
 

 

 

 

 

 

 

 

 
Abstract—This paper proposes a method for camera motion 

estimation and outdoor scene reconstruction from multiple views 

of monocular system. Firstly, invariant feature of each triplet of 

frames are detected and matched in consecutive-overlap pair. 

Wrong correspondence points matching are rejected by RANSAC 

algorithm to find fundamental matrix. Second, the rotation and 

translation constrain are derived from essential matrix which is 

computed based on fundamental matrix and intrinsic camera 

parameters. The scale adjustment is use to estimate the ratio of 

translation and generate the motion trajectory. Thirdly, 3D points 

of scene are triangulated and refined because of non-coincident 

clouds generated from various triplets of frames. The simulation 

results will demonstrate the effectiveness of this method. 

Keywords- SIFT, RANSAC, multiple views geometry, motion 

estimation, 3D reconstruction  

I.  INTRODUCTION  

Motion estimation and 3D modeling of urban scene is one 

of important process in various applications of visual SLAM, 

visual odometry for autonomous mobile robot navigation and 

advanced driver assistance systems. Other application also can 

be considered are virtual environment and scene planning. 

Some progress has been made in the trajectory estimation and 

3D modeling obtained during the last few years but they 

needed a large amount of work done by hand or apparatus, 

such as laser radar, and airborne light detection and ranging. 

They are usually expensive and require much more time for data 

acquisition. 

In recent years many algorithms have been developed for 

motion estimation, which can roughly be devised into several 

categories, namely methods using monoscopic [1],   methods 

using stereoscopic [2] and camera-electromagnetic device 

combination [3-6]. In the first group, monoscopic usually 

require robust feature detection and tracking through a certain 

number of images. Using these tracked features, the motion 

trajectory could be estimated as well as scene structure by 

using well known structure from motion algorithm [7]. In the 

second group, the 3D structure of scene could be reconstructed 

as camera calibration is known by triangulation. Base on the 

point clouds of consecutive frame the motion of camera will 

be estimated. In this case, the scale ambiguity exist in the 

monoscopic case is eliminated. Most of experiment presents 

that stereoscopic yield a better performance [8]. In the third 

group, they combined visual sensor and other sensors to 

increase the accuracy rate and reduce drift problem. Some of 

them make use of internal measurement units (IMUs) while 

the others make use of GPS and wheel encoder. The further 

separation can be done base on the used method, for instance, 

feature matching between consecutive images [9-11] or 

feature tracking cover a sequence of frame [3], [6], [12].  

Without using any addition device, e.g. laser sensor out of 

single camera, our proposed method overcomes some 

disadvantages mentioned above. It is much cheaper and 

compact. The flow chart of proposed method can be seen in 

figure 1. From monocular system, sequence image are 

acquired along the scene. The triplet of frames is extracted 

from sequence input frames. SIFT algorithm [13], [14] is 

applied to find invariant feature and matching of each 

consecutive-overlap pair of views in triplet. The estimation of 

fundamental matrix and intrinsic parameters of camera is 

computed base on 8-points algorithm [15] and Jean-Yves 

Bouguet [16] method respectively. Essential matrix is derived 

from computed fundamental matrix and above calibration 

information. The rotation and translation constrain will be 

obtained using the method from Horn [17]. Because the motion 

is only estimates up to scale so we need to estimate the scale 

ration of the third frame [18]. Linear triangulation is the next 

step to generate 3D point cloud of scene. However the 3D 

point clouds generated from different image pair of triplet will 

yield a non-coincident structure so that the refinement step is 

needed to optimize the camera motion. Finally, the texture 

mapping will be perform to map the true value R,G,B color 

from 2D image pixels to 3D point clouds.    

This paper is organized into 5 sections. The next section 

describes motion estimation from correspondence points and 

scale adjustment method. Section III presents point clouds 

generation. We also explain refinement of non-coincident 

point clouds in this section. Experiments are showed in section 

IV. Finally, paper is finished with conclusions and point out 

future works discussed in section V. 

