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Abstract— Optimum utilization of power and area along 

with variable bandwidth are requirements of digital component 

interconnect in several embedded system. Peripheral component 

interconnect (PCI) bus is widely used in embedded system for 

communication. In present applications such as computers, 

routers, XBOX and so on, many embedded component needs 

connection with PCI bus. However, these digital components 

don’t have the bus interface of PCI with minimum power and 

area. In order to solve this problem, this project intends to 

implement FPGA-based PCI bus of low power and smallest 

area. By the analysis of PCI bus and corresponding signal 

sequence for interface, the top-down method is applied to 

modeling of PCI bus into seven functional modules such as base 

configuration register module, state machine module, address 

check module, etc. This helps to design an optimized 

architecture for each module easily. Besides, the master and 

target modules of PCI bus are structured in finite state machine 

and programmed with utilization of VHDL language. It helps to 

minimize the state transition delay. Through the simulation it 

has been proved that the interface can meet the requirements of 

PCI bus for communication between digital components. 

Keywords— PCI bus, Power Consumption, Optimum 

Architecture, State machine design 

I.  INTRODUCTION  

The peripheral component interconnects (PCI) bus is 
widely used in the embedded system. PCI is a bus for 
attaching digital component in hardware devices. This works 
as an intermediate bus for communicating between the 
system I/O’s and other peripheral devices. It helps to 
communicate with a high data rate. In applications like 
computers, Routers, ATM’s or XBOX and so on, PCI used as 
a communication bus between the processor and other 
components like graphic cards, memory; etc. [5]. 

Energy saving is a key parameter of Embedded equipment. 
The PCI bus uses parallel communication; therefore it may 
consume high power, hence there is a need to design low-
power PCI. The PCI bus performs read-write operation for 
single or multiple bytes of data. It takes initiative to read-
write operation. Generally PCI takes time to switch from 
single byte to multiple byte read-write operation. This state 
transition delay has to be minimized, which improves the 
speed of the device [4]. 

PCI bus processes the control signals, system functions, 
address and data. It has to be accessed throughout the 
modules (master or slave). The master device directs the bus 
and it chooses the target. It consists data/address (AD) bus. 
For transmission of data, it takes one or more clock delay 
which depends on the transmission mode of operation. Also, 
the digital components need minimum power interfacing. The 
PCI bus uses parallel communication which increases power 
consumption [1]. 

This paper is designed FPGA based PCI bus for low power 
and minimum area. The top-down method is applied to the 
PCI bus. It divides the PCI into seven functional modules 
which helped to optimize the architecture for each module 
easily. The state machine is designed for the master and target 
modules. It minimizes the extra state transition delays which 
introduces at the time of read or write operation. 

II. LITERATURE SURVEY 

Literatures have been collected not only from research but 
also from review articles. The PCI Bus was initially 
developed in 1992, for graphics oriented operating systems 
like Windows. It has needed interconnection between the 
processor and display peripherals of standard PC 
architectures. The peripheral uses with high bandwidth 
specifications nearer to the processor bus can improve the 
speed. Significant performances are seen with graphical user 
interfaces and other high bandwidth functions like full motion 
video, SCSI, LANs, etc. when a bus designs is used. PCI 
meets these specification difficulties of the industry 
successfully and is now the most widely used and realized 
expansion standard in the world. [5] 

The initial version of conventional PCI established in 
consumer desktop computers was a 32-bit bus with a 33 MHz 
bus clock and 5 V signal, although the PCI standard gave a 
64-bit variant as well. The PCI standard introduced 3.3 V 
slots, physically differentiated by a flipped physical 
connector to avoiding accidental insertion of 5 V cards. 
Universal cards, which can work on any voltage, have two 
notches. Version 2.1 of the PCI model introduced optional 
66 MHz operation. A server-oriented alternative of 
conventional PCI, called PCI-X operated at frequencies up to 
133 MHz for PCI-X 1.0 and up to 533 MHz for PCI-X 2.0. 
An internal connector for laptop cards was introduced in 
version 2.2 of the PCI specification. The PCI was also 
adopted for an external laptop connector standard. The first 
PCI specification was introduced by Intel, but following 
development of the standard became the responsibility of 
the PCI Special Interest Group (PCI-SIG) [7]. 

