
Overview of Serverless Architecture 

Amit Kumar Jain 
Computer Science 

Delhi University 

Delhi, India 

Abstract—As cloud computing evolves, serverless computing, 

also known as function as a service (FaaS), is viewed as the next 

stage of cloud computing evolution. As a logical extension of 

cloud computing, serverless computing is a disruptive method to 

application development. It is based on the developer's code for 

precise resource allocation, and the platform's resources are 

activated when a predetermined event occurs. By contrasting 

serverless architecture with conventional design, its benefits are 

demonstrated. Although serverless is a relatively new notion in 

software architecture, it is a highly influential technological 

innovation 

Keywords—Cloud computing, Serverless Architecture 

I. INTRODUCTION

The ISO/IEC JTC1 and ITU-T joint working group 

ISO/IEC17788 defines cloud computing as "Information 

Computing–Cloud Computing–Overview and vocabulary" 

DIS version: cloud computing is a A scalable, resilient, shared 

pool of physical and virtual resources is provisioned and 

managed on an on-demand, self-service basis and provides a 

model for network access [1]. Infrastructure as a Service 

(IaaS), Platform as a Service (PaaS), and Software as a 

Service are typical cloud service models (SaaS). Depending 

on the circumstances, each cloud service model has unique 

qualities that provide consumers with specialized capabilities. 

IaaS primarily offers consumers with virtual computers or 

other resources as a service. PaaS primarily provides users 

with a development platform as a service. SaaS generally 

provides users with apps as a service. As cloud computing 

evolves, serverless computing, also known as function-as-a-

service (FaaS), is viewed as the next stage in cloud computing 

evolution [2]. As a logical extension of cloud computing, 

serverless computing is a disruptive method to application 

development. 

II. SERVERLESS ARCHITECTURE

A. What it means

Many believe Serverless is a combination of Back-end-as-

a-Service (BaaS) and Function-as-a-Service (FaaS). The main 

form of serverless representation is FaaS, so serverless 

computing is considered a "function as a service (FaaS)" or 

"function-driven event" [3]. It is based on the developer's code 

for precise resource allocation, and the platform's resources 

are activated when a predetermined event occurs. 

B. The advantages of a serverless architecture

The most obvious benefit of no server is that there is no

need to maintain the server, which means the application team 

and developers can concentrate on application development, 

and there is no need to be concerned with infrastructure 

services [7]. 

1. Decrease operating expenses

The infrastructure does not vanish in a serverless

architecture, which is effectively an outsourced solution. It is 

only required to pay the appropriate amount of calculation 

based on the size and shape of the traffic, which can 

significantly reduce operational expenses, particularly for 

early and dynamic application load requirements with varying 

variations. 

2. Extreme Scalability

The extremely high scalability of cloud services is not

new, but the no-service design takes it to an entirely new 

level. Use no server, eliminate the need to explicitly add and 

remove server instances, and allow vendors to modify the 

application. Since the cloud computing provider conducts 

extensions on a per-request basis, there is no need to calculate 

how many requests may be processed concurrently before 

memory is exhausted. 

3. Separation difficulty

The serverless architecture separates the application's

components so that each component solves a unique problem. 

4. Isolation procedure

Each Lambda function in a serverless environment is

totally isolated. If a feature is disabled, it has no effect on 

other features and does not cause the server to crash. 

C. Hierarchical positioning of serverless architecture

FaaS and PaaS are comparable in several ways. Even

people believe that FaaS is a subtype of PaaS. Vice president 

of engineering at Intent Media, Mike Roberts, disagrees with 

this statement. Roberts noted that with FaaS, the full 

application may be started and stopped for each request, 

whereas PaaS cannot. In terms of operation and maintenance, 

the capacity for scaling is the primary distinction between the 

two. Adrian Kokrov proposes a basic definition: If your PaaS 

can launch an instance running for half a second in 20 

milliseconds, it is referred to as serverless. 

The following table compares IaaS, PaaS, FaaS, and SaaS. 

FaaS is advantageous because to its high development 

efficiency, great scalability, excellent operation and 

maintenance, and low cost. From IaaS to PaaS to FaaS to 

SaaS, the control over service implementation is lowered and 

the emphasis is placed on business logic. In other words, the 

degree of abstraction increases while the degree of flexibility 

decreases. And FaaS is situated between PaaS and SaaS, 

making it incredibly versatile and user-friendly for developers. 

