
Oriented System Design in Embedded Systems Design

SHAIK SAMEERA,

RAVISHANKAR MOUNEKA,

PURVANCHAL TESHWER.

CMR TECHNICAL CAMPUS,

HYDERABAD, INDIA.

1. Abstract

The development of complex embedded

systems is feasible do to the low cost

provided by the technology advance.

This complexity is also present in the design

process.

The computer aided-design (CAD) tools

evolution has aided this process. However,

nowadays development strategies are not

suitable for the design of many applications.

This work shows advantages and

disadvantages of application oriented

system design used to develop two embedded

systems.

The disadvantages found in these two

designs may help AOSD methodology

improvement in hardware generation.

2. Keywords

 Embedded systems, CAD, reuse, IPs, AOSD.

3. Introduction

Embedded systems are pervasive in our

daily lives, from brake control systems in

our automobiles to smart appliances in our

homes. Advances in hardware technology

and manufacturing costs reductions have

allowed the development of very complex

embedded applications. However, this

complexity is reflected in the system

development process.

The evolution of CAD (Computer Aided

Design) has aided this process, but existing

development strategies fall short of

providing an optimal solution.

The Platform-based Design methodology,

proposed by Vincentelli [13] is a widely

used embedded systems development

strategy. It aims to reduce development and

production costs and to reduce electronic

systems development time, affecting as least

as possible the system performance

(whenever necessary). The development

process

in Platform-based design consists in

specifying a platform that fulfills the

requirements of not one but a set of similar

applications (for example, multimedia

applications), and that may be used in

different systems designs. According to

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

1www.ijert.org

Vincentelli, a platform is a design

abstraction layer that enables successive

refinements, resulting in a more adequate

abstraction. After a number of refinements

cycles the result is the desired hardware and

software platform.

This methodology is used, for example, in

the Philips Nexperia platform for

multimedia applications [10], and the TI

OMAP platform for mobile phones

. In this paper we elaborate on that strategy,

identifying advantages, disadvantages and

shortcomings. We analyze the development

of two embedded systems: a MPEG-2

Multiplexer and a CAN listener. This work

was developed within

PDSCE project 2. The rest of this paper is

organized as follows: section 2 elaborates on

the development strategy used. Sections 3

and 4 presents the two case-studies. Section

5 analyses the development strategy results.

Section 6 concludes and presents future

perspectives.

4. AOSD strategy overview

The Application Oriented System Design

(AOSD) methodology [1] was developed to

build component-based run-time support

systems that can be tailored according to the

requirements of particular applications. This

methodology addresses the developer, from

design to implementation, to produce an

application-oriented operating system. By

this, we mean that this operating system will

match exactly the requirements of a specific

application.

This methodology uses state-of-art software

engineering techniques, such as Domain

Analysis and Decomposition,

Family Based Design (FBD) [9] and Aspect

Oriented Programming (AOP) [5] to

separate abstractions from scenarios

dependent aspects (hardware and

environment dependencies). Abstractions

are free to reuse and extend, and are

independent from a scenario execution

[1].

The hardware dependency can be reduced

using aspects separation concept of AOP in

the decomposition process.

This concept provides means to identify

scenario variations that instead of modeling

a new family member, define a scenario

aspect. For example, although modeling a

new family member to communication

mechanism family that can operate in

shared, protected or multithreading modes,

this could be modeled as scenario aspects

that, when activated, would block the

communication mechanism (or its

operations) in a critical code section.

Application-Oriented Systems Design

proposes a domain engineering procedure

(see Figure 1) that models software

components using three constructs: families

of scenario-independent abstractions,

scenario adapters and inflated interfaces.

Overview of application-oriented domain

decomposition.

Families of scenario independent

abstractions are identified during the domain

decomposition phase. Abstractions are

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

2www.ijert.org

identified from the domain entities and

grouped in families according to their

common characteristics. During this phase,

the aspect separation process is also

performed.

This allows abstractions to be reused in

different scenarios.

Software components are then implemented

according to these abstractions.

Scenario adapters are used to solve scenario

dependencies; these must be factored out as

aspects, thus keeping abstractions

Scenario-independent. However, for this

strategy to work, means must be provided to

apply aspects to abstractions in a transparent

way. This is achieved using a scenario

adapter [2] that wraps an abstraction,

intermediating its communication with

scenario dependent clients to realize the

necessary changes, without overhead.

