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Abstract: The main objective of structural engineers throughout design history has been 

to obtain structure under the prescribed design conditions which can not only withstand 

external loads safety but also achieve an economic solution. This paper focuses on the 

use of geometric programming solution method to optimum design of plane truss 

structures.  This approach is illustrated on planer truss optimization model and the results 

are discussed. 

 

Keywords: Structural Optimization, Geometric Programming. 

 

1. INTRODUCTION 

                  A Geometric Program (GP) is a type of mathematical optimization problem 

characterized by objective and constraint functions that have a special form. It has useful 

theoretical and computational properties. Although GP in standard form is apparently a 

non convex optimization problem, it can be readily turned into a convex optimization 

problem; hence a local optimum is also global optimum. Here the advantage is that it is 

usually much simpler to work with the dual than the primal one. Solving a nonlinear 

programming problem by GP method with degree of difficulty (DD) plays a significant 

role. 
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                 Since late 1960’s Geometric Programming (GP) has been known and used in 

different field like Operations Research, Engineering designs etc. The general theory of 

geometric programming and its engineering application was initially developed by 

Duffin,Peterson and Zener [10] and Zener [4] in their published book. A serious 

limitation in the application of this theory has been that all the functions involved in the 

problem are to be posynomials.This shortcoming was overcome by Wild and Beightler 

[5] in 1967 when they generalized the theory to allow the use of negative coefficients in 

both objective and constraints, and also to permit reversed inequality constraints. 

Generalized GP refers to minimizing a generalized posynomial subject to upper bound 

inequality constraints on generalized posynomials. This method is a general form of 

geometric programming method in which signomal functions are present in objective 

function and in constraints. 

                  The main objective of a structural engineering is to design structures which 

withstand external loads safely and at a minimum cost or weight [2,3 and7].The desire to 

improve a design without compromising the structural integrity has been a strong driving 

force behind the development of various optimum design methods. 

                  Finally this GP method is identified through the numerical example of two-bar 

truss and the analysis results show that the geometric programming method can always 

converges to the global optimal solution. 

 

2. Truss Structural Optimization 

The mathematical form of optimization problem for truss structure can be expressed as 

follows: 

           Find    { }1 2, ,......,
T

n
A A A A=                                                                                (2.1) 

To minimize   
1

( )
n

i i

i

F W A L Aρ
=

= = ∑                                                                              (2.2) 

   Subject to       ( )
L U

j j j
g g A g≤ ≤       1,2,3,.....,j m=                                                    (2.3) 

         and           min max

i i i
A A A≤ ≤

       
1,2,3,.....,i n=                                                      (2.4) 

Where iA = the design variable i  (member i  cross-sectional area, n= the number of 

design variables, ( )W A = the objective function  ( the structural weight), ρ = the material 

density, iL = the member of length, m = the number of inequality constraints (g), min

i
A and 
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max

i
A  are the lower and the upper bounds of the 

th
i  variable respectively. The lower 

bounds posed by equation-3 on the constraints include truss member stresses and joint 

displacements.  

 
3. Geometric Programming Method: 

 A geometric program (GP) is a type of mathematical optimization problem characterized 

by objective and constraint functions that have a special form. GP is a methodology for 

solving algebraic non-linear optimization problems. Also linear programming is a subset 

of a geometric programming .The theory of geometric programming was initially 

developed about three decades ago and culminated in the publication of the seminal text 

in this area by Duffin, Peterson, and Zener [10]              

The general constrained Primal Geometric Programming problem is as follows: 

      

                     
0

0

0 0

1 1

( ) tn

T N
a

t n

t n

Minimize g x c x
= =

=∑ ∏                                                                 (3.1) 

                     Subject to                                                                                                   

                              
1 1

( ) 1; 1,2,3,.......,
m

mtn

T N
a

m mt n

t n

g x c x m M
= =

= ≤ =∑ ∏                                  (3.2) 

