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Abstract—Due to the availability of massive and scalable 

computational power economically, the emerging cloud 

computing paradigm has been attractive to the customers with 

limited computational resources to outsource their large 

computation workloads. However, security and privacy concerns 

are majorly obstructing the widespread adoption of this 

promising computing model especially when the confidential 

data of the customers is consumed and produced during the 

computations in the cloud. Devising a mechanism for general 

secure computation outsourcing was so far theoretically feasible 

and designing mechanisms that are practically efficient remains 

a very challenging problem. Focusing on engineering computing 

and optimization tasks, Cong Wang et al. developed a scheme for 

secure outsourcing of widely applicable linear programming 

(LP) computations in the cloud. Also, several works have 

discussed the outsourcing of nonlinear programming (NLP) 

computations. In this work we are intended to study and 

thoroughly analyse both LP and NLP computation outsourcing. 

Our experimental results show that, due to the complex 

computations involved, NLP computations consume more time, 

but, secure than the LP computations outsourcing 

comparatively. 
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I. INTRODUCTION 

Cloud Computing involves on-demand access to a shared 

pool of configurable computing resources [1]. One of the key 

benefits of the cloud paradigm is computation outsourcing, in 

which the computational power of cloud customers is no 

longer limited by their resource-constraint devices. Regardless 

of the tremendous benefits, outsourcing computation to the 

commercial public cloud is also limiting the customer’s direct 

control over the systems that consume and produce their data 

during the computation, which brings in new security 

concerns and challenges [2]. The outsourced computation 

workloads often contain sensitive information, such as the 

business financial records, proprietary research data, or 

personally identifiable health information etc. To combat 

against unauthorized information leakage, sensitive data have 

to be encrypted before outsourcing [2] so as to provide end-to-

end data confidentiality assurance in the cloud and beyond. 

However, ordinary data encryption techniques prevent 

cloud from performing any meaningful operation of the 

underlying plaintext data [3], making the computation over 

encrypted data a very hard problem. Moreover, the operational 

details inside the cloud are not transparent enough to 

customers [4]. As a result, there exist various motivations for 

cloud server to behave unfaithfully return incorrect results. 

Besides, possible software bugs, hardware failures, or even 

outsider attacks might also affect the quality of the computed 

results. Thus, the cloud is intrinsically not secure from the 

viewpoint of customers. Without providing a mechanism for 

secure computation outsourcing, i.e., to protect the sensitive 

input and output information of the workloads and to validate 

the integrity of the computation result, it would be hard to 

expect cloud customers to turn over control of their workloads 

from local machines to cloud solely based on its economic 

savings and resource flexibility. For practical consideration, 

such a design should further ensure that customers perform 

fewer amounts of operations following the mechanism than 

completing the computations by themselves directly.  

Although some elegant designs on secure outsourcing of 

scientific computations, sequence comparisons, and matrix 

multiplication etc. have been proposed in the literature, it is 

still hardly possible to apply them directly in a practically 

efficient manner, especially for large problems. In those 

approaches, either heavy cloud-side cryptographic 

computations [6], [7], or multi-round interactive protocol 

executions [5], or huge communication complexities [8], are 

involved. In short, practically efficient mechanisms with 

immediate practices for secure computation outsourcing in 

cloud are still missing. Focusing on engineering computing 

and optimization tasks, Cong Wang et al.[10] proposed an 

efficient mechanisms for secure outsourcing of linear 

programming (LP). Also the work by [11] reported the 

outsourcing techniques for nonlinear programming (NLP) 

computations. Linear and nonlinear programming methods are 

algorithmic and computational tools which captures the first 

order effects of various system parameters that should be 

optimized, and is essential to engineering optimization. They 

are widely used in various engineering disciplines that analyse 

and optimize real-world systems, such as packet routing, flow 

control, power management of data centres, etc. [9]. Because 

LP and NLP computations require a substantial amount of 

computational power and usually involve confidential data, it 

is proposed to explicitly decompose the LP and NLP 
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computation outsourcing into public LP and NLP solvers 

running on the cloud and private LP and NLP parameters 

owned by the customer. The flexibility of such decomposition 

allows exploring higher-level abstraction of LP and NLP 

computations than the general circuit representation for the 

practical efficiency. Fig1. shows the architecture for 

outsourcing of LP and NLP computations. 

