
Optimum Architecture Design of PCI bus

Amit S. Mamidwar
Department of E&TC

Sinhgad College of Engineering

Pune, India

Prof. Vrushali G. Raut
Department of E&TC

Sinhgad College of Engineering

Pune, India

Abstract— Optimum utilization of power and area along

with variable bandwidth are requirements of digital component

interconnect in several embedded system. Peripheral component

interconnect (PCI) bus is widely used in embedded system for

communication. In present applications such as computers,

routers, XBOX and so on, many embedded component needs

connection with PCI bus. However, these digital components

don’t have the bus interface of PCI with minimum power and

area. In order to solve this problem, this project intends to

implement FPGA-based PCI bus of low power and smallest

area. By the analysis of PCI bus and corresponding signal

sequence for interface, the top-down method is applied to

modeling of PCI bus into seven functional modules such as base

configuration register module, state machine module, address

check module, etc. This helps to design an optimized

architecture for each module easily. Besides, the master and

target modules of PCI bus are structured in finite state machine

and programmed with utilization of VHDL language. It helps to

minimize the state transition delay. Through the simulation it

has been proved that the interface can meet the requirements of

PCI bus for communication between digital components.

Keywords— PCI bus, Power Consumption, Optimum

Architecture, State machine design

I. INTRODUCTION

The peripheral component interconnects (PCI) bus is
widely used in the embedded system. PCI is a bus for
attaching digital component in hardware devices. This works
as an intermediate bus for communicating between the
system I/O’s and other peripheral devices. It helps to
communicate with a high data rate. In applications like
computers, Routers, ATM’s or XBOX and so on, PCI used as
a communication bus between the processor and other
components like graphic cards, memory; etc. [5].

Energy saving is a key parameter of Embedded equipment.
The PCI bus uses parallel communication; therefore it may
consume high power, hence there is a need to design low-
power PCI. The PCI bus performs read-write operation for
single or multiple bytes of data. It takes initiative to read-
write operation. Generally PCI takes time to switch from
single byte to multiple byte read-write operation. This state
transition delay has to be minimized, which improves the
speed of the device [4].

PCI bus processes the control signals, system functions,
address and data. It has to be accessed throughout the
modules (master or slave). The master device directs the bus
and it chooses the target. It consists data/address (AD) bus.
For transmission of data, it takes one or more clock delay
which depends on the transmission mode of operation. Also,
the digital components need minimum power interfacing. The
PCI bus uses parallel communication which increases power
consumption [1].

This paper is designed FPGA based PCI bus for low power
and minimum area. The top-down method is applied to the
PCI bus. It divides the PCI into seven functional modules
which helped to optimize the architecture for each module
easily. The state machine is designed for the master and target
modules. It minimizes the extra state transition delays which
introduces at the time of read or write operation.

II. LITERATURE SURVEY

Literatures have been collected not only from research but
also from review articles. The PCI Bus was initially
developed in 1992, for graphics oriented operating systems
like Windows. It has needed interconnection between the
processor and display peripherals of standard PC
architectures. The peripheral uses with high bandwidth
specifications nearer to the processor bus can improve the
speed. Significant performances are seen with graphical user
interfaces and other high bandwidth functions like full motion
video, SCSI, LANs, etc. when a bus designs is used. PCI
meets these specification difficulties of the industry
successfully and is now the most widely used and realized
expansion standard in the world. [5]

The initial version of conventional PCI established in
consumer desktop computers was a 32-bit bus with a 33 MHz
bus clock and 5 V signal, although the PCI standard gave a
64-bit variant as well. The PCI standard introduced 3.3 V
slots, physically differentiated by a flipped physical
connector to avoiding accidental insertion of 5 V cards.
Universal cards, which can work on any voltage, have two
notches. Version 2.1 of the PCI model introduced optional
66 MHz operation. A server-oriented alternative of
conventional PCI, called PCI-X operated at frequencies up to
133 MHz for PCI-X 1.0 and up to 533 MHz for PCI-X 2.0.
An internal connector for laptop cards was introduced in
version 2.2 of the PCI specification. The PCI was also
adopted for an external laptop connector standard. The first
PCI specification was introduced by Intel, but following
development of the standard became the responsibility of
the PCI Special Interest Group (PCI-SIG) [7].