                              0, 1, 2,.........., .nx n N> =  

Here 0 0tc >  and 0tna be any real number. The objective function contains 0T terms and 

mT  terms in the inequality constraints. Here the coefficient of each term is positive.So it is 

a constrained posynomial geometric programming problem. Let  0 1 ......... mT T T T= + + +  

be the total number of terms in the primal program. The degree of difficulty (DD) is 

defined as DD = Total no. of terms – (Total no. of variables -1) = ( 1)T N− + .The dual 

problem (with the objective function ( )d w ,where 

{ }( ), 0,1,2......, ; 1, 2,.....mt mw w w m M t T≡ ∀ = = is the decision vector) of the geometric 

programming problem (1) for the general posynomial case is as follows: 

            

0
0

0

1 1 10

( )

mtt
m

ww
T TM

mt mtt

t m tt mt

c wc
Maximize d w

w w= = =

  
=   

   

∑
∏ ∏∏                                          (3.3) 

            Subject to                                                                                                              

                     
0

0

1

1
T

t

t

w
=

=∑ ,                                                      (Normality condition) 
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0 1

0 1,2,......, .
mTM

mtn mt

m t

a w for n N
= =

= =∑∑         (Othogonality conditions) 

                              0 0,1,........., ; 1,2,........ .mt mw m M t T> ∀ = =  

For a primal problem with M variables, 0 1 ......... mT T T+ + +  terms and N constraints, the 

dual problem consists of 0 1 ......... mT T T+ + +  variables and M+ 1 constraint. The relation 

between these problems, the optimality has been shown [...] to satisfy 

                 0 * * *

0 0

1

( ) 1,2,3,...,tn

N
a

t n t m

n

c x d w w t T
=

= × =∏                                                        (3.4) 

               
*

*1

1

1,2,3,...., ; 1,2,3,...,mtn

m

N
a mt

mt n mT

n

mt

t

w
c x m M t T

w=

=

= = =∏
∑

                                   (3.5) 

Taking logarithms in (3.4) and (3.5) and putting logn nt x=  for 1,2,.........., .n N=  we shall 

get a system of linear equations of nt ( 1,2,.........., .n N= ).We can easily find primal 

variables from the system of linear equations. 

Case I: For 1T N≥ +  ,the dual program presents a system of linear equations for the dual          

variables where the number of linear equations is either less than or equal to the number 

of dual variables. A solution vector exists for the dual variable (Beightler and Philips 

[20]). 

Case II: For 1T N< + ,the dual program presents a system of linear equations for the dual 

variables where the number of linear equation is greater than the number of dual 

variables. In this case, generally, no solution vector exists for the dual variables. 

However, one can get an approximate solution vector for this system using either the 

least squares or the linear programming method. 

 

4. Numerical Example: 

                     A numerical problem as follows: 

The primal problem is  

                

1 1 1

0 1 2 3 4 1 2 3

2 2 2 2

1 1 4 2 4

1 1 1

2 1 2 3

1 2 3 4

( ) 2 5 2 0.5

( ) 1;

( ) 100 1;

, , , 0;

Minimize g x x x x x x x x

Subject to g x x x x x

g x x x x

x x x x

− − −

− −

− − −

= + + + +


≡ + ≤ 


≡ ≤ 
> 

                    (4.1)     
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This is a posynomial constraints geometric programming problem. This problem is 

having degree difficulty = 8-(4+1) =3. The problem is solved via dual geometric 

programming. 

The corresponding dual of geometric programming (DGP) problem is:  

( ) ( )
01 02 03 04 05 11 12

11 12 21

11 12

01 02 03 04 05 11 12

max ( )

2 5 2 1 0.5 1 1
100

w w w w w w w

w w w

d w

w w
w w w w w w w

+

=

              
 +             
              

      (4.2) 

Subject to  

           01 02 03 04 05 1w w w w w+ + + + =  

For the primal variable 1x  

           01 05 11 212 0;w w w w− + − =            (4.4) 

For the primal variable 2x  

           02 05 12 212 0;w w w w− + − =            (4.5) 

For the primal variable 3x  

            03 05 21 0;w w w− − =                        (4.6) 

For the primal variable 4x  

              04 11 122 2 0;w w w− − =            (3.7) 

              01 02 03 04 05 11 12 21, , , , , , , 0w w w w w w w w >  

The dual variables and the corresponding maximum value of dual objective are given in 

the following table. 