The latest version of the PCI bus is PCIe 3.0x16 works for 
a point to point connection. It works for two devices only and 
other devices cannot connect. PCIe works for serial 
communication where as PCI bus works for parallel 
communication. The PCI is highly performed I/O bus, which 
use peripheral devices to interconnect in the application of 
communication. PCI interconnects the I/O devices for the 
connection and computing of embedded system. The PCI bus 
is having the capability to update operation to purpose with 
power management. But each internal device like state 
machine, configuration space and address command 
controller needs to inform the register information, state 
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information and enhancement in play and plug capability. It 
consists device controller, message controller, mode 
controllers and so on. It increases the power consumption of 
the device up to several mili watts for normal PCI bus [8]. To 
this active system, this design tries to replace the PCIe with 
PCI bus with high bandwidth which connects to more than 
two devices for the required application and adding the 
devices in the PCI bus, direct master and target state machine 
which will minimiz the power consumption [9]. 

The processor connects to the memory controller through 
front side bus. This controller connects to the PCI. PCI 
provides the separate memory and I/O port address spaces. 
Address spaces provides the addresses by the software. It 
uses the fix addressing scheme. PCI consisting of the 32-bit 
and 64-bit PCI cards to process [10]. It causes problems in 
general PCI as: 

A. Mixing of 32-bit and 64-bit PCI cards: 

A 32-bit PCI will function well appropriate in 64-bit PCI 
slot, but speed will limits the clock frequency of the slowest 
card. Many 64-bit PCI cards designed to work with 32-bit 
mode, if inserted in shorter 32-bit connectors, with some loss 
of speed. When a 64-bit card installs in 32-bit slot will leave 
the 64-bit portion of the card edge connector not connected 
and overhanging [11]. 

B. Communication system for FPGAs: 

A capability requires a considerable infrastructure, which 
is built into the PCI chip of the device. For data achieving 
system, it is often interested to have capability on FPGA 
where other functionality can be used as well. There are two 
types of FPGA-based PCI solution- embedded system design, 
where there is an entire CPU infrastructure on FPGA, and 
standalone design with limited functionality and interface, but 
with low resource requirement. The main focus is to minimize 
the resource utilization on FPGA while maintaining reliability 
and efficiency of the design [12]. 

III. SYSTEM MODELLING  

The PCI bus implementation designed using several 
modules; it uses master as well as target module. PCI Bus 
divides the module in master/target control fsm, PCI address 
decoder controller, parity checker, configuration space, info 
transfer and device clock manager. 

A. Efficient PCI Model Design: 

Figure 1 shows the functional block diagram of PCI Bus 

with several modules. These modules connect with a modular 

method to design operation. The entire read-write operations 

must be allocated by the state machine to control the bus. 

When used as the master device, it can apply to take the bus 

initiative. Data are then transmitted in bursts or single byte to 

the destination address. A burst transfer carries segment of 

address and several segments of data. It requires that the 

target device and the master device must understand the 

implicit addressing. The state machine module is separated 

into a master device and the target device. Each module is 

planned with VHDL by XILINX.       

 

Fig 1: Functional Block Diagram of PCI Bus 

a. Configuration Space 

This module is used to configure registers with 
configuration space. Each device space on PCI gets the 
configuration space for the bus function. The core interface 
implements a zero configuration space header. The initial 64 
bytes are used for standard space header of the bus. The next 
64 bytes are used for the future capabilities items for the PCI 
bus interface. The next 128 bytes are used for the user 
applications. The user application returns to zero for all 
accesses of configurations. These user applications have 
ability to implement additional capability items for this space 
area, or implement registers for outside scope of 
specifications. 

