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Abstract 

The coverage requirement and lifetime constraint 

cannot be satisfied only by using the density of the 

sensor. Coverage has to be traded for network 

lifetime. In this paper, we study about scheduling 

the sensors to maximize their coverage during a 

specified network lifetime, our objective is to 

maximize the spatial temporal coverage by 

scheduling sensors activity after they have been 

deployed. We first present a centralized algorithm 

design whose approximation factor is proved to be 

and then, propose an optimizing protocol. In 

optimizing protocol, individually the nodes optimize 

their schedules without conflict with one another. 

Theoretical and simulation results show that 

optimizing protocol substantially outperforms other 

schemes in terms of network lifetime, coverage 

redundancy, convergence time. 

Index Term – Wireless sensor network, Coverage 

 Keywords – Sensor scheduling, Distributed protocol, 

Parallel algorithm. 

 

1. Introduction 

In wireless sensor networks, there is a trade-off 

between network lifetime and sensor coverage. To 

achieve a better coverage, more sensors have to be 

active at the same time, then more energy would be 

consumed and the network lifetime is reduced. On 

the other hand, if more sensors are put into sleep to 

extend the network lifetime, the coverage will be 

adversely affected. The trade-off between network 

lifetime and sensor coverage cannot be simply solved 

at the deployment stage, because it is hard to predict 

the network lifetime requirement, which depends on 

the application and may change as the mission 

changes. For example, in a surveillance application, 

the initial mission is to monitor the battle field for 6 

hours. As the battle goes on, the commander finds 

that the battle may have to last for 10 hours. Then, 

the mission of the sensor network is changed, which 

requires the network to last for 10 hours. Since it may 

not be possible to deploy more sensors, some sensors 

have to sleep longer during each duty cycle to extend 

the network lifetime. As a result, sensor coverage 

needs to be traded for network lifetime. The coverage 

issue in sensor networks has been studied extensively 

[1], [2], [3], [4], [5], [6], where scheduling algorithms 

are proposed to maximize the network lifetime while 

maintaining some predefined coverage degree. 

However, if the same coverage degree is maintained 

all the time, the lifetime requirements may not be 

satisfied as network condition and mission change. 

For example, the sensor density may drop over time 

and the coverage requirement may vary according to 

the application’s demand.  Different from existing 

works, we study how to schedule sensor nodes to 

maximize coverage under the constraint of network 

lifetime. This reverse formulation is especially useful 

when the number of nodes is not enough to maintain 

the required coverage degree for a specified time 

period, as shown in the above example. In this paper, 

we aim to resolve the conflict between the static 

status of sensor deployment and the dynamic nature 

of mission requirements. As mission dynamically 

changes, the lifetime and coverage requirement may 

not be satisfied at the same time. Then, the coverage 

needs to be traded for the network lifetime. Our work 

is thus complementary to the existing work, which 
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can be applied when the sensor density is sufficient to 

sustain both the lifetime and coverage requirement. 

To fulfill this goal, we have to consider the coverage 

in both spatial and temporal domain. In particular, we 

define a new spatial-temporal coverage metric, in 

contrast to the traditional area coverage. The spatial-

temporal coverage of each small area is defined as 

the product of the area size and the length of the 

period during which the area is covered. Then, our 

objective becomes how to schedule the sensor’s on 

period to maximize the global spatial-temporal 

coverage, calculated as the sum of individual spatial-

temporal coverage over all the areas. This new 

formulation arises naturally from the mission critical 

applications with the network lifetime constraint and 

differentiates itself from most existing works which 

only consider the spatial domain.  
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Fig 1. A Surveillance example with three 

sensors 

 
Our contribution in this paper can be summarized as 

follows:  

 First, we formalize the sensor scheduling 

problem in the spatial and temporal 

dimension with the objective to maximize 

the spatial-temporal coverage with network 

lifetime constraint. We further prove that it 

is equivalent to minimize the coverage 

redundancy under certain conditions.  

 Second, we propose a distributed heuristic, 

the optimizing protocol (POP), where nodes 

not only optimize their schedules on their 

own but also converge to local optimality 

without conflict with one another.   

 

2. Problem Formulation 

When the sensor density is not sufficient to satisfy 

both the lifetime and coverage requirements, the 

coverage has to be traded for lifetime. In such a case, 

the sensors have to make their best efforts to provide 

the coverage while meeting the lifetime constraint. 