Inflated interfaces hold the features of all

members in a family, resulting in a unique

view of the family as if it were a ―super

component". This allows application

developers to write applications with base in

a clear and well-known interface,

postponing the decision about which

member of the family shall be used until the

moment the system is generated.

The association between an inflated

interface and a specific member of the

family will automatically be made by the

configuration tool, that identify which

properties of the family have been used, in

order to choose the simplest member of the

family that implements the required

interface. This member will so be

aggregated to the OS in compile-time.

4.1. Hardware Mediators

Aiming the OS and its components

portability to virtually any architecture, a

system designed according to AOSD makes

use of Hardware Mediators [11]. The main

idea of this portability artifact is to keep an

interface contract between the operating

system and the hardware. Each hardware

component is accessed through its own

mediator, thus granting the portability of

abstractions that use it without creating

unnecessary dependencies. Mediators are

mostly static-meta programmed and

"dissolve" themselves in the system

abstractions as the interface contract is met.

This means that a hardware mediator

delivers the functionality of the

corresponding hardware component through

an operating system oriented interface.

Hardware mediators have configurable

features that allow some hardware

components features to be switched on or

off, according to the requirements of the

abstraction.

These properties aren’t only flags that can

be turned on and off. Configurable features

can be implemented using generic

programming what allows implementing

structures and algorithms in software

without a significant overhead.

An example could be the generation of CRC

codes as a configurable feature of a

communication hardware component.

As other components in AOSD, hardware

mediators are grouped in families where

each member is the representation of an

entity in the hardware domain. This

approach guarantees that the system will

have only the necessary object-code to

support the application. Non-functional

aspects and cross-cutting properties of the

mediators are encapsulated as scenario

aspects that can be applied to family

members as required.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

3www.ijert.org

4.2. Using Hardware Mediators to

infer Hardware Components

Hardware mediators were initially been

created to facilitate the portability of

applications and run-time support systems

developed following AOSD methodology

through different fixed hardware platforms

(microcontrollers or personal computers).

However, exactly because of their straight

relation/dependency to hardware, hardware

mediators can be used to select the

necessary hardware components that fulfill

the requirements of an application.

When the hardware platform is configurable,

that mean, when it’s a PLD (Programmable

Logic Device), hardware components are

implemented using hardware description

languages as VHDL and Verilog and they

are known as Intellectual Properties (IPs). In

this scenario, hardware mediators could

infer the necessary IPs (and their features)

during the system composition [12]. For

example: if a NIC (Network

Interface Card) hardware mediator is used,

then a NIC

IP must be inferred, automatically or not.

There are three different ways to select an IP

in this methodology: In the first case, if

there is only one IP that fulfills the

application requirements, the IP selection

could be automatically done by a tool and no

explicit programmer decisions must be

taken. This case is named discrete IP-

selection. An example is the use of paged

memory in the application, allowing the tool

to infer a MMU IP with paged memory

support.

In the second case, if there are more than

one IP that fulfills the application

requirements, one will have to select a

specific IP. This is called combined IP-

selection. A list of these IPs is automatically

inferred considering the requirements and

then the application programmer manually

selects a specific IP to be used.

In the third case, named explicit IP-

selection, the programmer can choose

independently all hardware components that

will be synthesized. This is useful when a

hardware component is hidden by a system

abstraction.

In the first two cases, the configurable

features of hardware mediators can be

deployed in hardware components.

A configurable feature can help the

inference of a specific hardware component.

An example could be the use of CRC codes

by a NIC device: the IP representing this

NIC should be capable of generating CRC

codes.

5. Case study 1: Audio and Video

MPEG-2 Multiplexer

The first embedded system developed as a

case study of

AOSD was the audio and video MPEG-2

Multiplexer. The

MPEG-2 multiplexer was developed in the

context of the

Brazilian Digital Television System

(SBTVD) and consists of an embedded

system responsible for receiving the

elementary audio and video streams and

assembling them in a MPEG-2 transport

stream. The transport stream is then sent to a

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

4www.ijert.org

modulation system in order to be

transmitted.

The application uses an arbitrary number of

threads to handle elementary stream

reception (ES). These threads execute with

high priority in order to avoid hardware

reception buffer overflows. Two control

threads provide stream timing information

(T) and packet synchronization (S). The

multiplexer thread gathers data from the ES,

T and S threads and outputs a transport

stream through an output thread (See figure

2).