b. Info Transfer 

This module uses different control logic design. These 
control logic design is complex control logic. The logical 
sequences are intended on the basis of address and command 
behaviour. A different stage of data, address and command is 
used for multiplexed the output. When the state asserts the 
address signal, the output also addresses the transaction of 
address.  

c. Address Decoder Controller 

This module is used to confirm the device's IO/MEM base 
address. It has been allotted by the system during the base 
register configured write cycle, and then in the address cycle 
of write and read operations. This module evaluates the 
address from PCI bus data sampled with the previous base 
address, so that it can determine whether the current 
operation of the device is for itself. 

d. Parity Checker 

This module is used to compare the master device address 
and target device address. If the address of target and master 
matches or data transmission is correct, it asserts the parity. 
The device verifies the AD and C/BE through latching. The 
XOR gate is generates or checks the parity. At the next clock 
edge, the device will generate the XOR between its 
calculations for even parity. If the two values are same, even 
parity is generated. Otherwise, it reports thee data error at the 
next clock pulse. 

e. Master/Target Control FSM 

The module of the control FSM is the most useful part of 
the PCI bus interface. The FSM machine selects the current 
status of operation by determining the signal on the bus. It 
can deal with the process with other modules and it receives 
signal from other modules. It changes the control signal by 
analyzing the PCI and the signal from other modules,. The 
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state FSM relates the signal in accordance with PCI bus and 
with input from the PCI bus. 

The PCI bus transaction completes the state machine 
design, which is divided into the master device and the target 
device.   

 

 
Fig.2 State Machine for Master 

Figure 2 shows the FSM state machine for master. It has 
eight states which take one clock for each transition. The 
state machine has 5 kinds of situations as unsuccessful 
occupancy, no answer from target; single data read operation, 
information retry operation and multi-data read-write 
operation.  

The state transition of PCI master state machine has 5 
kinds of situations as follow: 

1. Unsuccessful bus occupancy: Here, idle state checks 
for the operation. If it won’t get command or data, it 
goes to retry state. A retry will try to get command 
and data for a small number of counts. If the counter 
overflows, then condition again comes back to idle.  

2. No answer from the target: Similar to the first 
condition, if device is not providing any control 
signals to master, it goes to the abort state. This state 
resets all output of the master and move to backoff 
state. Again, it comes back to idle state. 

3. An effective single-cycle operation send: When idle 
states receive command for single data operation, it 
will check to address at addr1 state. After receiving 
address, it checks for data at addr2 and moves to 
last_data. Finally, it approaches back to idle state via 
backoff state.  

4. An effective burst operation send: When idle states 
receive command to burst operation, it checks the first 
address at state addr1. After getting address, it checks 
for first data at addr2. Later it will struggle for second 
address and moves to last_data. Here it receives 
second data. Finally, send all data to target and comes 
back to idle state via backoff. 

5. The operation of retry: When idle states receive 
command for single or burst operation, it confirms the 
first address at state addr1. After receiving address, it 
checks for first data at addr2. When addr2 will not 
receive any data, it will struggle for small number 
counts. If the counter overflows, condition comes 
back to idle. 

Figure 3 shows the state machine for target device. It has 
twelve states. Similar to master FSM state machine, it needs 

single clock cycle for each transition. FSM state machine 
works for unsuccessful occupancy, read-write operation for 
configuration, single data read, multi-data read, single data 
write, multi-data write, retry operation and backoff operation. 

  

Fig.3 State Machine for Target 

The state transition of PCI target state machine has nine 
kinds of situations as follows: 

1. Wrong address: Here, idle state checks control signals 
for target and moves to Read-write wait state. If 
device will not be able to get address or mismatch 
occurs for address, it goes back to idle state. 

2. Read and write of configuration: To read and write 
operation of configuration space, it checks for address 
at config_wait. It checks data at state config_wait2. 
Finally, it goes to backoff state by obtaining condition 
from configuration_ state.  