The latest version of the PCI bus is PCIe 3.0x16 works for
a point to point connection. It works for two devices only and
other devices cannot connect. PCIe works for serial
communication where as PCI bus works for parallel
communication. The PCI is highly performed I/O bus, which
use peripheral devices to interconnect in the application of
communication. PCI interconnects the I/O devices for the
connection and computing of embedded system. The PCI bus
is having the capability to update operation to purpose with
power management. But each internal device like state
machine, configuration space and address command
controller needs to inform the register information, state

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080692

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

749

information and enhancement in play and plug capability. It
consists device controller, message controller, mode
controllers and so on. It increases the power consumption of
the device up to several mili watts for normal PCI bus [8]. To
this active system, this design tries to replace the PCIe with
PCI bus with high bandwidth which connects to more than
two devices for the required application and adding the
devices in the PCI bus, direct master and target state machine
which will minimiz the power consumption [9].

The processor connects to the memory controller through
front side bus. This controller connects to the PCI. PCI
provides the separate memory and I/O port address spaces.
Address spaces provides the addresses by the software. It
uses the fix addressing scheme. PCI consisting of the 32-bit
and 64-bit PCI cards to process [10]. It causes problems in
general PCI as:

A. Mixing of 32-bit and 64-bit PCI cards:

A 32-bit PCI will function well appropriate in 64-bit PCI
slot, but speed will limits the clock frequency of the slowest
card. Many 64-bit PCI cards designed to work with 32-bit
mode, if inserted in shorter 32-bit connectors, with some loss
of speed. When a 64-bit card installs in 32-bit slot will leave
the 64-bit portion of the card edge connector not connected
and overhanging [11].

B. Communication system for FPGAs:

A capability requires a considerable infrastructure, which
is built into the PCI chip of the device. For data achieving
system, it is often interested to have capability on FPGA
where other functionality can be used as well. There are two
types of FPGA-based PCI solution- embedded system design,
where there is an entire CPU infrastructure on FPGA, and
standalone design with limited functionality and interface, but
with low resource requirement. The main focus is to minimize
the resource utilization on FPGA while maintaining reliability
and efficiency of the design [12].

III. SYSTEM MODELLING

The PCI bus implementation designed using several
modules; it uses master as well as target module. PCI Bus
divides the module in master/target control fsm, PCI address
decoder controller, parity checker, configuration space, info
transfer and device clock manager.

A. Efficient PCI Model Design:

Figure 1 shows the functional block diagram of PCI Bus

with several modules. These modules connect with a modular

method to design operation. The entire read-write operations

must be allocated by the state machine to control the bus.

When used as the master device, it can apply to take the bus

initiative. Data are then transmitted in bursts or single byte to

the destination address. A burst transfer carries segment of

address and several segments of data. It requires that the

target device and the master device must understand the

implicit addressing. The state machine module is separated

into a master device and the target device. Each module is

planned with VHDL by XILINX.

Fig 1: Functional Block Diagram of PCI Bus

a. Configuration Space

This module is used to configure registers with
configuration space. Each device space on PCI gets the
configuration space for the bus function. The core interface
implements a zero configuration space header. The initial 64
bytes are used for standard space header of the bus. The next
64 bytes are used for the future capabilities items for the PCI
bus interface. The next 128 bytes are used for the user
applications. The user application returns to zero for all
accesses of configurations. These user applications have
ability to implement additional capability items for this space
area, or implement registers for outside scope of
specifications.

b. Info Transfer

This module uses different control logic design. These
control logic design is complex control logic. The logical
sequences are intended on the basis of address and command
behaviour. A different stage of data, address and command is
used for multiplexed the output. When the state asserts the
address signal, the output also addresses the transaction of
address.

c. Address Decoder Controller

This module is used to confirm the device's IO/MEM base
address. It has been allotted by the system during the base
register configured write cycle, and then in the address cycle
of write and read operations. This module evaluates the
address from PCI bus data sampled with the previous base
address, so that it can determine whether the current
operation of the device is for itself.

d. Parity Checker

This module is used to compare the master device address
and target device address. If the address of target and master
matches or data transmission is correct, it asserts the parity.
The device verifies the AD and C/BE through latching. The
XOR gate is generates or checks the parity. At the next clock
edge, the device will generate the XOR between its
calculations for even parity. If the two values are same, even
parity is generated. Otherwise, it reports thee data error at the
next clock pulse.

e. Master/Target Control FSM

The module of the control FSM is the most useful part of
the PCI bus interface. The FSM machine selects the current
status of operation by determining the signal on the bus. It
can deal with the process with other modules and it receives
signal from other modules. It changes the control signal by
analyzing the PCI and the signal from other modules,. The

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080692

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

750

state FSM relates the signal in accordance with PCI bus and
with input from the PCI bus.

