
Optimized XML Assembler /Parser For XML Files

Hitesh Anand
Department of Computer Science

CT Group of Institutions,

Shahpur Campus, Jalandhar (Punjab)

ABSTRACT
In this paper, we describe the parsing of XML files via

generated Optimized code and validation of the files in

database computing field. In this paper, we present an

elegant and effective framework for combining content and

collaboration.So, in order to reduce the delay in parsing of

generated XML files and its validation, we need an

optimized code for that purpose so that XML parser

converts an XML document into an XML DOM object

rapidly, with high perform ability and less loading time will

be taken in this process.In this paper, we introduced our

XML parser that was implemented using XML classes. The

main goal of this parser was to check XML documents for

errors in a very easy and fast way, in order to help the

programmer to determine whether the XML document is

Well-formed or not.

Categories and Subject Descriptors
[Programming Languages]: Language: VB Script and XML

Platform: Any Operating System, Notepad.

General Terms
VB, XML, Verification,parser generator, Doc-Type,

DOM

INTRODUCTION
We know that XML parser converts an XML document

into an XML DOM object. The XML DOM defines a

standard way for accessing and manipulating XML

documents. The paper just puts light on developing a tool

which provides an elegant and effective framework for

combining content and implementation. The parser

integrates scanning, parsing, and validation into a single-

pass without backtracking by utilizing compact tabular

representations of schemas during run-time environment.

So as to enhance the particular validation process of XML

files, the tool helps in saving the load time and processing

time via maintaining the reliability and bug free aspects of

particular program, scripts written in form of markup

languages.

Structure of XML PARSER

Firstly, when the XML Document file is being loaded by

creating the object file with the help of “Microsoft XML

DOM”, Then the product module begin its threads which

330

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

IJERTV2IS70157

Vol. 2 Issue 7, July - 2013

takes more time resulting in delaying the validation process

of loaded XML document. So, in order to overcome this

problem, the required tool is being developed which helps

in enhancing the performance scale rate by decreasing the

loading and linking time of the xml object file. Thus, it

shows a performance penalty from the viewpoint of the

generated XML document size.The procedures in the package

can be used separately to tokenize or parse various pieces of XML

documents. The framework supports XML Namespaces,

character, internal and external parsed entities, and xml: space,

attribute value normalization, processing instructions.

REVERSE ENGINEERING TOOLS AND

COMPILER FRONT-ENDS

In many cases the system design documents are not

updated after the source code is modified, Reverse

Engineering tools have been developed as a solution for

finding discrepancies between the source code and design

documents. A basic function of the reverse engineering

tools is to generate class diagrams from the source code.

In order to develop the reverse engineering tools, capability

similar to a compiler front-end must be developed to

analyze the source code. A typical compiler frontend reads

the source code and executes lexical analysis, syntax

analysis, and semantic analysis. It describes XML

externalization built into compiler front-ends and its

application to quick reverse engineering tool development

DOMAIN DESCRIPTION

Today, the use of XML has spread across various fields of

applications. Since we know that it is used for

configuration of certain applications, storing data

indatabases, retrieving data, exchanging data over the

Internet and invoking remote methods.Actually when we

write code in notepad or any professional XML editor, then

after successful completion, we need to validate the xml

files. So, the validation of those xml files will take enough

time in the ongoing process.The tool shows a performance

penalty from the viewpoint of the generated XML

document size. For example in Dreamweaver software,

there is a facility to validate the xml files. But firstly

loading of product files takes place then the validation

process starts.

A Document Type Definition (DTD) defines the legal

building blocks of an XML document. It defines the

document structure with a list of legal elements and

attributes. Now we have to consider Token and its

attributes, written in XML form. We have to save this code

file as .DTD file. Say, “Token.DTD”.

