

approach.

 Somayeh Madadpour, Seyed-Hassan Mirian [16]

explained that Aspect-Oriented Programming is a

software engineering paradigm that offers new

constructs, such as join points, point cuts, advices,

and aspects in order to improve separation of

crosscutting concerns. This paper provides an

activity-based testing approach for aspect-oriented

programs. Proposed approach can help testers reveal

several types of faults that specific to aspectual

structures, such as incorrect advice type, strong or

weak point cut expressions, and incorrect aspect

precedence.

 Rothermal and harrold [13] proposes an

approach which is based on graph traversal

algorithm. In their approach aspect oriented features

(such as point cuts, join points, aspects, advice [14])

are added into object oreinted programs, and the

program is regression tested to make sure that the

newly introduced features do not affect the code. He

assumes two versions of program P and P’ such that

P is the original program which is basically a java

program and P’ is the modified program (aspect is

added to java program). He presents a graph traversal

algorithm which runs the test suite for the original

program and obtains the coverage information and

constructs the java interface graph (JIG)[20] for both

original and modified program and then compare the

CFG’s .Comparison helps in detecting the dangerous

arcs. An arc is dangerous if target of the CFG of both

original and modified program differ. Dangerous arcs

are then rerun and the test cases are selected safely.

 Guoquing Xu [14] approach given by Rothermal

and Harrold is based only on static analysis but most

of the time dynamic analysis is required because of

calling of external methods. Guoquing Xu gave an

approach which is based on RETSA framework. He

gave another approach on aspect oriented program.

This approach is an extension of JIG used by

Rothermal and Harrold i.e. AJIG (Aspect-J Inter

Module Graph). It is a new control flow

representation for aspect-J softwares which captures

the semantic intricacies of aspect-related interactions.

3. Overview of Our Approach

Aspect-Oriented Programming is emerging as a very

popular language because of the separation of

crosscutting concerns. It is a software engineering

approach which includes following new constructs,

such as join points, pointcuts, advices, and aspects.

With the addition of these constructs there is a great

possibility of arriving various new faults

corresponding to crosscutting concerns, such as

incorrect pointcuts, advice, or aspect precedence. In

fact, existing object-oriented testing techniques are

not adequate for testing aspect-oriented programs. As

a result, there is an adequate need for developing new

testing techniques. The Related approach focuses on

automatic integration of one or several crosscutting

concerns to a primary concern and testing and finding

the various errors automatically.

 In our research, we will focus on the testing of

Aspect oriented programs with UML state based

diagram. Particularly for testing we will use AGRO

UML tool. In our research we will focus on faults

finding for Aspect Oriented Programs with help of

flow diagram based on state base of UML. Then test

sequences will be generated based on the attributes

available in input Aspect oriented code. Test

sequences will also be based on interaction between

aspects and primary models, and verifies the

execution of the selected sequences. In our research

we will propose an automatic fault detection

mechanism with help of uml diagrams which can

detect incorrect advice type errors, weak pointcuts,

incorrect Precedence errors. Sequences will be

generated by proposed scheme automatically while

detection of faults in Aspect Oriented codes which

will validate the coming results.

4. Automated Testing on Aspect

Oriented Programs

In this paper, we present a framework for automated

generation of test data for aspect oriented programs.

2117

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70804

This framework is based on existing framework for

object oriented programs. The main objective of this

framework is to generate test data to find out the

various faults and calculate total effort. Also the main

motive of this study is to automatically correct it. We

use AspectJ programs to implement this framework.

 In this framework, we first have AspectJ code

which will be converted into plain java code. As all

the contents are not relevant to test, so the irrelevant

content are identified and removed from the base

class. With the help of this step, we reduce visible

faults. Now the actual testing is performed on the

relevant content of produced code and generates the

test data. After testing, next step will be of generation

of test sequence which is an automatic step. After

then execution is done and discovered errors will be

automatically corrected.

The major steps of our method are described in the

following:

1. Building an aspect oriented code with the

separation of crosscutting concerns.

2. Building state based model of the primary concern

3. Testing the primary concern separately.

4. Integrating an aspect. As long as there are aspects

which are not integrated

a. Building aspect model and weave it into primary

model.

b. Generating the test sequences affected or created

by the aspect.

c. Testing the primary concern with the integrated

aspect and executing it.

d. If there is no problem encountered, return to step 4.

4. Testing entirely the primary concern including

aspects.

5. End.

 Fig.. III: Framework of automated testing of
AOP

 To convert code from AspectJ to Java code,

AspectJ Compiler 1.0.6 has been used. The code is

converted into UML diagram with AGRO UML tool.

This framework has been implemented with a

software tool which can test Java programs using

various testing techniques. With the code we make

UML diagram with the help of AGRO UML tool.

Then the test sequences is generated followed by the

execution of the test sequences. Finally, with the

automated tool, faults will be detected and

automatically corrected.

5. Conclusion and Future Work

We present in this paper, the UML based testing

approach on Aspect-oriented programs. Our approach

is helpful in finding out the aspectual faults

automatically from the aspect-oriented programs. The

faults are of various kinds like incorrect advice type,

weak or strong pointcut expressions and incorrect

precedence.

 Our research will focus on the testing of aspect

programs by generating test sequences based on state

based diagrams which will validate the correct

working and starting malfunctioning(errors). Further

aspect model will be generated and integrate with

basic aspect model with flow diagrams in various

UML diagrams. With the help of UML diagrams, we

will be able to test the code automatically. Future

scope of this research will be handling the testing

with some other UML diagram.