The PCI bus transaction completes the state machine
design, which is divided into the master device and the target
device.

Fig.2 State Machine for Master

Figure 2 shows the FSM state machine for master. It has
eight states which take one clock for each transition. The
state machine has 5 kinds of situations as unsuccessful
occupancy, no answer from target; single data read operation,
information retry operation and multi-data read-write
operation.

The state transition of PCI master state machine has 5
kinds of situations as follow:

1. Unsuccessful bus occupancy: Here, idle state checks
for the operation. If it won’t get command or data, it
goes to retry state. A retry will try to get command
and data for a small number of counts. If the counter
overflows, then condition again comes back to idle.

2. No answer from the target: Similar to the first
condition, if device is not providing any control
signals to master, it goes to the abort state. This state
resets all output of the master and move to backoff
state. Again, it comes back to idle state.

3. An effective single-cycle operation send: When idle
states receive command for single data operation, it
will check to address at addr1 state. After receiving
address, it checks for data at addr2 and moves to
last_data. Finally, it approaches back to idle state via
backoff state.

4. An effective burst operation send: When idle states
receive command to burst operation, it checks the first
address at state addr1. After getting address, it checks
for first data at addr2. Later it will struggle for second
address and moves to last_data. Here it receives
second data. Finally, send all data to target and comes
back to idle state via backoff.

5. The operation of retry: When idle states receive
command for single or burst operation, it confirms the
first address at state addr1. After receiving address, it
checks for first data at addr2. When addr2 will not
receive any data, it will struggle for small number
counts. If the counter overflows, condition comes
back to idle.

Figure 3 shows the state machine for target device. It has
twelve states. Similar to master FSM state machine, it needs

single clock cycle for each transition. FSM state machine
works for unsuccessful occupancy, read-write operation for
configuration, single data read, multi-data read, single data
write, multi-data write, retry operation and backoff operation.

Fig.3 State Machine for Target

The state transition of PCI target state machine has nine
kinds of situations as follows:

1. Wrong address: Here, idle state checks control signals
for target and moves to Read-write wait state. If
device will not be able to get address or mismatch
occurs for address, it goes back to idle state.

2. Read and write of configuration: To read and write
operation of configuration space, it checks for address
at config_wait. It checks data at state config_wait2.
Finally, it goes to backoff state by obtaining condition
from configuration_ state.

3. An effective single-cycle read: For single cycle read
operation, it ensures for address at read_write_wait
state. At read_wait_2, it checks for command, whether
it is single cycle or burst read operation. For data read,
it moves to read_wait state and stops at
last_read_write. Finally it goes to idle state through
the backoff state for resetting all conditions.

4. An effective burst read: For burst read operation, it
checks for address at read_write_wait state. At
read_wait_2, it checks for command, whether it is
single cycle or burst read operation. For initial data, it
moves to read_wait state and checks next address at
read_write. It receives next data at last_read_write
state. In the end, it goes to idle state through the
backoff state for resetting all conditions.

5. An effective single-cycle write: Similar to single cycle
read operation, an effective single-cycle write
operation works through read_wait, read_wait2 and
last_read_write state, finally it comes to idle state.

6. An effective burst write: This condition is very similar
to burst read operation. Writing operation applies the
read_write_wait state for address, read_write_wait2
for data, read_write for next address and
last_read_write for last_data.

7. The operation of retry: If device is not getting any
information it will try for little count for retry
operation through read_write_wait, read_write_wait2,
and if its counter overflows, it goes to backoff state.

8. The operation of Target failure: If target is not able to
receive any data or command, then it goes for an abort
condition through read_write_wait2, read_write or

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080692

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

751

read_wait. After reaching state abort, it goes back to
backoff state.

9. Disconnected operation: If the device gets
disconnected from PCI, it will stop all operations from
any state (read_write_wait2, read_write or read_wait)
and comes back to idle state.

IV. RESULTS AND DISCUSSION

The PCI bus defines three basic read-write operations:
configuration, Memory and I/O read-write. Configuration
refers that the PCI master does the operations of read-write to
configuration registers. Memory or I/O read-write is
effectively the same. The only difference is that the
corresponding operation addresses are different. The
corresponding test bench is written respectively by XILINX
ISE 13.2 Design Suite.