To achieve this, we divide the network lifetime L into 

cycles and turn on each sensor within each cycle for a 

period proportional to its battery life. We further 

designate that the same schedule repeats in each 

cycle, such that the sleep schedule can be 

implemented, e.g., using the Power Saving Mode of 

802.11. Then, the purpose of the scheduling is to 

place the on-periods within each cycle, such that the 

total spatial-temporal coverage can be maximized. 

We formalize it as a maxCov problem and then, 

transform it to a minRed problem in Section 2.2 

whose objective is to minimize the overall coverage 

redundancy. 
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  (b) 

Fig 2. An example to illustrate how to calculate 

the redundancy for    k-redundant elementary 

regions 
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2.1 Maximize the Spatial-Temporal Coverage 

Problem MaxCov  
Given a unit-disk graph with n nodes, the battery life 

of each sensor Bi;𝑖4
1 , 1 . . . n, and a mission lifetime 

of L, where 𝐵𝑖 ≤ 𝐿, we want to calculate an “on” 

schedule per cycle for each sensor such that the 

overall spatial-temporal  coverage is maximized. To 

quantify the overall spatial-temporal coverage (or 

coverage, for short), we first define elementary 

region as the minimum region formed by the 

intersection of a number of sensing disks. Notice that 

different points belonging to the same elementary 

region are covered for the same length of time. 

Therefore, the spatial-temporal coverage of each 

elementary region can be calculated as the product of 

its area size and the length of time during which the 

region is covered by at least one sensor. Note that for 

each elementary region, the area size is fixed after the 

sensors are deployed, but the coverage time varies 

depending on the different sensor schedule. Further, 

define the k-redundant elementary region as the 

elementary region formed by the intersection of k 

sensors, where k≤2. For example, in Fig. 2a, there 

are seven elementary regions and four of them are 

redundant elementary regions, whose area sizes are 

a1 ¼ a2 ¼ a3 ¼ a4 ¼ 1. a1, a2, and a3 refer to the 

two-redundant elementary regions and a4 refers to 

the three-redundant elementary region. The non 

redundant elementary regions are covered by only a 

single sensor, such as those elementary regions other 

than a1, a2, a3, and a4. Since the coverage time of the 

non redundant elementary region is the same as the 

“on” period of that sensor, its spatial-temporal 

coverage is constant irrespective of the sensors’ 

schedule. Therefore, to devise a better “on” schedule 

per cycle for each sensor, we only need to focus on 

the redundant elementary regions to maximize their 

total spatial-temporal coverage. Given the schedule in 

Fig. 2b, the spatial-temporal coverage of the two-

redundant elementary region can be calculated 

similar to that of Fig. 1. For example, the spatial 

temporal coverage for a1 is the product of the area of 

a1 and the time during which a1 is covered by either 

s1 or s2, or both,i.e.,1𝑥1 = 1. Similarly, the coverage 

for a2 and a3 is 1𝑥1 = 1 and 1𝑥0.6 = 0.6 

respectively. For the three redundant elementary 

region a4, we need to find out the length of time 

during which it is covered by at least one of the three 

sensors, which is 1 time unit in Fig. 2. Therefore, the 

total spatial-temporal coverage over all the redundant 

elementary regions in Fig. 2 is    1+1+0.6+1 = 0.6. In 

general, we can formalize the problem in the form of 

mathematical programming. Before giving the 

formulation, we first define some notations that will 

be used throughout the paper. 

 

2.2 Minimize the Coverage Redundancy 
In this section, we consider the coverage 

maximization problem from another perspective and 

propose a new formulation. In the previous section, 

the objective is to maximize the total spatial-temporal 

coverage, which desires the total coverage time of 

each redundant elementary region to be as large as 

possible. Alternatively, we can achieve the same goal 

by minimizing the schedule overlap of the sensors 

that monitor the same redundant elementary region. 

Toward this direction, we propose another metric, 

spatial-temporal coverage redundancy, whose value 

depends on the area size, the overlapping “on” 

periods, and the number of sensors that monitor the 

area in each period. With the concept of spatial-

temporal coverage redundancy (or coverage 

redundancy, for short), the problem of “maximizing 

coverage under the constraint of network lifetime” 

becomes “minimizing the coverage redundancy under 

the constraint of network lifetime” (called minRed 

problem). We can prove that the two objectives are 

equivalent under certain conditions. We first use Fig. 