 

 

Fig. 1  The architecture for outsourcing of LP and NLP computations  

Such methods of outsourcing should perform result validation, 

which must be very efficient and incurs close-to-zero additional 

overhead on both customer and cloud server. With correctly verified 

result, customer can use the secret transformation to map back the 

desired solution for his original LP and NLP problem. 

A. Design Goals  

To enable secure outsourcing of LP and NLP under the 

aforementioned model, the mechanism must attain the following 

design goals. 

1) Correctness: Any cloud server that faithfully follows 

the mechanism must produce an output that can be 

decrypted and verified successfully by the customer. 

2) Soundness: No cloud server can generate an 

incorrect output that can be decrypted and verified 

successfully by the customer with non-negligible 

probability. 

3) Input/output privacy: No sensitive information 

from the customer’s private data can be derived by 

the cloud server while performing the LP and NLP 

computations. 

4) Efficiency: The local computations done by 

customer should be substantially less than solving the 

original LP and NLP on his own. The computation 

burden on the cloud server should be within the 

comparable time complexity of existing practical 

algorithms solving LP and NLP problems. 

 

II. LINEAR PROGRAMMING 

 

Usually, an optimization problem is formulated as a 

mathematical programming problem that needs the values for 

a set of decision variables to minimize or maximize an 

objective function to represent the cost subjected to a set of 

constraints. The objective function is an affine function of the 

decision variables and the constraints are a system of linear 

equations and inequalities for linear programming. A non-

negative slack variable can be introduced to express a 

constraint in the form of linear equation, which is a linear 

inequality and the difference of two non-negative auxiliary 

variables can be expressed as a free decision variable. 

Any linear programming problem can be expressed in the 

following standard form,  

Minimize c
T

 x subject to Ax = b, x ≥ 0.              (1) 

Here x is an n×1 vector of decision variables; A is an m×n 

matrix, and both c and b are n×1 vectors. It can be assumed 

further that m ≤ n and that A has full row rank; otherwise, 

extras rows can always be eliminated from A. 

 A more general form of LP problem is as follows, 

Minimize c
T
 x subject to Ax = b, Bx ≥ 0.          (2) 

Here, B is an n × n non-singular matrix, i.e. Eq. (2) 

degenerates to Eq. (1) when B is the identity matrix. Thus, the 

LP problem can be defined via the tuple Φ = (A,B, b, c) as 

input, and the solution x as output. 

Several basic and enhanced techniques have been 

proposed by Wang et al.[10] to encrypt the problem 

parameters. The enhanced techniques employ affine mapping 

on the original problem in order to maintain privacy of the 

feasible region. In order to verify the result they have used the 

conditions derived from the duality property of linear 

programming. The result verification is done for all the three 

possible cases of the LP problem viz., Feasible, Infeasible and 

Unbounded. For general understanding purpose we give the 

basic techniques below. It should be noted that, the input 

encryption based on these techniques results in an 

unsatisfactory mechanism. However, the analysis will give 

insights on how a stronger mechanism should be designed. It 

is assumed that the cloud server honestly performs the 

computation, in order to simplify the presentation. 

   1) Hiding equality constraints (A, b): First of all, a randomly 

generated m × m non-singular matrix Q can be part of the 

secret key K. The customer can apply the matrix to Eq. (2) for 

the following constraints transformation, 

 

Ax = b ⇒ A′x = b′ 

where A′ = QA and b′ = Qb 

 

Since it is assumed that A has full row rank, A′ must have full 

row rank. Without knowing Q, it is not possible for one to 

determine the exact elements of A. However, the null spaces 

of A and A′ remains the same, which may violate the security 

requirement of some applications. The vector b is encrypted in 

a perfect way since it can be mapped to an arbitrary b′ with a 

proper choice of Q. 

   2) Hiding inequality constraints (B): The customer cannot 

transform the inequality constraints in the similar way as used 

for the equality constraints. This is because for an arbitrary 

invertible matrix Q, Bx ≥ 0 is not equivalent to QBx ≥ 0 in 

general. To hide B, the fact that a feasible solution to Eq. (2) 

must satisfy the equality constraints, is applied. To be more 

specific, the feasible regions defined by the following two 

groups of constraints are the same. 