A. Simulations of Modules:

The PCI bus implementation designed using several
modules. The simulation of read, write, error detection and
configuration operation is as follow:

a. Master/Target Control FSM:

PCI takes time to switch from single byte to multiple byte
read-write operation. This state transition delay has been
minimized by designing the FSM machine by using both
master and target. It improved its work by minimizing
additional states required for read-write operation. Figure 4
shows the control FSM state machine for the master and
target that explains the combined operation for single cycle
read-writes, multiple cycle read-writes and retry operation.
Status outputs used to wait until address and data load.

Fig. 4 Simulation for Control FSM

Initially the cbe[3:0] takes “0000”, it gets interrupt
command, i.e. no operation command. For “0000”, frame_i is
getting assert for less cycle and later it gets deassert. If frame
asserted and address status gets low; a dev_sel_o, stop_o and
target ready trdy_o goes to ‘0’. Similarly, it verifies parity
condition on par_o. Also, it confirms the operation for read-
write on rd_oe, wr_oe, rd_cfg_o, wr_cfg_o for I/O devices,
memory or configuration space. If the value of cbe_i [3:0] is
“0011” means it takes I/O write command, similarly if it is
“0010”, so it takes I/O read data.

b. Address Decoder Controller:

Fig. 5 showing simulation for data decoding, which takes
command from input and decoded for required form of signal
for I/O, memory or configuration space. It gives byte
information to design to the configuration space bar_0.

In fig. 5, c/be(7:0) line takes command for PCI and tries
to decode information. When id_sel_i is ‘1’ then the device
will start work. Bus ad(63:0) is a bidirectional bus which
takes data and decodes. A pciadr_ld_i is used for loading the
data. A bar0_1 and bar0_2 takes the byte information and
moves information to configuration space by using adr0_1
and adr0_2.

Fig. 5 Simulation for Address Decoder Controller

When io_en_i is ‘0’ then adr0_1 and adr0_2 goes to high
impedance state ‘Z’. Output cmd_o takes the commands
cbe(3:0) for read-write command operation.

c. Info Transfer:

Fig. 6 shows the simulation for Info Transfer. It takes data
from data_i and transfer to the I/O or register depends upon
command line. It takes enable inputs to read write and also
takes information from pci input or register input.

Fig. 6 Simulation for Info Transfer

The cbe_i(7:0) takes command for read-write operation.
A data_i(63:0) and rg_data_i(63:0) takes data from I/O or
memory and configuration space (register). If command
cbe(3:0) is “0010” then it transfers data to data_i and if
cbe(3:0) is “0110” then it transfers data to data_o. Similarly if
command is “1011” then it transfers data to rg_data_o.

d. Configuration Space:

In the process of configuration write test bench simulates
the system to allocate configuration space resources to the
target. It represents that the system can receive the command
of master aborts. The results of the configuration write
operation is successful.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080692

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

752

Fig. 7 Simulation for Configuration Space

The values of cbe_i are 1010 and 1011, which means that at
this time the operation of a configuration read and write are
done, respectively. After the given configuration register
address, the data immediately send in the next cycle.

e. Parity Checker:

The core interface generates and checks parity and reports
error as required by the PCI Local Bus Specification. The
function is completely transparent to user. It needs to know if
an error occurred. It introduces if parity error occurs during
the data phase.

Fig. 8 Simulation of Parity Checking

Figure 8 shows the result for parity detecting for target.
According to user necessity it will use either several checkers
which will recover its operation faster for the device. Both
devices work faster which minimize the power consumption
and area. If pci_par_en is ‘1’, it gets enable to ensure the
parity condition. Perr gives parity checking error for both
pci_data[63: 0] and cbe[7:0] with single bit output. Initially
pci_data[63:0] and cbe[7:0] sets to all ‘0’. If pci_data and cbe
gets even, then perr gives output ‘0’ and if data and cbe is
odd, then it shows the parity error as ‘1’. It works as
successful even parity checker for getting the parity error
information.

f. PCI Simulation:
Fig. 9 shows the simulation of PCI bus top module. PCI

bus takes command of read operation from I/O when cbe(7:0)
is X“02”. It transmits data for I/O write operation when
cbe(7:0) is X“03” outside the PCI. Data_in receives data and
gives data to data_out on right command. In simulation, Data
has received at 40 ns, and data_out receives it at 220ns.