<! ELEMENT LEX (Token)>

<! ELEMENT Token (Token_Id, Token_Proc,

Token_Routine)>

<! ELEMENT Token_Id (#PC DATA)>

<! ELEMENT Token_Proc (#PC DATA)>

<! ELEMENT Token_Routine (#PC DATA)>

 After writing the document type data file, we have to

write the concerned XML document file. In it, we define

the attributes concerned to .DTD file with the help of

doctype system file and using standard version of XML file

as shown below:

<? XML version =”1.0”?>

<! DOCTYPE LEX SYSTEM “Token.DTD”>

<LEX>

<Token>

 <Token_Id> 20 </Token_Id>

<Token_Proc>Perform Tool

Operations</Token_Proc>

<Token_Routine> the functions to be called for

ongoing process </Token_Routine>

</Token>

</LEX>

XML DATABASES

XML-enabled databases are used to extract data from the

database and transform it. The most widely used query

languages for this purpose, SQL/XML and XQuery, which

provides a set of extensions to SQL for creating XML

documents and fragments from relational data.

Text-based native XML databases store XML in form of

text which may be a file within the database itself, a file in

the file system outside the database, or a proprietary text

format which implies that relational databases storing

XMLwhich possess an advantage of retrieving entire

documents or document fragments, as all it takes is a single

331

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

IJERTV2IS70157

Vol. 2 Issue 7, July - 2013

index-lookup and deals with three types of indexes. The

three possible types of indices are:

1. Value indices index text and attribute values.

2. Path indices index the location of elements and

attributes.

3. Full-text indices index the individual tokens in text and

attribute values.

The compiler is traditional basic software that is

indispensable for developing software. The main purpose

of a compiler is only the generation of efficient object code.

However, there are rare cases where a compiler is used for

different purposes from the code generation. The compiler

includes excellent algorithms and valuable information

based on the results of years of research. This paper

describes XML externalization built into compiler front-

ends by using a parser generator and its application to the

quick development of a reverse engineering tool.

XML DOM Tree provides an interface to access and

change the content and structure of an XML file.It is an

object model of the document which resides in memory

after parsing that makes manipulation easier. All elements

can be accessed through the DOM tree. The elements, their

text, and their attributes are all known as nodes.

Theembedded path expression then loads the XML

document describing the contents of the“LEX” file which

includes „Token‟ and further includes its Elements. Thus,

we come to know that XML DOM provides

Comprehensive functionality, maximal flexibility, Ease of

development and conformance to standards.

In all the above process of creating XML file and validating

it, we face a problem of delay in system program loading

and linking of object file. Therefore, a tool is required to

overcome the above scenario of validation of XML files

and dealing with XML databases. So, In order to boost up

the processing speed and improving the linking process of

object file, the following optimized code is effectively dealt

with.

<Script Language=”VBScript”>

 Set dom_object=Create Object (“Microsoft.XMLDOM”)

 Path=Prompt (“Choose the XML Document”)

 dom_object.Load (Path)

If (dom_object.parseError <> 0) then

Msgbox dom_object.parseError.Reason & “ “

& dom_object.parseError.Line

 Else

 Msgbox dom_object.DocumentElement.XML

 End If

</Script>

In the above code snippet, we come to know the validation

and verification process of xml document file. The

XMLDOM object is loaded and verifies the xml language

code. If on scanning of xml file, an error is found then the

tool is responsible, to give the reason why that error has

occurred and also responsible to highlight the line where

that error has occurred in the corresponding XML

document snippet code.

If on scanning of XML document file, XML parser did not

find any error or bug, and thenDOM object is redirected to

show the Document element of XML file and display the

required result of corresponding XML document snippet.

The parsing framework offers support for XML validation,

and detects many validation errors. Content is validated

given user-specified constraints, which the user can derive

from a DTD, from an XML schema, or from other

competing doc-type specification formats.

When XML schemas are updated or extended, the tabular

forms can be regenerated and populated to the generic

engine without requirement of redeployment of the parser.

