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Abstract: The main objective of structural engineers throughout design history has been
to obtain structure under the prescribed design conditions which can not only withstand
external loads safety but also achieve an economic solution. This paper focuses on the
use of geometric programming solution method to optimum design of plane truss
structures. This approach is illustrated on planer truss optimization model and the results

are discussed.
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1. INTRODUCTION

A Geometric Program (GP) is a type of mathematical optimization problem
characterized by objective and constraint functions that have a special form. It has useful
theoretical and computational properties. Although GP in standard form is apparently a
non convex optimization problem, it can be readily turned into a convex optimization
problem; hence a local optimum is also global optimum. Here the advantage is that it is
usually much simpler to work with the dual than the primal one. Solving a nonlinear
programming problem by GP method with degree of difficulty (DD) plays a significant

role.
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Since late 1960’s Geometric Programming (GP) has been known and used in
different field like Operations Research, Engineering designs etc. The general theory of
geometric programming and its engineering application was initially developed by
Duffin,Peterson and Zener [10] and Zener [4] in their published book. A serious
limitation in the application of this theory has been that all the functions involved in the
problem are to be posynomials.This shortcoming was overcome by Wild and Beightler
[5] in 1967 when they generalized the theory to allow the use of negative coefficients in
both objective and constraints, and also to permit reversed inequality constraints.
Generalized GP refers to minimizing a generalized posynomial subject to upper bound
inequality constraints on generalized posynomials. This method is a general form of
geometric programming method in which signomal functions are present in objective
function and in constraints.

The main objective of a structural engineering is to design structures which
withstand external loads safely and at a minimum cost or weight [2,3 and7].The desire to
improve a design without compromising the structural integrity has been a strong driving
force behind the development of various optimum design methods.

Finally this GP method is identified through the numerical example of two-bar
truss and the analysis results show that the geometric programming method can always

converges to the global optimal solution.

2. Truss Structural Optimization

The mathematical form of optimization problem for truss structure can be expressed as

follows:
Find A’ :{AI,AZ, ...... ,An} 2.1)
To minimize F=W(A)= pzn: LA, 2.2)
i=1
Subject to gf <g,(A)= g7 j=123,.....m (2.3)
and A< A <A™ i=123,...,n 2.4)

Where A = the design variable i (member i cross-sectional area, n= the number of
design variables, W (A) = the objective function ( the structural weight), p = the material

density, L. =the member of length, m =the number of inequality constraints (g), A™" and
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A™ are the lower and the upper bounds of the i” variable respectively. The lower

bounds posed by equation-3 on the constraints include truss member stresses and joint

displacements.

3. Geometric Programming Method:

A geometric program (GP) is a type of mathematical optimization problem characterized
by objective and constraint functions that have a special form. GP is a methodology for
solving algebraic non-linear optimization problems. Also linear programming is a subset
of a geometric programming .The theory of geometric programming was initially
developed about three decades ago and culminated in the publication of the seminal text
in this area by Duffin, Peterson, and Zener [10]

The general constrained Primal Geometric Programming problem is as follows:

T

Minimize g,(x)= ZCO,HX”"’ (3.1)
n=1
Subject to
T, N
g, 0= c, [[xim<l m=123...M (3.2)
t=1 =
x,>0, n=12 ... ,N.

Here ¢, >0 and q,, be any real number. The objective function contains 7 terms and
T terms in the inequality constraints. Here the coefficient of each term is positive.So it is
a constrained posynomial geometric programming problem. Let 7 =T +7, +......... +T

be the total number of terms in the primal program. The degree of difficulty (DD) is
defined as DD = Total no. of terms — (Total no. of variables -1) =T —(N +1).The dual

problem (with the objective function d(w) ,where
w={ww,,),Ym=0,1,2.....M;t=1,2,....T,}is the decision vector) of the geometric

programming problem (1) for the general posynomial case is as follows:

Maximize d(w)= ﬁ( j I_Mlﬁ[ ’”’zw’”’j (3.3)

t=1 m=1 t=1 ]nf

Subject to

Ty
w,, =1, (Normality condition)
t=1
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M T,
z z a, w, =0 forn=12,...,N. (Othogonality conditions)

m=0 t=1

w, >0 Vm=0,1,........ Mit=12,..... T,.
For a primal problem with M variables, 7, +7, +......... +T, terms and N constraints, the
dual problem consists of 7, +7, +......... +T variables and M+ 1 constraint. The relation

between these problems, the optimality has been shown [...] to satisfy

N
o [ 2 =d" (WHxwy, 1=1,2,3,...T, (3.4)
n=1
N W*
c, | | xim = T m— m=123,...M; t=1,23,.,T, (3.5)
n=l1 Zw;t
t=1
Taking logarithms in (3.4) and (3.5) and putting ¢, =logx, for n=1,2,.......... ,N. we shall
get a system of linear equations of 7 (n=12,......... ,N.).We can easily find primal

variables from the system of linear equations.