Fig. 9 Simulation for top module PCI Bus

B. Performance Measurement Parameter:

The proposed system in this project is not only used to
minimize the power the PCI. The system also minimize to
utilization of devices. Table 4.1 shows the power
consumption. Table 4.2 shows test results for utilization of
slices, slice flip-flop and 4-input LUTs for the PCI device on
SPARTAN-3E kit.

Table 1: Text Power Report

 Clocks Quiescent Total

Power

(mw)
3.80 320.67 324.48

Table 2: Number Of Device Utilizations

Device Utilization

Slices Slice Flip-flops 4-Input LUTs

191 172 253

V. CONCLUSION

The work presented in this project gives the fpga-based
pci bus of low-power devices. The interface of pci bus is
representing program with the top-down approach that
modules into top layer, state-machine, configuration register,
base address check and even-parity are designed. This
minimizes the area of pci bus due to optimize design of
modules. The state transition delay has been minimized by
designing the fsm by using moore state machines for master
and target. It improved work of pci by minimizing additional
states required for read-write operation. The utilization of
number of slices are 191, number of slice flip-flop are 172
and number of 4-input luts are 253. The simulation of read,
write operation will prove that the design conform pci bus
specification as compare to xilinx pci 64_ug262. This work
gives the low-power embedded device increase to
applications of pci bus. It will meet requirements of the
design. For manufacturers, pci bus interface would be
reserved. It will not affect on resources and its waste.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080692

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

753

REFERENCES

[1] Mingji Yang, Lei Wu, Haokun Shi, and Harbin, “Design of
PCI-104 Bus Interface of Low-Power Embedded CPU Based
on FPGA”, IEEE International Conference on Measurement,
Information and control, vol. 01, pp. 275-279, August 2013.

[2] Hossein Kavianipour, Christian Bohm, “A High-Reliability
PCIe Communication System for Small FPGAs”, 2013 IEEE
Nuclear Science Symposium and Medical Imaging Conference
(NSS/MIC), pp.1-4, Oct.2013-Nov.2013.

[3] Mohammad S. Sharawi, “Signal Integrity Characterization and
Modeling of a PCI/PCI-x 66/133 MHz Bus”, Circuits and
Systems, 2008. MWSCAS 2008. 51st Midwest Symposium on ,
pp.490-493, August 2008.

[4] Ms. Awani N. Gaidhane, Mrs. Manish Pankaj Khorgade,
“FPGA Implementation of Serial peripheral Interface of Flex-
Ray Controller”, Computer Modelling and Simulation
(UKSim), 2011 UkSim 13th International Conference on ,
pp.128-132, March 2011.

[5] PCIBook, “PCI Local Bus Specification”, PCI Group, revision
2.3, Portland; 2002.

[6] XILINX User Guide, “LogiCORE IP Initiator/Target v4.18 for
PCI”, pci_64_UG262, User Guide XILINX, October 2012.

[7] S. Sumathi; P. Surekha (2007). LabVIEW based Advanced
Instrumentation Systems. Springer. p. 305. ISBN 978-3-540-
48501-8.

[8] Qiang Wu; Jiamou Xu; Xuwen Li; Kebin Jia, "The research
and implementation of interfacing based on PCI
express," Electronic Measurement & Instruments, 2009.
ICEMI , vol., no., pp.3-116,3-121, 16-19 Aug. 2009

[9] Wang Lihua, "Design and Simulation of PCI Express
Transaction Layer," Computational Intelligence and Software
Engineering, 2009. CiSE 2009. International Conference on ,
vol., no., pp.1,4, 11-13 Dec. 2009.

[10] Mu-Shan Lin; Chien-Chun Tsai; Chih-Hsien Chang; "A 5Gb/s
low-power PCI express/USB3.0 ready PHY in 40nm CMOS
technology with high-jitter immunity," Solid-State Circuits
Conference, 2009. A-SSCC 2009. IEEE Asian , vol., no.,
pp.177,180, 16-18 Nov. 2009

[11] Saleh, H.; Engels, R.; Reinartz, R.; Reinhart, P.; Rongen, F., "A
flexible compatible PCI interface for nuclear
experiments," Nuclear Science Symposium, 1997. IEEE , vol.,
no., pp.704,706 vol.1, 9-15 Nov 1997

[12] Chee Wei Liang; Zain Ali, N.B.; Seth Nair, R., "Design of low
cost FPGA based PCI Bus Sniffer," FPT, 2003. Proceedings.
2003 IEEE International Conference on , vol., no., pp.420,423,
15-17 Dec. 2003

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080692

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

754