II. MOTION ESTIMATION 

In order to compute the frame-to-frame motion we first find 

the essential matrix which depends on the relative position and 

orientation of a pair of views, and can be estimated using point 

correspondences and intrinsic parameters of camera. In this   
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Figure 1. General proposed scheme 

 

section, we explain what is camera model, how to extract and 

match salient features as well as how a essential matrix can be 

decomposed to recover the camera motion, and, thereby, 

camera projection matrices. The brief description of this step 

is showed in the over view of figure 2.  

 

A. Camera model 

We use the projective geometry throughout this paper to 

describe the perspective projection of the 3D scene onto 2D 

images [15]. This projection is described as follows: 

 

                                        x = PX                                        (1) 

 

where P is a 3×4 projection matrix that describes the 

perspective projection process, X = [X, Y, Z,1]T and x = 

[x,y,1]T are vectors containing the homogeneous coordinates 

of the 3D world coordinate, respectively, 2D image 

coordinate. 

When the ambiguity on the geometry is metric, (i.e., 

Euclidean up to an unknown scale factor), the camera 

projection matrices can be put in the following form: 

 

                                P = K[R|-RT]                                     (2) 

 

with T and R indicating the translation and rotation of the 

camera and K , an upper diagonal 3×3 matrix containing the 

intrinsic camera parameters. 
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where fx and fy represent the focal length divided by the 

horizontal and vertical pixel dimensions, s is a measure of the 

skew, and (ux , uy) is the principal point. The check board used 

for calibration is present in figure 4. 

 

B. Feature extraction and matching 

There are many kind of features are considered in recent 

research in feature extraction and matching problem including 

Harris [19], SIFT, PCA-SIFT, SURF [20], [21], etc. SIFT is 

first presented by David G Lowe in 1999 and it is completely 

presented in 2004. As we know on experiments of his 

proposed algorithm is very invariant and robust for feature  

 

 
Figure 2. Motion estimation scheme 

 

matching with scaling, rotation, or affine transformation. 

According to those conclusions, we utilize SIFT feature points 

to find correspondent points of image pairs. The SIFT 

algorithm are described through these main steps: scale-space 

extrema detection, accurate keypoint localization, orientation 

assignment and keypoint descriptor. SIFT features and 

matching is applied for one image pair as showed in Fig. 3. 

The result of correspondence point will be used to compute 

fundamental matrix described in the next step. 

 

C. Camera motion  

 The result of correspondence point in previous step will be 

used to compute fundamental matrix. The epipolar constraint 

represented by a 3x3 matrix is called the fundamental matrix, 

F. This method based on two-view geometry theory which was 

studied completely [15]. 

 If the intrinsic parameters of the cameras are known, the 

fundamental epipolar constraint above can be represented 

algebraically by a 3x3 matrix, called the essential matrix. We 

have to do camera calibration to find these parameters. The 

good Matlab toolbox for doing camera calibration was 

provided by Jean-Yves Bouguet [16]. When we know camera 

intrinsic parameter, we can form the matrix K.  

 

                                         E = K’TFK                                     (4) 

 

where E is essential matrix, K’ and K are intrinsic parameters 

of frame 1 and 2. In the case of using the monocular camera, 

we have K’ = K. The projection matrix of the first frame P is 

set follow this equation: 

                                     P=K[I|0]                                        (5) 

 

The second projection matrix is found from four possible 

choices: P’ = (UWVT|+u3) or P’ = (UWVT|-u3) or P’ = 

(UWTVT|+u3) or P’ = (UWTVT|-u3), where U and V are found 

from SVD decomposition of E, u3 is the last column of U and 

W.  
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Figure 3. SIFT feature extraction and matching. a) SIFT features, b) 

features matching before RANSAC, c) features matching after RANSAC 
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Only one of these four choices is possible for the second 

camera. We can find it by testing whether a reconstructed 

point lies in front of both cameras.  

 

D. Scale Adjustment 

 

 Until this step, only one global scale parameter remains 

unknown, it is scale ratio of translation between each pair of 

views. In order to obtain this ratio, there are a number of 

method were proposed. Bundle adjustment [22] is one of 

typical one. The expensive computation is a disadvantage of 

this method when the initial estimation far from the true value.  