3. An effective single-cycle read: For single cycle read 
operation, it ensures for address at read_write_wait 
state. At read_wait_2, it checks for command, whether 
it is single cycle or burst read operation. For data read, 
it moves to read_wait state and stops at 
last_read_write. Finally it goes to idle state through 
the backoff state for resetting all conditions. 

4. An effective burst read: For burst read operation, it 
checks for address at read_write_wait state. At 
read_wait_2, it checks for command, whether it is 
single cycle or burst read operation. For initial data, it 
moves to read_wait state and checks next address at 
read_write. It receives next data at last_read_write 
state. In the end, it goes to idle state through the 
backoff state for resetting all conditions. 

5. An effective single-cycle write: Similar to single cycle 
read operation, an effective single-cycle write 
operation works through read_wait, read_wait2 and 
last_read_write state, finally it comes to idle state. 

6. An effective burst write: This condition is very similar 
to burst read operation. Writing operation applies the 
read_write_wait state for address, read_write_wait2 
for data, read_write for next address and 
last_read_write for last_data. 

7. The operation of retry: If device is not getting any 
information it will try for little count for retry 
operation through read_write_wait, read_write_wait2, 
and if its counter overflows, it goes to backoff state. 

8. The operation of Target failure: If target is not able to 
receive any data or command, then it goes for an abort 
condition through read_write_wait2, read_write or 
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read_wait. After reaching state abort, it goes back to 
backoff state. 

9. Disconnected operation: If the device gets 
disconnected from PCI, it will stop all operations from 
any state (read_write_wait2, read_write or read_wait) 
and comes back to idle state. 

IV. RESULTS AND DISCUSSION 

The PCI bus defines three basic read-write operations: 
configuration, Memory and I/O read-write. Configuration 
refers that the PCI master does the operations of read-write to 
configuration registers. Memory or I/O read-write is 
effectively the same. The only difference is that the 
corresponding operation addresses are different. The 
corresponding test bench is written respectively by XILINX 
ISE 13.2 Design Suite. 

A. Simulations of Modules: 

The PCI bus implementation designed using several 
modules. The simulation of read, write, error detection and 
configuration operation is as follow: 

a. Master/Target Control FSM: 

PCI takes time to switch from single byte to multiple byte 
read-write operation. This state transition delay has been 
minimized by designing the FSM machine by using both 
master and target. It improved its work by minimizing 
additional states required for read-write operation. Figure 4 
shows the control FSM state machine for the master and 
target that explains the combined operation for single cycle 
read-writes, multiple cycle read-writes and retry operation. 
Status outputs used to wait until address and data load. 

 
Fig. 4 Simulation for Control FSM 

Initially the cbe[3:0] takes “0000”, it gets interrupt 
command, i.e. no operation command. For “0000”, frame_i is 
getting assert for less cycle and later it gets deassert. If frame 
asserted and address status gets low; a dev_sel_o, stop_o and 
target ready trdy_o goes to ‘0’. Similarly, it verifies parity 
condition on par_o. Also, it confirms the operation for read-
write on rd_oe, wr_oe, rd_cfg_o, wr_cfg_o for I/O devices, 
memory or configuration space. If the value of cbe_i [3:0] is 
“0011” means it takes I/O write command, similarly if it is 
“0010”, so it takes I/O read data. 

b. Address Decoder Controller: 

Fig. 5 showing simulation for data decoding, which takes 
command from input and decoded for required form of signal 
for I/O, memory or configuration space. It gives byte 
information to design to the configuration space bar_0. 

In fig. 5, c/be(7:0) line takes command for PCI and tries 
to decode information. When id_sel_i is ‘1’ then the device 
will start work. Bus ad(63:0) is a bidirectional bus which 
takes data and decodes. A pciadr_ld_i is used for loading the 
data. A bar0_1 and bar0_2 takes the byte information and 
moves information to configuration space by using adr0_1 
and adr0_2. 