FaaS provides all resources except the application layer, 

developers just need to focus on the code logic, while SaaS 

has little flexibility and is suited for ordinary consumers, 

making it challenging to fulfill the unique requirements of 

International Journal of Engineering Research & Technology (IJERT)

http://www.ijert.org

IJERTV11IS090057
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

ISSN: 2278-0181
Vol. 11 Issue 09, September 2022

116

www.ijert.org
www.ijert.org
www.ijert.org


organizations. So serverless architecture will be the future 

trend in software development. 

TABLE I. IAAS, PAAS, FAAS AND SAAS COMPARISON TAB 

HIGH 

IaaS PaaS FaaS SaaS 

Development efficiency Low Middle High High 

Scalability Low Middle High High 

Cost High High Low High 

Operational maintenance Low High High High 

III. COMPARISON OF SERVERLESS

ARCHITECTURE AND TRADITIONAL ARCHITECTURE 

A. Serverless architecture vs. Traditional monolithic

application architecture

In conventional online applications, servers are a vital

component. Despite the presence of load balancers or 

dedicated web servers in front of the server on occasion, the 

application server is largely complete. It provides all the 

necessary application functions, such as storing user data, 

providing security authentication, controlling processes, etc. 

The majority of the application's pages just provide an 

interface for the backend, albeit with some navigation control 

functions. 

This is the conventional method that many individuals 

refer to as a multi-tier architecture. The system consists of 

browsers, application servers, and numerous post-systems. 

Conclusion of service component All of these levels can be 

eliminated for a more straightforward solution using a 

serverless architecture [4]. Instead of using the web client as 

the application server's interface, it is preferable to create a 

single-page web application that implements the application 

logic in the browser. This means that a simple static web 

server is sufficient. All interactions consist solely of the 

conveyance of application data. The browser functions 

similarly to an application container. Thus, the final design 

will eliminate all intermediate layers from the conventional 

web application architecture, enabling the browser to connect 

directly to the required services 

B. Serverless architecture vs. microservice architecture

Although Serverless is not as popular as microservices, it

surpasses microservices in terms of usability, dependability, 

and future potential. There are several parallels between 

serverless and microservices, such as business segmentation, 

statelessness, and agile characteristics. 

In many ways, serverless is more compact and demanding 

than microservices. Microservices divide services by service, 

whereas Serverless divides services by function. 

Microservices can exchange memory state between calls, 

whereas Serverless calls must be stateless. In addition, 

Serverless depends on BaaS to offer third-party requirements, 

whereas microservices are free to choose their own third-party 

dependencies, such as locally built traditional middleware 

stacks (such as local MySQL and message buses) [6]. 

Microservices are intended to divorce complex monolithic 

applications into numerous separate services. Microservices 

are designed to simplify the process of developing 

complicated applications [5]. However, microservices and 

Serverless are compatible; both encourage system decoupling. 

It is not novel to separate the implementation of business logic 

into Functions. This technique is not novel: Microservice is a 

more prevalent paradigm, and firms like Netflix and Uber 

have already achieved success with it. As a Function, users 

can implement a microservice. A key objective of the 

computational design of Alibaba Cloud is to make it the ideal 

platform for developing microservices applications. 

Microservice architecture is quite difficult. Managing the 

interdependence between microservices necessitates a highly 

automated release distribution strategy following the division 

of a system into hundreds of services. Microservices is a 

programming approach, whereas Serverless is a computing 

platform. 

TABLE II. SERVERLESS ARCHITECTURE AND MICROSERVICE 

ARCHITECTURE COMPARISON TABLE. 

Microservice 

architecture 

Serverless 

architecture 

Business Split Service bound Function bound 

Server Request Memory state sharing 
across calls 

Completely stateless 

Third Party 

dependency 

Free choice of third-

party dependence 

Relying on third-party 

dependencies provided 
by BaaS 

Level Positioning Development model Computing platform 

C. Serverless architecture vs. container

Serverless workloads are perfect in terms of predictability,

resource requirements, and transaction duration. Containers 

have benefits for long-running processes and workloads that 

are predictable. Containers offer allow greater architectural 

flexibility for applications but require more infrastructure 

administration. Containers and serverless computing are not 

on the same plane. Serverless is a software design 

architecture, and the software architecture is carried by the 

container. Although there is no publicly available information, 

we can assume that a serverless framework such as AWS 

Lambda utilizes container technology, and that it is 

challenging to perform language-independent and 

millisecond-level launch. 