 

Ax = b                            Ax=b 

               Bx ≥ 0                           (B − λA)x = B′x  ≥ 0 
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where λ is a randomly generated n×m matrix in K satisfying 

that |B′| = |B − λA| ≠ 0 and λb = 0. Since the condition λb = 0 

is largely underdetermined, it leaves great flexibility to choose 

λ in order to satisfy the above conditions. 

3) Hiding objective functions c and value c
T
x: Given the 

widely application of LP, such as the estimation of business 

annual revenues or personal portfolio holdings etc., the 

information contained in objective function c and optimal 

objective value cT x might be as sensitive as the constraints of 

A,B, b. Thus, they should be protected, too. 

To achieve this, constant scaling is applied to the objective 

function, i.e. a real positive scalar γ is generated randomly as 

part of encryption key K and c is replaced by γc. It is not 

possible to derive the original optimal objective value c
T
x 

without knowing γ first, since it can be mapped to any value 

with the same sign. While hiding the objective value well,this 

approach does leak structure-wise information of objective 

function c. Namely, the number and position of zero-elements 

in c are not protected. Besides, the ratio between the elements 

in c is also preserved after constant scaling. Overall, the basic 

techniques would choose a secret key K = (Q, λ, γ) and 

encrypt the input tuple Φ into ΦK = (A′,B′, b′, γc), which gives 

reasonable strength of problem input hiding. However, 

although input privacy is achieved, there is no output privacy. 

Essentially, it shows that although one can change the 

constraints to a completely different form, it is not necessary 

the feasible region defined by the constraints will change, and 

the adversary can leverage such information to gain 

knowledge of the original LP problem. Therefore, any secure 

linear programming mechanism must be able to not only 

encrypt the constraints but also to encrypt the feasible region 

defined by the constraints. 

 

III. NONLINEAR PROGRAMMING 

 

Nonlinear programming (NLP) involves minimizing or 

maximising a nonlinear objective function subject to bound 

constraints, linear constraints, or nonlinear constraints, where 

the constraints can be inequalities or equalities. Example 

problems in engineering include analysing design tradeoffs, 

selecting optimal designs, and incorporating optimization 

methods in algorithms and models. In NLP outsourcing 

scenario, [11] proposed a method to deal with the Sequential 

Quadratic programming method of NLP.  

Usually, the Non-linear function f(x) is under the non-

linear inequality constraints   

 

xk ∊ R
n: 

min f(x),  g(x) ≤ 0      (3) 

 

where x is an n-dimensional parameter vector. The vector-

valued function g(x) defines m inequality constraints,   

g(x)=(g1 (x),.......gm (x))
T

. To simplify (3), the equality 

constraints and upper or lower bounds of the variables are 

omitted. The problem is considered to be non-convex and 

non-linear in general. Sequential Quadratic Programming is 

considered a best method to solve smooth Non-Linear 

Optimization problems by using standard general purpose 

algorithms. The following assumptions are made. 

 

1. The problem is not too big.  

2. Function values can be calculated within 

sufficient precision. 

3. The problem is smooth and well scaled.  

The sub-problems consist of strictly convex quadratic 

programming problems with inequality constraints obtained 

by linearizing the constraints and by approximating the 

Lagrangian function of (3) quadratically. The Sequential 

Quadratic Programming has the roots in unconstrained 

optimization. The main objective behind is to establish a 

quadratic approximation based on second order information 

with the goal to achieve a fast local convergence speed. The 

linearly constrained, strictly convex quadratic program must 

be solved in each iteration step by an available black box 

solver. This is mostly used in structural optimization. The 

method is based on the observation that in some special cases, 

typical structural constraints become linear in the inverse 

variables. Although this special situation is rarely observed in 

practice, a suitable substitution of structural variables by 

inverse ones depending on the sign of the corresponding 

partial derivatives and subsequent linearization is expected to 

linearize constraints somehow. To formulate the sub-problem, 

as said above, the process starts from the given iterates xk ∊ R
n
  

an approximation of the solution, uk ∊ R
m
, an approximation 

of the vector of multipliers and Bk ∊ R
n× n

, an approximation 

of the Hessian of the Lagrange function. Then we obtain sub 

problem,  

y ∊ R
n 
: min f

k
(y), g

k
(y) ≤ 0  (4) 