Case I: For T > N +1 ,the dual program presents.a system of linear equations for the dual
variables where the number of linear equations is either less than or equal to the number
of dual variables. A solution vector exists for the dual variable (Beightler and Philips
[20]).

Case II: For T < N +1,the dual program presents a system of linear equations for the dual
variables where the number of linear equation is greater than the number of dual
variables. In this case, generally, no solution vector exists for the dual variables.
However, one can get an approximate solution vector for this system using either the

least squares or the linear programming method.

4. Numerical Example:
A numerical problem as follows:

The primal problem is

Minimize g,(x)=2x,+5x, +2x,+ x, +0.5x, ' x;'x;'

Subject to g,(x) = x/x;” +x,x,” <1;
2,(x)=100x"'x;'x;" <1,

X, Xy, X5, %, > 0;

4.1
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This is a posynomial constraints geometric programming problem. This problem is
having degree difficulty = 8-(4+1) =3. The problem is solved via dual geometric
programming.

The corresponding dual of geometric programming (DGP) problem is:

max d(w) =

2 " 5 o 2 " 1 o 0.5 " 1 " 1 " Wi+ W Way (4 . 2)
Woi Woa Wos Woa Wos Wi Wi

Subject to
Wy, + Wy + Wy + W, +Wps =1
For the primal variable x,
Wor = Wos T 2wy =W, =0; 4.4
For the primal variable x,
Woo = Wos +2Wp, =Wy, =0; 4.5)
For the primal variable x,
Wos = Wos =Wy =0; (4.6)
For the primal variable x,
Wy, — 2w, —2w,, =0; (3.7)
Wois Woas Woss Woas Wos» Wips Wigs Way >0

The dual variables and the corresponding maximum value of dual objective are given in

the following table.

Table-1: Dual Solution

Woi Woz Wos Wos Wos Wi Wiy Wai 8o(x)

0.23111 | 0.30484 | 0.33332 | 0.13064 | 0.00011 | 0.05119 | 0.01422 | 0.33318 | 43.998
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The dual primal relations are
2x, = wyd(w);
5x, =wy,d (w);
2x, = wyd (w);
X, =wy,d (w);

0.5x"%"x;" = wyd (w);

2.2 &
xXx, = .
W11+W12
2.2 W
xyx, =—2—;
W11+W12

w.

-1_-1_-1_ "Y21,
100x, x; x; =—=;
Wy,
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The primal variables and the corresponding minimum value of primal objective are given

in the following table:

Table-2: Primal Solution

; ; 5 ; R
5.08405 2.68255 7.33232 5.74837 43.998
S. APPLICATION

A two-bar truss shown in Fig.1 is designed to support the loading condition

Consider the following data Nodal load (P ) =100 KN ; Volume density (y)=7.7 KN / m’

; Length (1)=2000mm ;Width( x,)=1000mm ; Allowable tensile stress([o,])=150MPa

;Allowable compressive stress([ac])=100MPa ;Cross-sectional area of bar 1(A )=

0 mm® <A <1000 mm” ;Cross-sectional area of bar 2(A,)=0 mm’ <A, <1000mm’ ;Y

coordinate of node B( y;)=500mm <y, <1500mm ;The structure is subject to constraints

in geometry, area, stress [9]. The maximum tensile stress is restricted to 150MPa, while
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the maximum compressive stress is restricted to 100MPa. The three design variables are

A, A, and y,. Obviously, this is minimization problem.

Figure-1: Design of the two-bar planar truss

The Optimization model of the two-bar truss is as follows:

minW = 7(A1«/x§ +(=yy)’ +A2\/X12; +)’12;)
qu; +(l_y3)2 S[Ur];

IA,
P\/x§+y§ <[6 ]
a, 0
0.5<y,<15 A >0;A,>0;

subject to.

(5.1)

Now this optimization model is not in standard form of geometric programming model.