We used a ML310 development board from

Xilinx which contains a VirtexII-Pro

XC2V30 FPGA (Field Programmable

Gate Array) to implement the system

hardware. This

MPEG-2 multiplexer schematic

FPGA has two IBM PowerPC 405 32-bits

hardcore processors and one of then was

used in this project. Besides the

PowerPC 405 processor core, some other

IPs might be inferred from the application.

These IPs, required by the application, were

also synthesized on the VirtexII-Pro FPGA.

The application software was written using

EPOS API (Application Programming

Interface).

In the development phase of the project, the

MPEG- 2 Multiplexer application required a

display that would be used to system debug.

This display was implemented through an

UART. The UART was combined selected

to compose the system hardware. As the

EDK (Embedded Development

Kit) platform used to support hardware

development had two UARTs IPs in its

repository; the application programmer had

to choose one.

In addition to the UART, Ethernet

controllers were also used. These were

inferred straight from application (discrete

selected), as it instantiates Ethernet

hardware mediators to send and receive the

streams packets. The Ethernet controller

used is part of the ML310 platform, and was

accessed through the PCI bus, moreover, a

PCI Bridge was discrete selected to satisfy a

dependency of the PCI Ethernet controllers.

An interrupt controller was also discrete

selected to compose the system hardware.

The interrupt controller provides the means

by which I/O devices (such as UART and

Ethernet controllers) request attention from

the processor to deal with data transfers. A

timer IP was also discrete selected to satisfy

a thread requirement. The timer was used to

invoke the scheduler.

The application required access to RAM

memory, so a DDR controller was discrete

selected to the system hardware.

The memory controller generates the

necessary signals to control the reading and

writing of information from and to the

memory, and interfaces the memory with the

other major parts of the system. The ML310

platform has

256Mbytes of DDR memory and EDK has a

memory controller IP to support memory

access.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

5www.ijert.org

The Xilinx CAD tools EDK (Embedded

Development

Kit) and ISE (Integrated Software

Environment) were used to integrate and

synthesize these components. EDK has a

large repository of IPs, and it provides easy

interfaces to configure and integrate such

IPs. According to the AOSD strategy, some

IPs available in the platform was not

selected to avoid unnecessary overhead to

the system. Unselected IPs includes the USB

interface controller, the SPI controller and

the parallel port controller, among others.

The hardware components connection to the

central processor

(PowerPC 405) is done using a On Chip bus.

The bus pattern used by PowerPC processor

and Xilinx in this FPGA is core connect

developed by IBM.

5. Case study2: CAN Listener

Controller Area Network (CAN) buses are

present in most modern vehicles, air-planes,

factories and others. CAN protocol is a real

time, serial, broadcast protocol and it has a

high security level .CAN packets have an

identifier that must be unique in the entire

network and this identifier represents the

priority of the message. Identifying the

packets and its contents make possible

monitoring the vehicle properties, like fuel

consumption, break usage, acceleration rate

and others properties.

The CAN Listener has been developed to

transform CAN packets in packets that can

be transmitted through a serial interface

(UART), which allows monitoring of a

CAN bus and externally identifying packets

and the information they contain. It basically

has one thread that is blocked waiting for

messages from a CAN bus. When such

message arrives, the thread process,

transforming it in a sequence of bytes that’s

sent through a UART interface. The thread

then waits for a CRC confirmation and, if no

confirmation is received, the sequence is

sent again. The CAN listener was

implemented in a VirtexII-Pro

XC2V30 FPGA (Field Programmable Gate

Array) present in the ML310 evaluation

board from Xilinx. Like the MPEG-2

Multiplexer, this system has also used one of

the PowerPC

405 hard cores found in this FPGA. Other

IPs was inferred from the application. These

IPs, required by the application, were also

instantiated in the VirtexII-Pro FPGA. The

application software was written using

EPOS API (Application Programming

Interface). The Xilinx CAD tools EDK

(Embedded Development Kit) and ISE

(Integrated Software Environment) were

used to integrate and synthesize these

components.

The Mentor Graphics Model was used to

simulate and test the IPs.

The CAN Listener application required an

UART serial interface to send the serial

packets created with the contents of received

CAN packets. This UART was combined

selected to compose the system hardware. A

CAN controller

IP was necessary to allow the system to

communicate with the CAN buses. The

CAN controller was inferred straight from

application (discrete selected), as it directly

instantiates CAN hardware mediators to

receive CAN packets.

