
Overview Of Automated Reverse Engineering Of Legacy Database System

Tanu Arora

Department of Computer Science

Hi-Tech Institute of Engineering and Technology, Ghaziabad, U.P

Abstract

Legacy system software generally comprises a

database (sometimes in the form of a set of files) and

a collection of application programs in strong

interaction with the former. They constitute critical

assets in most enterprises, since they support

business activities in all production and management

domains. Legacy systems: they typically are one or

more decade old, they are very large, heterogeneous

and highly complex. In other some instances, new

systems are developed to replace older ones that

have become too complex or outdated and which

resist further modification and evolution. The

research work presented here is to focus on the

difficult, real-world form of leverage, namely starting

with legacy system assets and evolving them. This

work is aimed to investigate the supporting tool for

automated database reverse engineering of legacy

system evolution. It will also cover the model

developed for migration and their optimality for

transforming a legacy system programs into modern

database.

Keywords: Legacy System, reverse engineering, data

migration

1. Introduction
Today’s system asset is contributing as a greater

part of enterprise’s total asset, because in order to

keep system asset updated enterprises are regularly

focusing on various processes and technologies under

build and maintenance schedule. Increasingly,

software is also being viewed as an asset that

represents an investment that consistently grows up

in value rather than a liability whose value

depreciates over time.

In early stages when systems are very small and

their touch points to an organization’s activities and

functionality are very few, it is possible to

restructured or even replace the existing system or

subsystem which is not able to satisfy the need of

enterprise. But as the time passes through, the system

grows up and spread its wings to integrate with

various functionalities and activities of the enterprise

and become a substantial investment for it whose

replacement is more difficult. So, a major issue in

today’s scenario is how to build software assets that

will provide leverage in building future software

asset.

The widespread use of computer technology over

several decades has resulted in some large, complex

system that have evolved to a state where they

significantly resists further modification and

evolution. Such rigidness to adapt for future changes

poses considerable problems (like inflexibility,

isolation, non-extensibility, lack of openness etc.) in

front of information system manager and

organizations as well, if any of the system stops

working the business may pulverize to a halt. So

today’s major issue is how to build database asset

that will provide leverage in building future database

asset. One of the reasons that the situation is

changing so rapidly is the emergence of integrating

infrastructures. With improved integration we have

seen the World Wide Web (the Web) and electronic

commerce flourish. Where one information systems

were isolated and difficult to access, they can now be

accessed using the Web and interfacing software.

A legacy information system can be defined as

“any information system that significantly resists

modification and evolution” [1]. A legacy has all or

some of the following properties:

 It consist of millions of lines of code

 It is maintained by a large team of engineers

from several generations

 It contains the code that originated several

years ago and

 It is expected to function for many more

years to come.

Existent examples of such type of systems can

easily be found within many domains such as

automation, automotive, and telecom industries. In

such systems, a large effort must be spent on keeping

complexity at acceptable levels. If the complexity is

allowed to increase without bound, the life

expectancy of these systems will be reduced or/and

costs will dramatically increase. A legacy

106

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80031

information system controls the information flow

within the entire organization and is the main

medium for presenting the consolidated view of

accumulated information about its business.

The rest of the paper is organized as follows:

Problem Definition is discussed in Section 2. Section

3 is an overview of Related work done in the area.

Section 4 throws light on the proposed work to be

done in future and the methodologies th3at will be

used to convert legacy database is given in Section 5.

Section 6 is the conclusions.

2. Problem Definition

Maintaining the legacy real time software is a

multifaceted problem, in order to keep a log life

expectancy it is required that the software is carefully

engineered to improve long term software quality and

reduce the need for reengineering. These information

systems are numerous problems to their host

organizations. Some of these problems are:

 These systems perform their activities on

obsolete hardware platform which is slow

and very expensive to maintain.

 Maintaining of such legacy system software

is most critical when no documentation is

available about it.

 Identifying the faults is very time consuming

job because of lack of understanding of the

internal workings of the system.

 Integration efforts are greatly hampered by

absence of clean interface.

 Working with legacy system is very difficult

if not possible to expand.

Considering all such problematic issues is

necessary because demand of short time to market

limits the time budget available for careful

engineering, and the complexity and lack of

documentation/models of the software make efficient

engineering difficult. Many products require a highly

versatile software that can serve many purposes (e.g.,

product line architectures or an industrial robot with

multiple hardware configurations and operating

environments), which increases complexity.

Recovering the required knowledge and control of

poorly documented software components is the main

goal of software reverse engineering [2].