This adaptive approach balances the need for performance

against the requirements of redeployment of the Web

services.

At run-time of the first step, the modified query processor

in SQL analyzes the SQL source code, stores the parser

behavior as large objects and other information, and it

returns the object id.Theparser in the second step sends a

query to the SQL in order to obtain the parser behavior

generated via Query Processor.

Compiler frontend reads the source code and executes

lexical analysis, syntax analysis, and semantic analysis. It

describes XML externalization and produces output at the

target code.This technique can be used for enhancing

extensible high-performance Web services for large

complex systems that typically require extensible schemas.

The parser integrates scanning, parsing, and validation into

a single-pass without backtracking by utilizing compact

tabular representations of schemas and a push-down

automaton (PDA) at runtime. The tabular forms are

constructed from a set of schemas or WSDL descriptions

through the use of permutation grammar. The engine is

332

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

IJERTV2IS70157

Vol. 2 Issue 7, July - 2013

implemented as a PDA-based, table-driven driver; as a

result, it is independent of XML schemas. When XML

schemas are updated or extended, the tabular forms can be

regenerated and populated to the generic engine without

requirement of redeployment of the parser. This adaptive

approach balances the need for performance against the

requirements of reconstruction and redeployment of the

Web services.

CONCLUSION:

In this paper, we introduced our XML parser that was

implemented using XML classes. The main goal of this

parser was to check XML documents for errors in a very

easy and fast way, in order to help the programmer to

determine whether the XML document is Well-formed or

not.

Properties
XML

Reader

Document

Handler XML:Parse()

Streaming 100%
No

Streaming 100%

Productivity
No

Productivity
100% 100%

A parser generator was developed to build XML

externalization functionality into the compiler front-ends.

After replacing an original parser generator, generating a

parser using it, and modifying a few lines of source code in

the compiler, we were able to obtain a special compiler that

generates three kinds of XML data, namely, lexical

information, parser behavior, and parse tree. The parser

behavior was applied to quickly develop a reverse

engineering tool for C#. During the tool development, a

compiler front-end is separated into two-steps. In the first

step, a special C# compiler reads C# source code, analyzes

it, and writes the parser behavior in XML. In the second

step, the parser behavior in XML is read and analyzed. The

reverse engineering tool shows a performance penalty from

the viewpoint of the generated XML document size.

Our experiments show the adaptive parser usually

demonstrates performance of five times faster than

traditional validating parsers. It makes the maintenance of

an application element, which eliminates several classes of

common bugs, and is capable of cutting, pasting, splitting

and assembling XML documents with max efficiency.

XML Parser minimizes the amount of application-specific

state that has to be shared among user-supplied event

handlers.

ACKNOWLEDGMENT

My sincere thanks to Mr.Manoj Kumar, (Center Head,

Lally Infosys, and Jalandhar)for his valuable support and

guidance that inspire me to do this task.

REFERENCES

I. ISBN: 978-3-540-43092-6 (Print) 978-3-540-45587-5

(Online)Author(s):Wei Zhang , Dept. of Computer Science,

Florida State Univ., Tallahassee, FL, USA.
http://metapaper.net/xml/ssax/

II. Microsoft, Visual Studio 2012,

http://msdn.microsoft.com/en-us/library/dd831853.aspx

III. Ronald Bourret, XML and Databases,

http://www.rpbourret.com/xml/XMLandDatabases.html.

IV. Introduction to XML DOM,
http://www.w3schools.com/xml/xml_dom.asp

V. Xerces C++ parser.

http://xerces.apache.org/xerces-c/.

VI. Practical Aspects of Declarative Languages. 4th International

Symposium, PADL 2002 Portland, OR, USA, January 19–20,
2002 Proceedings by Shriram Krishnamurthy and CR

Ramakrishna.

VII. XML Data Management, Addison Wesley.

333

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

IJERTV2IS70157

Vol. 2 Issue 7, July - 2013