2 as an example to illustrate how to calculate the 

coverage redundancy of the redundant elementary 

regions. For instance, the coverage redundancy for a1 

is the area of a1 times the schedule overlap of s1 and 

s2, i.e., 1 0:2 ¼ 0:2. Similarly, the redundancy for a2 

and a3 is 0.2 and 0.6, respectively. The coverage 

redundancy of a4 consists of two parts, i.e., the part 

of time when a4 is covered by exactly two sensors, 

and the part of time when it is covered by exactly 

three sensors. Intuitively, the two parts should have 

different contribution to the coverage redundancy, 

because more resources will be wasted as more 

sensors overlap in time. To reflect this, we assign 

different weight to different periods during which the 

same region is monitored by different number of 

sensors. In particular, a4 is solely monitored by s1 

and s2 for 0 unit of time, by s1 and s3 for 0.4 unit of 

time, by s2 and s3 for 0 unit of time, all of which are 

assigned weight 1. On the other hand, a4 is solely 

monitored by s1, s2, and s3 for 0.2 units of time, and 

it is assigned weight 2. Then, the total coverage 

redundancy is the weighted sum of the product of 

area size and time overlap over all the redundant 

elementary regions.  

Theorem 1: With the same graph, network lifetime 

requirement, and battery constraints, the objective to 

maximize the total spatial-temporal coverage is 

equivalent to minimize the total spatial-temporal 
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coverage redundancy when setting the weight factor 

to be w(j)=j-1.We first rewrite the objective of total 

coverage, decomposing the coverage time Ti into a 

multitude of sub periods according to the different 

coverage degree. This theorem implies that 

maximizing the total coverage C is equivalent to 

minimizing the total coverage redundancy R. 

 

3. Distributed Algorithm Design 
From the above discussion, we know that in a 

complex network of large scale, it is computationally 

infeasible to enumerate each elementary area ai and 

list each period during which area i is covered by 

exactly j sensors. Therefore, in the distributed design, 

we focus on the pair-wise sensors and let each node 

minimize its own local coverage redundancy, defined 

as the sum of pair-wise redundancy with its 

neighbors. Although the global optimal is 

computationally infeasible to achieve, we can design 

a class of algorithms in which each node is able to 

achieve the local optimal if certain conditions can be 

satisfied. The basic idea is to let each node first 

generate a random schedule independently. Then, 

each node adjusts its schedule individually to 

minimize the local coverage redundancy with its 

neighbors, until everyone converges to its local 

optimality. The seemingly simple idea has several 

challenges. 

 How to do the local optimization?  

 Does it have polynomial time algorithms to 

achieve the local optimal? 

 If each sensor adjusts the schedule 

individually, is the algorithm able to 

converge?  

 How to eliminate conflicts caused by 

simultaneous adjustments of the neighboring 

nodes?  

The following sections will address these challenges 

one by one. 

 

3.1 Local Optimization: 
Each node has its own reference cycle. The cycles at 

different nodes are not required to be synchronized. 

Each node only needs to know the relative position of 

its neighbor’s on-period. This can be easily achieved 

via exchange of hello packets with its neighbors. In 

our solution, we only focus on some crucial points, 

which could jointly determine the redundancy at 

every possible value. 

 

3.2 Convergence Property: 
In our distributed algorithm, each node locally 

optimizes its own schedule as long as its schedule 

does not remain locally optimal. Since altering a 

node’s schedule can affect the redundancy of its 

neighbors, the schedule adjustment at different nodes 

may conflict with each other and the adjustment 

process may never end. For example, if two 

neighboring nodes adjust their own schedules at the 

same time, they may not be aware that their 

neighbor’s schedule has been changed and cannot 

achieve local optimality. Next, we provide guidelines 

to guarantee that each node can converge to its local 

optimality.   

Theorem: Given a graph G and arbitrary schedules, a 

distributed algorithm will terminate in a finite 

number of steps and after termination, each node’s 

schedule will converge to the local optimality, if. no 

neighboring nodes optimize their schedules at the 

same time; each node’s local adjustment continues as 

long as its local objective can be improved for at least 

a predefined threshold. 

 

4. Distributed Protocol Design 
Theorem tells us that for a distributed protocol to 

converge, all three conditions have to be satisfied. 

Before presenting our distributed protocol, let’s see 

two simple algorithms: . Random Algorithm: each 

node generates a random schedule individually. 