Although several open-source projects already use Docker 

to implement the FaaS component of Serverless, we do not 

believe that the public Serverless framework, such as AWS 

Lambda, employs Docker directly. It must be a more compact 

and lightweight container technology. It may be referred to as 

the Nano-Container [8]. The container and serverless 

architecture have a complementary rather than overlapping 

relationship. 

IV. SERVERLESS ARCHITECTURE DESIGN

Three tiers comprise the Serverless architecture: the 

scheduling layer, the computation layer, and the base layer. 

Figure 1 depicts the architecture design of the Serverless 

architecture 

International Journal of Engineering Research & Technology (IJERT)

http://www.ijert.org

IJERTV11IS090057
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

ISSN: 2278-0181
Vol. 11 Issue 09, September 2022

117

www.ijert.org
www.ijert.org
www.ijert.org


The scheduling layer is the initial layer. It appears simple, 

however there are numerous functions to implement. For 

instance, how to mount and expand the following enhanced 

services in a single second. Therefore, dynamic load balancing 

of hot loads is crucial and may be observed at every stage. In 

addition to the exterior traffic of the front end, internal traffic 

must also enter. 

The second layer is the computer layer, which focuses 

mostly on how to swiftly open resources for job scheduling. 

There are two primary approaches. The first option is to 

directly utilize a Docker container. Each expansion is a 

container, which is stacked one container on top of the next. 

However, this strategy wastes considerable resources. The 

advantage of using dynamic language is that the runtime is 

segregated from each other, like that of a standalone container. 

The infrastructure layer provides users with the required 

infrastructure, such as virtual computers and storage 

resources, to schedule and manage physical resources more 

effectively. 

The serverless architecture is not yet ideal, and there are 

still issues. Serverless is in its infancy, is not yet ideal, and 

there is much work to be done in the future. At this moment, 

Serverless's next objective consists mostly of four points:  

1) Add additional languages

2) The capabilities of Web-based IDEs have improved.

3) More competencies are configured

4) Implement an automated testing mechanism.

V. CONCLUSION

As the company's system and services continue to expand, 

an increasing number of businesses are transitioning from a 

traditional architecture to a microservices architecture and 

then to a serverless design. Serverless is a relatively new 

concept in software architecture, however it is a highly 

influential technological innovation. Companies who adopt a 

serverless architecture and a culture that embraces the 

technology will lead us into the future. The serverless 

architecture is in its infancy, not yet ideal, and there is much 

work to be done in the future. 

REFERENCES 

[1] (2014) White Paper on Cloud Computing Standardization. China 

Electronics Technology Standardization Institute. 

[2] Clint B. (2019) Will serverless computing be the future of cloud 
computing. Computer world, 2019-03-25(005).

[3] Brandon B. (2017) Serverless Computing: Next Generation Cloud 

Infrastructure. Computer world, 2017-05-15(003). 

[4] Carter G. (2018) Serverless Architecture. Mechanical Industry Press. 

Beijing.

[5] Su J., Tian J.B. (2019) Microservice Architecture of Web Application 
in Cloud Environment. Environment. Electronic Technology and 

Software Engineering, (15):131-132.

[6] Xiang Xu. (2019) Serverless serverless architecture is the manifestation 
of microservice architecture. 

https://msd.misuland.com/pd/3255818238113618692.

[7] Zhi Yun. (2018) Read the advantages and disadvantages of serverless 
architecture, and use cases. 

http://www.sohu.com/a/234002113_100159565.

[8] Lingming Xia. (2018) Deep understanding of serverless architecture. 
https://blog.csdn.net/xialingming/article/details/81369624. 

International Journal of Engineering Research & Technology (IJERT)

http://www.ijert.org

IJERTV11IS090057
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

ISSN: 2278-0181
Vol. 11 Issue 09, September 2022

118

www.ijert.org
www.ijert.org
www.ijert.org