  
 

by defining  

 

 fk(y) = 1/2(y-xk)
T
 Bk(y-xk) + ∇f(xk)

T
 (y-xk)+f(xk) 

 

g
k
j = ∇gj (xk)

T
 (y-xk) + gj(xk), j = 1,.....,m 

 

It is clearly visible that the requirements of (4) are 

satisfied. The core idea is to approximate the second order 

information to get a fast final convergence speed. The most 

interesting feature of the Sequential Quadratic Programming 

method is the super linear convergence speed in the 

neighbourhood of the solution. That is,  

 

|| xk+1-x
*
 || < γk || xk - x

*
 ||    with  γk  0 

 

In order to achieve practical efficiency, the mechanism 

design explicitly decomposes the NLP computation 

outsourcing into public NLP solvers running on the cloud and 

private NLP parameters owned by the customer. The resulting 

flexibility allows to explore appropriate security efficiency 

trade off via higher-level abstraction of NLP computations 

than the general circuit representation. Initially a framework is 

designed for the approach. After presenting the basic 

techniques the existing approach of the cloud computer is 
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being extended to the security strength of NLP outsourcing, it 

must be able to change the feasible region of original NLP and 

at the same time hide output vector x during the problem input 

encryption. Finally the proposed approach is evaluated for the 

security with the existing approaches.  

 

IV. THE GENERAL DESIGN FRAMEWORK 

The general framework is adopted from a generic 

approach [9], while the instantiation as per [10 ] is completely 

different and novel. In this framework, the process on cloud 

server can be represented by algorithm ProofGen and the 

process on customer can be organized into three algorithms 

(KeyGen, ProbEnc, ResultDec). These four algorithms are 

summarized below. 

 

KeyGen(1
k
) → {K}. This is a randomized key generation 

algorithm which takes a system security parameter k, and 

returns a secret key K that is used later by customer to encrypt 

the target LP or NLP problem. 

 

ProbEnc(K, Φ) → { ΦK}. This algorithm encrypts the input 

tuple Φ into Φ K with the secret key K. According to problem 

transformation, the encrypted input ΦK has the same form as 

Φ, and thus defines the problem to be solved in the cloud. 

 

ProofGen(Φ, K) → {(y, Γ)}. This algorithm augments a 

generic solver that solves the problem Φ K to produce both the 

output y and a proof Γ. The output y later decrypts to x,       

and Γ is used later by the customer to verify the correctness of 

y or x. 

 

ResultDec(K, Φ , y,  Γ) → {x, ⊥ }. This algorithm may 

choose to verify either y or x via the proof Γ. In any case, a 

correct output x is produced by decrypting y using the secret 

K. The algorithm outputs ⊥  when the validation fails, 

indicating the cloud server was not performing the 

computation faithfully. 

 

This mechanism provides one-time-pad types of flexibility. 

The same secret key K is never used for two different 

problems.  

 

V. EXPERIMENTAL RESULTS 

 

An experimentation to compare the performance of Linear 

Programming over Non-Linear Programming in a Cloud 

Computing environment is performed. From the outcome it is 

apparent that the NLP outsourcing consumes more 

computational time compared to that of the LP outsourcing   

due to the internal security computations. Though, the 

computations may be complex, it is evident from the results 

that the NLP computation outsourcing is more secure 

compared to that of the LP outsourcing. 

 

0

5

10

15

20

25

30

35

40

45

50

LP

NLP

 

Fig. 2  Computation Time comparison LP Vs NLP 

VI. CONCLUSIONS 

 

In this paper a study of Linear and Nonlinear 

programming computations outsourcing in the cloud 

computing environment is carried out. Experimentation is 

carried out by implementing the basic schemes proposed in 

the literature. Sequential Quadratic Programming method is 

used to implement NLP scheme. From the results it is 

observed that LP programming computations involve less 

time than the NLP computations. Both LP and NLP 

mechanisms involve almost same communication complexity. 

Due to the complexity in operations and computations it is 

found that NLP computation outsourcing is more secure than 

LP outsourcing. 
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