Serial Optimization Algorithm: each node first 

generates a random schedule, based on which the 

schedule is locally optimized one by one. This serial 

optimization process is repeated until no 

improvement can be made beyond the predefined 

threshold. Each of the above algorithms has its pros 

and cons. The random algorithm is simple, 

distributed, and has no message complexity. It can 

serve as a baseline for comparison. The serial 

optimization algorithm uses the Line Traversal 

Algorithm as a functional module to ensure that 

every node can achieve its local optimality, but it is 

centralized. In addition, for the serial algorithm to 

converge, much iteration are needed until no 

improvement can be made. Therefore, the serial 

algorithm takes a long time to terminate. To retain 

the merit of the serial algorithm and remedy its 

weakness, we propose a optimizing protocol.  

 

4.1 Line Traversal Algorithm 

The basic idea of optimizing protocol is to let many 

nodes locally optimize their schedules (using Line 

Traversal Algorithm) in parallel, so that it can 

converge much faster than the serial algorithm. 

According to Theorem 4, a set of no neighboring 

nodes can adjust their own schedules simultaneously 

without causing any conflict. From the algorithmic 
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point of view, to search for such a set of no 

neighboring nodes is equivalent to finding an 

Independent Set, which is defined as a subset of 

nodes among which there is no edge between any two 

nodes. The set is a maximal independent set  if no 

more edges can be added to generate a bigger 

independent set.  

 

4.2 Maximal Independent Set Algorithm 

To find the maximal independent set, each node 

independently determines whether it belongs to the 

set by comparing its weight with its neighbors. If it 

has the best weight in the neighborhood, it elects 

itself as   belonging to the set, and then, no other 

neighbors can be chosen. In general, the algorithm 

can be denoted as maximal independent set weight; 

criteria, where the weight can be id, degree, energy, 

etc., and the criteria can be either smallest or largest. 

The criteria are used to interpret the meaning of best 

weight, i.e., the smallest or the largest.  Algorithm 2 

lists the pseudo code of the optimizing protocol 

which can be implemented in a distributed manner. 

For clarity of presentation, we first introduce the 

protocol in a centralized manner, and then, give 

guidance to its distributed operation. Initially, all 

nodes are unlabeled. Then, each node individually 

determines whether it belongs to the maximal 

independent set by comparing its weight with the 

neighbors. The labeled nodes locally optimize their 

schedules, after which the maximal independent set 

algorithm will continue to run among the remaining 

unlabeled nodes. We term the time a round if during 

this period, an maximal independent set is found and 

local optimization is executed in parallel at the nodes 

of the maximal independent set. Several rounds 

comprise an iteration during which the coalition of 

the maximal independent set elected can have all the 

nodes labeled. The maximal independent set 

algorithm continues to run round after round and 

iteration after iteration until no improvements can be 

made to any node’s schedule. At the end of iteration, 

all nodes’ labels are removed and a new iteration 

starts with the criteria reversed, i.e., “smallest” 

becomes “largest” and vice versa. Therefore, the 

iterations alternate between the increasing and 

decreasing order of weight in executing the maximal 

independent set algorithm. The criteria are reversed 

to facilitate the distributed operation, so that the 

nodes belonging to the maximal independent set in 

the last round of previous iteration can start a new 

iteration. 

 

 

5. Performance Evaluation  

In this section, we evaluate the performance of the 

proposed algorithms. In the simulation, a 10 x 10 

square area is considered, with n varying from 100 to 

500. The sensing range is 1 unless otherwise 

specified. We assume the BN has two level 

transmission power with the transmission radii 𝑟 and       

𝑅 = 2𝑟, respectively. First, we deploy 100 sensor 

nodes randomly and the transmission radius 𝑟 is set 

to 15 meters. For example, when n = 100 and the 

battery/network lifetime ratio is
3

5
. Both homogeneous 

and heterogeneous battery states are considered. In 

the homogeneous case, every node has the same 

battery/network lifetime ratio𝑣 , but in heterogeneous 

case 𝑣𝑖  is a random variable uniformly distributed in 

[𝑣 2  , 3𝑣 2 ] with 𝑣  as the average ratio.  Three 

schemes are evaluated, namely, random, serial, and 

optimizing protocol, in terms of coverage 

redundancy, convergence time, and event detection 

probability. As the global coverage/coverage 

redundancy is infeasible to compute, we use the sum 

of local coverage redundancy as an approximation. 

The randomized event is considered whose location 

of occurrence is uniformly distributed in time and 

space, and whose length of occurrence e is 

normalized as the event/cycle ratio. The event 

detection probability is calculated by simulating 1000 

randomized events. To compare with the existing 

schemes, we implement an extended version of the 

Coverage Configuration Protocol, which is shown to 

outperform other schemes in most of the scenarios. 