In response of all the above dictated problems

various solutions have been proposed. These

solutions can be classified into following three

categories: redevelopment, wrapping and migration.

Redevelopment involves rewriting existing

application. Wrapping involves developing a

software component called wrapper that allows an

existing software component to be accessed by other

components who need not be aware of its

implementation. Legacy Information System

Migration allows legacy systems to be moved to new

environments that allow information systems to be

easily maintained and adapted to new business

requirements, while retaining functionality and data

of the original legacy systems without having to

completely redevelop them. This leads to the

following main problems studied in this resea3rch

work:

1. Can the validity and accuracy of extracted

models be quantized?

2. Are the overheads of model extraction

acceptable?

3. Can the method of model extraction be

evaluated?

3. Related works

Legacy information system migration is a major

research and business issue; few comprehensive

approaches to migration have been developed.

For example, Tilley and Smith (1995) [3] discuss

current issues and trends in legacy system

reengineering from several perspectives (engineering,

system, software, managerial, evolutionary, and

maintenance). They propose a framework to place

reengineering in the context of evolutionary systems.

The butterfly methodology proposed by Wu et al.

(1997)[4] provides a migration methodology and a

generic toolkit to aid engineers in the process of

migrating legacy systems. This methodology, which

does not rely on an incremental strategy, eliminates

the need of interoperability between the legacy and

target systems.

There is more than one way to migrate a legacy

software system. Some approaches are quite

straightforward and inexpensive, but lead to poorly

structured results that are difficult to maintain.

Others, on the contrary, produce good quality data

structures and code, but at the expense of substantial

intelligent (and therefore difficult to automate) code

restructuring. We have built a reference model based

on two dimensions, namely data and programs. Each

of them defines a series of change strategies, ranging

from the simplest to the most sophisticated.

Following figure is defining the first database system

migration process. [4]

107

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80031

Figure 1: Overall view of the database first system

migration process

System migration consists in deriving a new

database from a legacy database and in further

adapting the software components accordingly

[5].Considering that a database is made up of two

main components, namely its schema(s) and its

contents (the data), the migration comprises three

main steps: (1) schema conversion, (2) data

conversion and (3) program conversion. Figure 1

depicts the organization of the database-first

migration process, which is made up of sub processes

that implement these three steps. Schema conversion

produces a formal description of the mapping

between the objects of the legacy (S) and renovated

(S’) schemas. This mapping is then used to convert

the data and the programs.

Alternatively, Young (1970) proposes a

procedural data structure mapping technique whereas

Sibley and Taylor (1970) suggest a similar

technique, but propose using a nonprocedural

approach. Another important contribution was a PhD

dissertation by Smith (1971) who began to address

generalized issues of data translation. A common

feature of the 1970s research is a focus on the

definition of common languages for the purpose of

defining data, storage, and mapping processes.

Youn and Ku (1992) provide a concise but

rather insightful overview of many of the main issues

of data migration along with some helpful examples.

The article contains many of the primary issues that

should be considered during migration.

Consequently, Youn and Ku discuss extraction and

loading, followed by transformation and data

integration. As part of initial planning process, they

emphasize the necessity of developing a conceptual

model of the source system which can then be used to

develop a model of the target system. The importance

of schema integration is also addressed by Elmasri,

Navathe, and Larson (1984, 1986).[6]

Hudicka (1999) also provides a good overview

of the phases for data migration. His breakdown may

be slightly different than Youn and Ku’s, but both

articles provide useful starting points. Hudicka points

out that in the case of migrating from legacy systems

which are based on hierarchical databases, the

migration process needs to be planned especially

carefully, since many of these systems do not enforce

referential integrity, while two cornerstones of this

older structure – de-normalization and redundancy –

are in precise contradiction to more modern relational

theory.

Brodie and Stonebraker propose an approach

called the “Chicken Little Methodology” (1995) – an

eleven-step strategy for migration, employing a series

of gateways. With this approach, the legacy and

target systems are operated in parallel during the

operation. The target system is small at the outset, but

grows during the migration process until it replaces

the legacy system. For example, a “forward gateway”

is created which enables the legacy application access

to the new system. At the same time, there is also a

“reverse gateway” for the target application to have

access to the legacy system. The authors recognize

the overall complexity of this system, though, and

submit that this complexity still presents a technical

problem and ongoing research challenge

4. Proposed Work

The proposed work is to:

1. To examine the tools methods and

technologies of automated programmed

analysis to recover structure and constraints of

a database.
2. To study about the migration methodologies

and their optimality for transforming a legacy

system programs into modern database.
3. To study about adaptation for migration to

modern database by legacy system. Discussion

about the adoption of legacy database

migration techniques.
4. To perform the consistency check to ensure

the reliability between evolving database

schema and associated queries.