As there was no CAN controller IP available

in the EDK development tool, an open-

source CAN IP found at [7] was used. This

IP is compatible with the Wishbone bus

interface

[8]. as there is no native support for this bus

interface in our development platform, the

IP interface had to be adapted to the OPB

bus. The IP developers made the interface

definition and its logic very dependent,

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

6www.ijert.org

making the development of a new interface

to the IP virtually impossible.

Thus, a bridge between OPB Wishbone

buses interface was created. Because of the

differences between the two buses, the

bridge development process was very

laborious, requiring a complex state

machine, and several simulation cycles

before the integration to the system.

The CAN Listener application also required

access to

RAM memory, so a DDR memory

controller was discrete selected to the

system hardware. The ML310 platform has

a 256Mbytes DDR memory and EDK has a

memory controller IP to support this

memory access. As in the MPEG-

2 Multiplexer systems, an interrupt

controller was also discrete selected to

compose the system hardware. As in the first

study-case, some IPs present in the platform

was removed to avoid unnecessary overhead

to the system. The

PCI Bridge, USB interface controller, the

SPI controller, the parallel port controller,

among others, was excluded. Figure

3 presents a simplified schematic of the

CAN Listener hardware.

This case study demonstrated that

integration of different

IP bus technologies is not trivial, and that

the lack of hardware components in the

CAD development tools may generate large

integration efforts.

CAN Listener schematic

6. Advantages and disadvantages

in AOSD methodology

The AOSD methodology has shown to be

efficient for the design of embedded system

software and hardware. In these case studies,

we realized that it reduces significantly the

development time, compared to the platform

based design and the development using

fixed hardware. The automatically inference

of hardware components facilitates the SoCs

generation, once the code itself makes use of

hardware properties that can infer an

specific IP. If the developer has a repository

with different kinds of IPs, the simplest one

satisfying the application requirements is

used.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

7www.ijert.org

The use of EPOS, which is an operating

system developed following AOSD

concepts, makes the application code

extremely efficient. As EPOS is based in

software components, only the components

necessary to the application functioning will

be compiled to object-code. These result in

an efficient code with reduced size, since no

unnecessary resources management will be

present. Moreover, the use of

EPOS enabled the application software to be

executed in different architectures. EPOS is

a multiplatform operating system, thus the

application may be compiled to run in

different architectures, as long as this

architecture has the hardware components

necessary to support the application

requirements.

The use of EPOS makes the application

code extremely efficient and only the

components necessary to the application will

be select to compose the binary code.

Moreover, the use of EPOS allows the

application to be executed in different

architectures, from 8 bit microcontroller to

64 bit complex processors, and also using

several types of FPGAs.

Besides these advantages found in AOSD

methodology, the use of FPGAs enables the

possibility of late upgrades to system

hardware. The FPGAs configurable

hardware property allows the system to be

changed even after its project is finished.

This is an important characteristic to

embedded systems, because of continuous

emerging features and functions in this area.

Most of the time, the infer process creates a

relation of one hardware mediator to one

hardware component. It would be ideal that

a hardware component could be tailored to a

hardware mediator, instead of using ready-

made IPs.

The designer should be able to configure an

IP according to the hardware mediator being

instantiated by the application.

This would result in smaller hardware

components, extremely adapted to the

application.

Hardware components aren’t usually

developed to be totally configurable, only

some of them have some generic fields that

can be modified by the developer. If

hardware components were developed

following AOSD approach, every

IP would be specifically tailored to the

system in which it is being used. This would

reduce the size of these components, saving

FPGA area.

As seen in the second case study, IPs that

hasn’t a bus interface standard similar to the

system bus standard requires large efforts

for adaptation. In addition to this,

On Chip buses bridges creates additional

overhead to the system and requires more

FPGA area. A common definition

of an IP core is a design function with well-

defined interfaces. Many IP cores are

initially designed to perform specific

functions, evolving to more complex

components, which incorporates others

functions, thus becoming reusable to others

designs. If the IP function is well separated

from the IP interfaces in the design, it

should be simple to create new interfaces.

Thus, besides developing IPs according to

AOSD principles, IP interfaces might be

independent.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

8www.ijert.org

In the traditional EPOS design process, the

application developer defines a base

architecture and then writes the application.

However, in embedded systems

development, it is common to choose the

cheapest architecture that fulfils the

application requirements. Design space

explorations might allow application

programmers to first write an application,

and then choose the cheapest suitable

architecture for his design.