While the objective of the original Coverage 

Configuration Protocol is to select the minimum 

number of sensors to provide the full coverage, we  

extended it to a continuously operational case where 

the sensor node may die of limited battery. After a 

sensor dies, each sleeping sensor needs to decide 

whether it should be activated to remedy the 

coverage hole based on the eligibility. We evaluate 

Coverage Configuration Protocol in terms of 

coverage redundancy and network lifetime. The 

network lifetime is defined as the period during 

which half of the nodes fail. 

 

5.1 Determine the optimization threshold 

The threshold of improvement made at each step. It 

determines how accurate the algorithm can approach 

the local optimality and how fast the algorithm can 

converge.  
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Fig. 5. Relationship between the coverage 

redundancy (homogeneous) 

 
Fig. 6. Relationship between the convergence time 

(homogeneous) 

From Figs. 5, 6, it can be seen that affects the 

coverage redundancy and the convergence time in 

different ways. As threshold increases, the 

redundancy will rise but the convergence time goes 

down. In other words, the objectives of redundancy 

and convergence time conflict with each other from 

the perspective. To make the coverage redundancy 

better, a smaller should be 11 used, but to improve 

the convergence time, a larger should be employed. 

To balance coverage redundancy and convergence 

time, we set to be 1 in the following experiments 

 

6. Discussion and Future work 
In this paper, we assume that the disk sensing model 

is used, where the sensing range is modeled by a disk 

and a point is covered if and only if it falls within the 

sensing disk of one of the sensors. While the disk 

model provides valuable high-level guidelines, it may 

not accurately reflect the performance in reality. 

Recently, some researchers have started to investigate 

the impact of link irregularity and the corresponding 

non disk model on the performance of the sensor 

networks. For example, the work in employs an 

empirical approach to estimate the sensing ranges. A 

probability model is used in to depict the coverage 

property of the sensor network, where the coverage 

probability of a point depends on the distance from 

the monitoring sensors. To adapt the optimizing 

protocol to the non disk model, we can leave the big 

framework intact but change the method to calculate 

the local coverage redundancy. The algorithm still 

executes in iterations, but during each iteration, each 

node calculates the pair-wise coverage redundancy.  

An example to illustrate the optimizing protocol 

specific non disk model. Taking the probability 

model as an example, the local coverage redundancy 

of node s0 can be calculated in the disk model. The 

new calculation is based on the polar coordinate 

system, with the middle point of the line connecting 

the pair-wise neighboring sensors as the pole. In 

particular, Probability is calculated based on the 

specific model, and s0si follows. In general, 

extension of the coverage property to the non disk 

model is still an open issue in many situations. We 

leave the complete design and evaluation to the 

future work.  Another issue worth of further 

investigation is the connectivity property of the 

sensor network. Although in this paper, we consider 

network lifetime as a constraint and connectivity is 

not our focus, achieving continuous connectivity is 

still valuable for the data delivery. It has been proved 

that when the communication range is at least twice 

the sensing range, the full coverage implies the 

connectivity of the sensor network. However, in our 

paper, we study the scenario where the sensors may 

not be sufficient enough to sustain both coverage and 

lifetime, so sometimes, coverage has to be traded for 

lifetime, resulting in the partial coverage. As far as 

we know, the condition under which the connectivity 

can be achieved in the partially covered sensor 

network is still an open issue. Although we did not 

solve it in this paper, we point out that this is an 
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interesting issue for the future research and have 

proposed a remedy solution in our previous work . 

We design a new set of routing protocols for the data 

delivery over the intermittently connected network. 

In an intermittently connected network, the network 

may not be physically connected at all instants, but 

the data can still be delivered to the destination in a 

store-and-forward fashion. 

 

7. Conclusion 
As mission-driven sensor networks usually have 

stringent lifetime requirement, sometimes coverage 

has to be traded for network lifetime. In this paper, 

we studied how to schedule sensor active time to 

maximize the spatial temporal coverage while 

meeting the lifetime constraint. The distributed 

parallel optimization protocol can ensure each node 

to converge to local optimality without conflict with 

each other. The computational complexity of 

optimizing protocol is only per node, where d is the 

maximum node degree, and its message complexity, 

which is linear with the number of nodes. Theoretical 

and simulation results showed that optimizing 

protocol substantially outperforms other schemes in 

terms of coverage redundancy, convergence time, 

network lifetime, and event detection probability.  
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