 

Table-1: Dual Solution 

01w  02w  03w  04w  05w  11w  12w  21w  0( )g x  

0.23111 0.30484 0.33332 0.13064 0.00011 0.05119 0.01422 0.33318 43.998 
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The dual primal relations are  

          ( )1 012 ;x w d w=          

          ( )2 025 ;x w d w=    

          ( )3 032 ;x w d w=  

         ( )4 04 ;x w d w=  

         ( )1 1 1

1 2 3 050.5 ;x x x w d w
− − − =  

         2 2 11
1 4

11 12

;
w

x x
w w

− =
+

  

         2 2 12
2 4

11 12

;
w

x x
w w

− =
+

         

        1 1 1 21
1 2 3

21

100 ;
w

x x x
w

− − − =          

The primal variables and the corresponding minimum value of primal objective are given 

in the following table: 

Table-2: Primal Solution 

*

1x  
*

2x  
*

3x  
*

4x  
*

0( )g x  

5.08405 2.68255 7.33232 5.74837 43.998 

 

         

5. APPLICATION 

         A two-bar truss shown in Fig.1 is designed to support the loading condition 

Consider the following data Nodal load ( P ) =100 KN ; Volume density ( γ )=
3

7.7 /KN m

; Length ( l )= 2000mm ;Width( Bx )=1000 mm ; Allowable tensile stress( [ ]tσ )=150MPa

;Allowable compressive stress([ ]cσ )=100MPa ;Cross-sectional area of bar 1( 1A )=

2 2

10 1000mm A mm≤ ≤ ;Cross-sectional area of bar 2( 2A )= 2 2

20 1000mm A mm≤ ≤ ;Y 

coordinate of node B( By )=500 1500Bmm y mm≤ ≤ ;The structure is subject to constraints 

in geometry, area, stress [9]. The maximum tensile stress is restricted to 150MPa, while 
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the maximum compressive stress is restricted to 100MPa. The three design variables are

1A , 2A  and By . Obviously, this is minimization problem. 

                                           

                              Figure-1: Design of the two-bar planar truss 

 

The Optimization model of the two-bar truss is as follows: 

 

                         

( )

[ ]

[ ]

2 2 2 2

1 2

2 2

1

2 2

2

1 2

min ( )

( )
. ;

;

0.5 1.5 0; 0;

B B B B

B B

t

B B

c

B

W A x l y A x y

P x l y
subject to

lA

P x y

lA

y A A

γ

σ

σ

= + − + +



+ − 
≤ 


+
≤



≤ ≤ > > 

     (5.1) 

                

Now this optimization model is not in standard form of geometric programming model. 

First we transfer it into the standard geometric programming problem with suitable 

substitution   1 1A x= , 2 2A x= ,  
2

31 (2 )By x+ − ≤ ,    
2

41 By x+ ≤ , 5By x= , 

2

3 5 61 4x x x−+ = , 
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Then the new form of posynomial Geometric Programming (GP) Problem is; 

                                   

1 3 2 4

1

1 3

1

2 4

2 2 2

4 4 5

2 1 2 2 1

3 6 3 5 6

1 2 1

6 3 5 6

5

1 2 3 4 5 6

7.7 7.7

1
1

3

1
1

2

1

5 1

4 1

0.5 1.5

, , , , , 0

Minimize W x x x x

subject to x x

x x

x x x

x x x x x

x x x x

x

x x x x x x

−

−

− −

− − − −

− − −

= + 

≤



≤ 

+ ≤


+ ≤ 


+ = 
≤ ≤


> 

          (5.2) 

When the constraint 50.5 1.5x≤ ≤  of (5.2) is excluded, then (5.2) is a constrained 

posynomial geometric programming problem with  degree of difficulty = 10-(6+1) =3. 

The problem is solved via dual programming. 