6. Acknowledgement

The Successful Completion of

any task would be incomplete

without expression of simple

gratitude to the people who

encouraged our work. Though

words are not enough to express

the sense of gratitude towards

everyone who directly or

indirectly helped in this task. I

thankful to this Organization

CMR Technical Campus, which

provided good facilities to

accomplish my work and would

like to sincerely thank to our

Management, Director Dr. A.

Raji Reddy, Dean Dr. Ravi Purna

Chandra Rao, HOD K. Srujan

Raju and faculty members for

giving great support, valuable

suggestions and guidance in

every aspect of my work.

7. Conclusion

The embedded system design growing

complexity and the known design strategies

deficiencies have motivated this work. We

have designed two embedded systems

following the AOSD methodology. We

found advantages and disadvantages in this

strategy, contributing to the evolution of this

Methodology.

By using AOSD techniques, it was possible

to infer specific hardware components from

application code, using the artifact of

hardware mediators. This reduces

development time and helps the

development of a system with the least

number of hardware components possible.

The evolution of the AOSD methodology,

especially in the area of hardware generation

from application code, should prove useful

in embedded systems design. Future

improvement in hardware components

development process should provide more

adaptable and specialized, application

tailored components, with smaller size,

enabling more refined hardware choices.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

9www.ijert.org

8. References

 [1]K. Ogata

Modern Control Engineering

Prentice Hall, Englewood Cliffs, NJ (1997)

[2]D.C. Sharp

Reducing avionics software cost through

component based product line development

Software Product Lines: Experience and

Research Directions, vol. 576 (2000)

[3]J.K. Cross, P. Lardieri, Proactive and

reactive resource reallocation in DoD

DRE systems, in: Proceedings of the

OOPSLA 2001 Workshop ―Towards

Patterns and Pattern Languages for OO

Distributed Real-time and Embedded

Systems‖, 2001

[4]A.S. Krishna, D.C. Schmidt, R. Klefstad,

A. Corsar Real-time CORBA middleware Q.

Mahmoud (Ed.), Middleware for

Communications, Wiley and Sons, New

York (2004), pp. 413–438

[5]N. Wang, D.C. Schmidt, A. Gokhale, C.

Rodrigues, B. Natarajan, J.P. Loyall, R.E.

Schantz, C.D. Gill QoS-enabled middleware

Q. Mahmoud (Ed.), Middleware for

Communications, Wiley and Sons, New

York (2004), pp. 131–162

 [6]D.C. Schmidt, R. Schantz, M. Masters, J.

Cross, D. Sharp, L. DiPalma Towards

adaptive and reflective middleware for

network-centric combat CrossTalk — The

Journal of Defense Software Engineering

(2001), pp. 10–16

[7]J. Sztipanovits, G. Karsai Model-

integrated computing IEEE Computer, 30

(4) (1997), pp. 110–112

[8]J. Gray, T. Bapty, S. Neema

Handling crosscutting constraints in domain-

specific modeling Communications of the

ACM (2001), pp. 87–93 View Record in

Scopus

 [9]Object Management Group, Model

Driven Architecture (MDA) Guide V1.0.1,

OMG Document omg/03-06-01 Edition,

Jun. 2001

[10]A. Ledeczi, A. Bakay, M. Maroti, P.

Volgysei, G. Nordstrom, J. Sprinkle, G.

Karsai Composing domain-specific design

environments IEEE Computer (2001)

[11]J. Hatcliff, W. Deng, M. Dwyer, G.

Jung, V. Prasad, Cadena: An integrated

development, analysis, and verification

environment for component-based systems,

in: Proceedings of the 25th International

Conference on Software Engineering,

Portland, OR, 2003, pp. 160–172

[12]R. Rajkumar, C. Lee, J.P. Lehoczky,

D.P. Siewiorek Practical solutions for QoS-

based resource allocation problems IEEE

Real-time Systems Symposium, RTSS 98,

IEEE, Madrid, Spain (1998), View Record

in Scopus

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

10www.ijert.org

8. Authors

Shaik sameera

Computer science engineering

student, CMR Technical Campus-

Hyderabad(India)

Ravishankar mouneka

Computer Science Engineering

student, CMR Technical Campus-

Hyderabad(India)

Purvanchal teshwer

Computer Science Engineering

student,CMR Technical Campus-

Hyderabad(India)

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

11www.ijert.org