First we transfer it into the standard geometric programming problem with suitable

substitution A=x, A=x,, J1+Q2-y,) <x, JI+y: <x,, y,=x,

1+4x°x = x,
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Then the new form of posynomial Geometric Programming (GP) Problem is;
Minimize W ="7.7xx,+7.7x,x,

1
subject to gxl_l)% <1

I _

§x21x4 <1
X, +x, <1 (5.2)

-2 -1 2.2 -1
S5x;7xg +x7xx, <1

-1 2 -1 _
X, +4x xx, =1

05<x,<15

X5 Xy, X3, Xy, X5, X >0

When the constraint 0.5<x,<1.5 of (5.2) is excluded, then (5.2) is a constrained

posynomial geometric programming problem with degree of difficulty = 10-(6+1) =3.
The problem is solved via dual programming.

The corresponding dual of geometric programming (DGP) problem is:

77 Wor 77 wo2 1 Wiy 1 W1 1 he 1 "2 Wy W
Woi Wo 3wy, 2wy, Wil "o
5 " 1 e Wy tWyo 1 " 4 " Wsi+Ws)
X[—j (_j (W41 + W42) [_j [_j (WSI + W52)
Wi Wiy Wsi Ws2

Subject to wy, +wy, =1
For primal variable x,
Wor =Wy =0
For primal variable x,
Woy =Wy =0
For primal variable x,
Wy, + Wy, — 2w, —2w,, —=2w,, =0
For primal variable x,
Wyp + Wy, =25, —2w,, =0

For primal variable x,
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2wy, + 2w, +w, =0

For primal variable x,

Wy, W, +wy +w,, =0
The dual primal relations are

7.7x,x;, = wy,d(w)

7.7x,%, = wy,d(w)

1 w
-1
—x, X, =—1+
3
11
1 w
-1
—x, x, =—2
2
21
w
-2
X} = 31
Wy + Wy,
w
2.2
X, xl = 32
Wy + Wy,
w
-2 1
5x;7°x, = -
Wy TW,,
w
x32x52x61 _ 42
W4l + W42
w
2 .2 1
Xy XsXg = -
Wy + Wy,
w
-1
x6 — 51
w51 + W52
P w
4x xx = —2
WSI + WSZ

Solving above equations we get optimal solution of primal variables

x, =0.52068, x, = 0.640312, x; =1.56205, x, =1.280625, x; = 0.80, x, = 2.31147 and

W =125.7667 . It is noted that x; =0.8€ [0.5,1.5]
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We get the optimal values of Cross-sectional area of bar ‘1° A =x, =520.68 mm®,
Cross-sectional area of bar 2° A =x,=64031mm’, Y coordinate of node B

v, =x;=0.80m andW" =125.7667N .

This parametric model of the two bar planer truss is built in First order method

in software ANSYS 10.0.The solving results are as follows:
Cross-sectional area of bar 1(A') =497.9 mm’*, Cross-sectional area of bar 2( A)) =
671.5mm?*, Y coordinate of node B (y;)=0.89m andW" =126.46N .

This parametric model of the two bar planer truss is built in the MATLAB

genetic algorithm toolbox .The solving result are as follows:

Cross-sectional area of bar 1(A’) =520 mm*, Cross-sectional area of bar 2(A) =

680mm’, Y coordinate of node B (y,)=0.73 m andW" =128.1N .

A comparison of the results between geometric programming problem (GP)

method and other algorithms mentioned before is presented in table 3.

Table-3: Comparison of the results for the two-bar planer truss problem

Design variable Design variable Y coordinate of

A (mm®) A (mm®) node B Y, () Weight W(N)

Algorithm

geometric

programming  520.68 640.31 0.80 125.7667
(GP)

MATLAB

genetic 520 680 0.73 128.1

algorithm

toolbox (MGA)

First order

method in 497 671 0.89 126.46
ANSYS

(FOMA)

It can be seen from the table-3. that the first—order method in ANSYS gives better
results than that of the genetic algorithm native to MATLAB, but Geometric
Programming (GP) method yields better result than that of the first-order method in

www.ijert.org 1830



International Journal of Engineering Research & Technology (IJERT)

ISSN:; 2278-0181
Vol. 2 Issue 8, August - 2013

ANSYS and the genetic algorithm native to MATLAB.The chart of the comparison of

results obtained by different algorithms is shown in Figure-2 .

Weight
128.5
128
127.5
127
126.5
126 L | I _
1955 m Weight
125 ——— _— _— —
1245 ——— e
Geometric MATLAB genetic First order method in
Programming Method  algorithm toolbox ANSYS

Figure-2: Comparison of the results under different methods
Conclusion: The successful results that are obtained in this study by GP solving method
will contribute to further studies whenever the reliability of the structure is specified with

respect to several criteria such as deflection, buckling and natural frequency of vibration.
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