The corresponding dual of geometric programming (DGP) problem is:  

( )

( ) ( )

01 02 31 3211 21

31 32

51 5241 42

41 42 51 52

31 32

01 02 11 21 31 32

41 42 51 52

41 42 51 52

7.7 7.7 1 1 1 1
( )

3 2

5 1 1 4

w w w ww w

w w

w ww w

w w w w

Maximize d w w w
w w w w w w

w w w w
w w w w

+

+ +

          
= +          

          

      
× + +      
       

 

Subject to  01 02 1w w+ =  

For primal variable 1x  

                                  01 11 0w w− =  

For primal variable 2x  

                                   02 21 0w w− =  

For primal variable 3x  

                                   01 11 41 42 522 2 2 0w w w w w+ − − − =  

For primal variable 4x  

                                   02 21 31 322 2 0w w w w+ − − =  

For primal variable 5x  
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                                    32 42 522 2 0w w w+ + =  

 

For primal variable 6x  

                                 41 42 51 52 0w w w w+ + + =  

The dual primal relations are  

                                 1 3 017.7 ( )x x w d w=  

                                 2 4 027.7 ( )x x w d w=  

                                    1 11
1 3

11

1

3

w
x x

w

− =  

                                    1 21
2 4

21

1

2

w
x x

w

− =  

                                     2 31
4

31 32

w
x

w w

− =
+

 

                                    2 2 32
4 5

31 32

w
x x

w w

− =
+

 

                                    2 1 41
3 6

41 42

5
w

x x
w w

− − =
+

 

                                    2 2 1 42
3 5 6

41 42

w
x x x

w w

− − =
+

 

                                     2 2 1 42
3 5 6

41 42

w
x x x

w w

− − =
+

 

                                      1 51
6

51 52

w
x

w w

− =
+

 

                                     2 1 52
3 5 6

51 52

4
w

x x x
w w

− − =
+

 

Solving above equations we get optimal solution of primal variables 

* * * * * *

1 2 3 4 5 60.52068, 0.640312, 1.56205, 1.280625, 0.80, 2.31147x x x x x x= = = = = = and

125.7667W = . It is noted that [ ]5 0.8 0.5,1.5x = ∈  
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 We get the optimal values of Cross-sectional area of bar ‘1’ * * 2

1 1 520.68A x mm= = , 

Cross-sectional area of bar ‘2’ * * 2

2 2 640.31A x mm= = , Y coordinate of node B 

* *

5 0.80
B

y x m= =  and
* 125.7667W N= . 

              This parametric model of the two bar planer truss is built in First order method 

in software ANSYS 10.0.The solving results are as follows: 

Cross-sectional area of bar 1( *

1A ) =
2

497.9mm , Cross-sectional area of bar 2( *

2A ) =

2
671.5mm , Y coordinate of node B ( *

B
y ) = 0.89 m  and

* 126.46W N= . 

               This parametric model of the two bar planer truss is built in the MATLAB 

genetic algorithm toolbox .The solving result are as follows: 

Cross-sectional area of bar 1( *

1A ) =
2

520 mm , Cross-sectional area of bar 2( *

2A ) =

2
680mm , Y coordinate of node B ( *

B
y ) = 0.73 m  and

* 128.1W N= . 

                A comparison of the results between geometric programming problem (GP) 

method and other algorithms mentioned before is presented in table 3. 

 

Table-3: Comparison of the results for the two-bar planer truss problem 

Algorithm 

Design variable 

2

1( )A mm  

Design variable 

2

2 ( )A mm  

Y coordinate of 

node B ( )
B

Y m  
Weight ( )W N  

 geometric 

programming 

(GP) 

520.68  640.31  0.80  125.7667  

MATLAB 

genetic 

algorithm 

toolbox (MGA) 

520  680  0.73  128.1 

First order 

method in 

ANSYS 

(FOMA) 

497  671  0.89  126.46  

 

           It can be seen from the table-3. that the first–order method in ANSYS gives better 

results than that of the genetic algorithm native to MATLAB, but Geometric 

Programming (GP) method yields better result than that of the first–order method in 
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ANSYS and the genetic algorithm native to MATLAB.The chart of the comparison of 

results obtained by different algorithms is shown in Figure-2 . 

 

                     

 

                 Figure-2: Comparison of the results under different methods 

Conclusion: The successful results that are obtained in this study by GP solving method 

will contribute to further studies whenever the reliability of the structure is specified with 

respect to several criteria such as deflection, buckling and natural frequency of vibration. 
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