6. Acknowledgement

It is my pleasure to be indebted to various people, who

directly or indirectly contributed in the development of this

work and who influenced my thinking, behavior and acts

during the course of study.

 First and foremost, I would like to express my sincere

gratitude to my guide Mrs. Geetanjali Babbar, Assistant

Professor. I was privileged to experience a sustained

enthusiastic and involved interest from her side. I am

thankful for her support, cooperation and motivation

provided to me during the training for constant inspiration,

presence and blessings. Lastly, I would like to thank the

almighty and my parents for their moral support and my

friends with whom I shared my day-to-day experience and

received lots of suggestions that improved my quality of

work.

7. References

[1] Marlon Dumas and Arthur H.M ter Hofstede, UML

Activity diagrams as a Workflos Specification Language,

In proceedings of the UML’2001 conference

[2] Grady Booch, Dr. James Rumbaugh, Dr. Jacobson,

The Unified Modeling Language(Addison-Wesley

Professional, sept 1998).

[3] Badri, B., Badri, L., Fortin, M. B., Automated State-

Based Unit Testing for Aspect-Oriented Programs: A

Supporting Framework, International Journal of Object

Technology, vol. 8, no. 3, pp. 121-126, 2009

[4] Xie, T., Zhao, J., Marinov, D., and Notkin, D.,

Automated test generation for AspectJ programs, AOSD

2118

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70804

2005 Workshop on Testing Aspect-Oriented Programs,

Chicago, 2005

[5] Pretschner, A., Prenninger, W., Wagner, S., Kühnel,

C., Baumgartner, M., Sostawa, B., Zölch, R., and Stauner,

T., One evaluation of model-based testing and its

automation, In Proc. of the 27th International Conf.on

Software Engineering (ICSE'05), 2005.

[6] Cui, Z., Wang, L., and Li, X., Modeling and integrating

aspects with uml activity diagrams, Proceedings of the

2009 ACM symposium on Applied Computing, 2009.

[7] Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M.,

Lott, C. M., Patton, G. C., and Horowitz, B. M., Model-

based testing in practice, In Proc. of the 21st International

Conf. on Software Engineering (ICSE'99), 1999.

[8] Blackburn, M., Busser, R., Nauman, A., Knickerbocker,

R., and Kasuda, R., Mars Polar Lander fault identification

using model-based testing, In Proc. of the Eighth

International Conference on Engineering of Complex

Computer Systems, 2002. .

[9] Hilsdale and J. Hugunin, Advice weaving in AspectJ,

In proc 3rd International Conference on Aspect-

OrientedSoftware Development pages 26–35, 2004

[10] Xu, W., Xu, D., and Wong, W. E., Testing Aspect-

Oriented Programs with UML Design Models,

International Journal of Software Engineering and

Knowledge Engineering, Vol. 18, No. 3, pp. 413-437, May

2008.

[11] Software Engineering websites namely

www.simple.wikipedia.org/wiki/Software_engineering

andhttp://en.wikipedia.org/wiki/Aspect-

oriented_programming.

[12] Zhao, J. and Rinard, M., System dependence graph

construction for aspect-oriented programs, MIT-LCSTR-

891, Laboratory for Computer Science, MIT, 2003.

[13] M. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M.

Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi,

Regression Test Selection for Java Software, Proc. ACM

Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pp.312-326, October 2001.

[14] G. Xu, A regression tests selection technique for

aspect oriented programs, In Workshop on Testing Aspect-

Oriented Programs, pages 15–20, 2006.

[15] G. Xu and A. Rountev, Regression test selection for

AspectJ software, In ICSE ’07: Proceedings of the 29th

international conference on Software Engineering, pages

65–74, 2007.

[16] Somayeh Madadpour, Seyed-Hassan Mirian-

Hosseinabadi, Vahdat Abdelzad, Testing Aspect-Oriented

Programs with UML Activity Diagrams, International

Journal of Computer Applications, Volume 33, No-8, pp

23-29, November 2011

[17] Reza Meimandi Parizi, Abdul Azim Abdul Ghani,

Rusli Abdullah, and Rodziah Atan, On the Applicability of

Random Testing for Aspect-Oriented Programs,

International Journal of Software Engineering and its

Applications, Vol. 3, No. 4, October, 2009

[18] Mayank Singh, Shailendra Mishra, Mutant Generation

for Aspect Oriented Programs, Indian Journal of Computer

Science and Engineering, Vol 1, No 4, pp 409-415, 2011.

[19] T. Xie and J. Zhao, A framework and tool supports for

generating test inputs of AspectJ programs, InProc. 5th

International Conference on Aspect-Oriented Software

Development pages 190–201, March 2006.

[20] Liu, C. H., and Chang, C. W., A State-Based Testing

Approach for Aspect-oriented Programming, In Journal of

Information Science and Engineering , pp. 11-31, 2008

[21] Cui, Z., Wang, L., and Li, X., Modeling and

integrating aspects with uml activity diagrams, Proceedings

of the 2009 ACM symposium on Applied Computing, 2009

[22] Website of Use case diagram in UML

http://www.andrew.cmu.edu/course/90-754/umlucdfaq.html

[23] Philippe Massicotte, Linda Badri, Mourad Badri,

Towards a Tool Supporting Integration Testing of Aspect-

Oriented Programs, Journal of Object Technology, Volume

6, no. 1 (January 2007), pp. 67-89

[24] Swati Tahiliani, Pallavi Pandit, A survey of UML-

based approaches to testing, International Journal Of

Computational Engineering Research (ijceronline.com)

Vol. 2 Issue. 5

2119

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70804