Calibration images

 
      Figure 4. Camera calibration templates  

 

 
Figure 5. Camera motion optimization  

 

Another common method use 3D-2D correspondence to 

estimate this parameter but most of solution generate the non-

linear and interactive problem so it is also expensive.  A linear 

solution is DLT (Direct Linear Transform) where a set of 

linear equation are solved by SVD (Singular Value 

Decomposition) method [23]. In this paper we apply a 

modification of DLT solution was presented in [18]. 

 

III. POINT CLOUD GENERATION 

Having obtained projection matrices, 3D points can be 

computed from their measured image positions in two or more 

views. This step is called triangulation [24] in 3D space. 

Ideally, 3D points should lie at the point of intersection of the 

back-projected rays in all of consecutive pair views. However, 

because of measurement noise as well as inaccuracy of motion 

estimation, the reconstructed structures were non-coincident. 

Thus 3D points must be refined after generation. See figure 5 

for illustration.   

A. Linear Triangulation 

Triangulation is the simplest but effective method to 

compute the 3D point X from the matching images points x  
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Figure 6. Point clouds refinement scheme 

 

and x’ given two camera matrices. Difference with dense depth 

estimation or disparity map for image region, the linear 

triangulation is suitable for sparse point depth measurement. 

First, we have x = PX, but x is determined only up to scale in 

homogeneous coordinates. So we require that the vector x is 

collinear with vector PX by setting x(PX) = 0 which gives us 

two independent equations: 

 

                                   (P3TX) – P1TX = 0                             (7) 

                                 y(P3TX) – P2TX = 0                             (8) 

where PiT is the ith row of matrix P. 

Similarly, we get another 2 equations from x’ and P’ and we 

establish an equation AX = 0. This equation is solved by SVD 

method to get X. 

B. Point cloud refinement 

The point clouds generated by the triplet frame of two 

overlap-consecutive pair of view are distinct. The 3D 

correspondence points of each triple of frames are known 

exactly according to correspondence points in 2D images. The 

refinement performs the interactive to minimize the distance 

of two point clouds. This performance will be extended for all 

point clouds which are reconstructed from each consecutive 

triplet of frame of sequence data images. Proposed scheme 

was presented in the figure 6. 

IV. EXPERIMENTS 

We experimented on outdoor images which are acquired 

from Karlsruhe dataset (www.cvlibs.net). All result were 

simulated on Intel(R) Core(TM) i5 CPU 750@2.67 GHz with 

3GB RAM under Matlab environment. The point clouds and 

motion were visualized by Open Scene Graph tool. In the first 

and the second experiment, we run 120 and 193 images with 

1344x372 sizes from 2010_03_09_drive_0019.zip dataset. 

Figure 7(a), 7(c) is the point clouds of scene and figure 7(b), 

7(d) are the motion of camera mounted on vehicle. In the 

motion trajectory we keep both translation and rotation of 

camera poses. In the third and fourth experiment, see figure 8a 

and figure 8b, we combined both point clouds and motion 

trajectory in one graph. They were implemented on the 48 and 

120 images with 1344x372 sizes from 

2010_03_09_drive_0082.zip dataset.  

 

  
                           a)                                                            b) 

  
                      c)                                                            d) 

Figure 7. Point clouds and motion trajectory. 7a, 7c are point clouds of scene. 
7b, 7d are motion trajectories. 

V. CONCLUSION  

Motion estimation and scene reconstruction from multiple 

views are presented on this paper. Some advantage points can 

be realized through our explanation. First, we avoid using 

bundle adjustment which will expensive for computational 

time while the initial estimated far from the true value. We 

utilize minimization of point clouds distance instead. Second, 

in the scale estimation, we trend to use linear method to 

estimate this parameter. It needs less 2D-3D correspondence 

points. Our future woks focus on comparison of this method 

with stereoscopic based method. Also, we will improve and 

develop this method for Omni-directional camera by using its 

video data in outdoor scene. The last ambition is application of 

this method to real time systems. 
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