 

Fig. 5 Simulation for Address Decoder Controller 

When io_en_i is ‘0’ then adr0_1 and adr0_2 goes to high 
impedance state ‘Z’. Output cmd_o takes the commands 
cbe(3:0) for read-write command operation. 

c. Info Transfer: 

Fig. 6 shows the simulation for Info Transfer. It takes data 
from data_i and transfer to the I/O or register depends upon 
command line. It takes enable inputs to read write and also 
takes information from pci input or register input. 

 

Fig. 6 Simulation for Info Transfer 

The cbe_i(7:0) takes command for read-write operation. 
A data_i(63:0) and rg_data_i(63:0) takes data from I/O or 
memory and configuration space (register). If command 
cbe(3:0) is “0010” then it transfers data to data_i and if 
cbe(3:0) is “0110” then it transfers data to data_o. Similarly if 
command is “1011” then it transfers data to rg_data_o. 

d. Configuration Space: 

In the process of configuration write test bench simulates 
the system to allocate configuration space resources to the 
target. It represents that the system can receive the command 
of master aborts. The results of the configuration write 
operation is successful. 
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Fig. 7 Simulation for Configuration Space 

The values of cbe_i are 1010 and 1011, which means that at 
this time the operation of a configuration read and write are 
done, respectively. After the given configuration register 
address, the data immediately send in the next cycle. 

e. Parity Checker: 

The core interface generates and checks parity and reports 
error as required by the PCI Local Bus Specification. The 
function is completely transparent to user.  It needs to know if 
an error occurred. It introduces if parity error occurs during 
the data phase.  

 

Fig. 8 Simulation of Parity Checking 

Figure 8 shows the result for parity detecting for target. 
According to user necessity it will use either several checkers 
which will recover its operation faster for the device. Both 
devices work faster which minimize the power consumption 
and area. If pci_par_en is ‘1’, it gets enable to ensure the 
parity condition. Perr gives parity checking error for both 
pci_data[63: 0] and cbe[7:0] with single bit output. Initially 
pci_data[63:0] and cbe[7:0] sets to all ‘0’. If pci_data and cbe 
gets even, then perr gives output ‘0’ and if data and cbe is 
odd, then it shows the parity error as ‘1’. It works as 
successful even parity checker for getting the parity error 
information. 

f. PCI Simulation: 
Fig. 9 shows the simulation of PCI bus top module. PCI 

bus takes command of read operation from I/O when cbe(7:0) 
is  X“02”. It transmits data for I/O write operation when 
cbe(7:0) is X“03” outside the PCI. Data_in receives data and 
gives data to data_out on right command. In simulation, Data 
has received at 40 ns, and data_out receives it at 220ns. 

Fig. 9 Simulation for top module PCI Bus 

B. Performance Measurement Parameter: 

The proposed system in this project is not only used to 
minimize the power the PCI. The system also minimize to 
utilization of devices. Table 4.1 shows the power 
consumption. Table 4.2 shows test results for utilization of 
slices, slice flip-flop and 4-input LUTs for the PCI device on 
SPARTAN-3E kit. 

Table 1: Text Power Report 

 Clocks Quiescent  Total 

Power 

(mw) 
3.80 320.67 324.48 

 

Table 2: Number Of Device Utilizations 

Device Utilization 

Slices Slice Flip-flops 4-Input LUTs 

191 172 253 

 

V. CONCLUSION 

The work presented in this project gives the fpga-based 
pci bus of low-power devices. The interface of pci bus is 
representing program with the top-down approach that 
modules into top layer, state-machine, configuration register, 
base address check and even-parity are designed. This 
minimizes the area of pci bus due to optimize design of 
modules. The state transition delay has been minimized by 
designing the fsm by using moore state machines for master 
and target. It improved work of pci by minimizing additional 
states required for read-write operation. The utilization of 
number of slices are 191, number of slice flip-flop are 172 
and number of 4-input luts are 253. The simulation of read, 
write operation will prove that the design conform pci bus 
specification as compare to xilinx pci 64_ug262. This work 
gives the low-power embedded device increase to 
applications of pci bus. It will meet requirements of the 
design. For manufacturers, pci bus interface would be 
reserved. It will not affect on resources and its waste. 
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