5. Methodology to be used

Three different paradigms can be followed to

perform the research in the field of computer science

and application (Peter Wegner, 1976). These

paradigms are as follows:

5.1 The mathematical method: Here,

abstraction of phenomena (e.g. computers,

programming languages, algorithms), and

reasoning about this abstraction are used to

obtain information about the phenomena.

For example, in deductive reasoning, a set of

assumed premises are logically (i.e.,

mathematically) proven to lead to a

108

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80031

conclusion. One could say that deductive

reasoning is a proof of the fact that a cause

leads to an effect. The conclusion (or the

effect) is then shown to be true if and only if

the premises (or the cause) are valid.

5.2 The empirical method: Here,

knowledge projected on a hypothesis is

derived from experiments and other methods

of data collection. For example, experiments

can show that a set of independent variables

are controlling a set of dependent variables.

The experiments should be controlled, i.e.,

they should be constructed such that there

are no confounding variables (i.e., variables

that should be in the set of independent

variables, but are not included there). Also,

it should be clear that the dependent

variables are valid measures of the

phenomenon targeted by the hypothesis.

Finally, external validity, that several

experiments indicate the same result, should

be established. This form of triangulation is

made to increase the confidence in the

result.

5.3 The engineering method: Here, the

efficient fulfillment of a specific set of

specifications and requirements are in focus.

This is achieved by the conception of, e.g., a

device, an algorithm, or a method. Essential

in the engineering method is to by

experiment or formal proof provide

evidence of the fulfillment of the

requirements.

In this work, we will be using all of the above

methods to solve our set of problems:

Engineering Method: For automatic modeling and

implementation of a tool suite for proper

evaluation.

Mathematical Method: for checking time

automata and to formulate a comparison measure

for quantifying the difference between two entities,

which can be systems or models.

Empirical method: the tool suite has been

evaluated in a state of practice industrial system, as

well as in a controlled experimental study.

6.Conclusion and Future work:

In this paper we described an overview of

Legacy Database system, problems associated in its

migration and different automated models used for

Reverse Engineering of Legacy Database System.

As proposed in future we will be examining the

legacy systems programs in maintaining database

reverse engineering and related evolutions. To

study about the migration methodologies and their

optimality for transforming a legacy system

programs into modern database.

References:

[1] Brodie, M. and M. Stonebraker (1995), Migrating

 Legacy Systems, Morgan Kaufman, San Francisco, CA

[2] Chikofsky, E. J., Cross, J. H., 1990. Reverse Software 7

 engineering and design recovery: taxonomy. IEEE (1),

 13–17.
[3] Bergey, J. K., Northrop, L. M. & Smith, D. B. (1997).

 Enterprise Framework for the Disciplined Evolution of

 Legacy Systems. Technical Report CMU/SEI-97-

 TR007,Carnegie Mellon University/Software

 Engineering Institute.

[4] Bisbal, J.; Lawless, D.; Bing Wu; Grimson, J., "Legacy

 Information systems: issues and directions," Software,

 IEEE , vol.16, no.5, pp.103,111, Sep/Oct 1999

[5] Brodie, M. & Stonebraker, M. (1995). Migrating

Legacy Systems: Gateways, Interfaces, and the

Incremental Approach. Morgan Kaufmann.

[6] Elmasri, R & Navathe, S. B. (1984). Object Integration

in Database Design. Proceedings of IEEE Conference

on Data Engineering. Los Angeles.

[7] D. Aebi, ’Data Re-engineering - A Case Study’,

 Proceedings 1st East-European Symposium on

 Advances in Databases and Information Systems

 (ADBIS’97), September 1997, Springer-Verlag

 electronic Workshops in Computing, Ed.: C.J.van

 Rijsbergen.

[8] H. M. Sneed, 'Encapsulating Legacy Software for Use

 in Client/Server Systems', Proceedings 3 Working

 Conference on Reverse Engineering, November 1996,

 pp. 104-119

[9] Meir Manny Lehman, Programs, life cycles and the

 laws of software evolution. Proceedings of the IEEE,

 68(9):1060–1076, September 1980.

[10]Meir Manny Lehman, Laws of software evolution

revisited. In Proceedings of the 5th European

Workshop on Software Process Technology, pages

108–124, October 1996.

[11]Peter Wegner. Research paradigms in computer

science. In Proceedings of the 2nd International

Conference on Software Engineering, pages 322–330.

IEEE Computer Society Press, October 1976.

109

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80031

