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Abstract 

 The reduction of the shaking force by redistributing the each link mass of 4-bar 

mechanism in such a way that the sum of distributed masses are equal to the total 

mass of each link. The shaking force is minimized by two schemes one is by varying 

the co-ordinates of discretized mass concentrated points and other is redistributing the 

discretized mass magnititude keeping the coordinate’s constraint by using an 

optimization technique is Nelder’s  simplex method. 

 

 

 

1. Introduction  

The minimizing of shaking force was done by discretizing the each movable 

link of a 4-bar mechanism in some parts. However, instead of adding the counter 

weight for minimizing of shaking force, we can modify the shape of links by 

optimizing the mass concentrated coordinates of discretized mass of linkages. For 

optimizing co-ordinates an optimization technique “Nelder Simplex Method” is used. 

The main contribution of the present paper is the proof for planar mechanisms. 

Counterweight balancing can be reformulated as a convex optimization problem. 

However, instead of assuming a particular counterweight shape. The counterweight 

balancing problem is formulated as shaking force optimization problem by 

discretization.  

 

The Nelder’s simplex search method has been known one of the top ten 

algorithms of the century [1, 2]. The first simplex algorithm has been introduced by 

[3] as local search method by introducing a gradient activity on a function of problem 

to reveal the potential solution route [4]. The Nelder simplex method is simple to 

understand and fast to converge an optimization problem.  However, the Nelder 

algorithm is sensitive to initial value [5]. For example in function optimization 

problem, different initialization produces different solution. In order to avoid this 

circumstance, there are two possible ways to initialize these values. First, a very 

careful initialization selection and second using random generated initialization.  

Balancing of shaking force in high speed mechanisms/machines reduces the 

forces transmitted to the frame, which minimizes the noise and wear and improves the 

performance of a mechanism. The balancing of shaking force has been studied by 

various researchers [6–20], and others. A considerable amount of research on 

balancing of shaking force and shaking moment in planar mechanisms has been 

carried out in the past [6–20]. In contrast to rapid progress in balancing theory and 

techniques for planar mechanisms, the understanding of shaking force and shaking 
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moment balancing of spatial mechanisms is very limited. Kaufman and Sandor [12] 

presented a complete force balancing of spatial mechanisms like (revolute– spherical–

spherical–revolute) RSSR and (revolute–spherical–spherical–prismatic) RSSP. Their 

approaches are based on the generalization of the planar balancing theory developed 

by Berkof and Lowen [10], a technique of linearly independent vectors. Using the real 

vectors and the concept of retaining the stationary centre of total mass, Bagci has 

obtained the design equations for force balancing of various mechanisms 

 

2. Optimization  

 2.1 Nelder simplex method: 

The basic idea in the simplex method is to compare the values of the objective 

function at n+1 vertices of a general simplex and move this simplex gradually towards 

the optimum point during the iterative process .the moment of the simplex is achieved 

by using three operations know as reflection, contraction and expansion. 

 

2.1.1 Reflection 

 If Xh is the vertex corresponding to the highest value of the objective function 

among vertices of a simplex, we can expect the point Xr obtained by reflecting the 

point Xh in the opposite face to have the simple value .if this is the case we can 

construct a new simplex by rejecting Xh from simplex and including new point 

Xr:Replection point is given by     Xr =  1 + α Xo − αXh     

Where Xh is the vertex corresponding to the maximum function value  

f Xh = maxi=1to  n+1f(Xi)       

Xo is the centroid of all the points Xi except i=h and is given by, 

Xo =
1

n
 Xi

n+1
i=1

i/=h

          

And α >0 is the reflection coefficient defined as, 

 

α =
distance between XrandXo

distance between Xhand Xo
 

Thus Xr lie on the line joining Xh and Xo on the far side of Xo 

If f(𝑋𝑟 ) lies between f(𝑋ℎ ) and f(𝑋𝑙 )where 𝑋𝑙 is the vertex corresponding to the 

minimum function value, 

f Xl = mini=1to  n+1f(Xi)       

Xh  is replaced by Xr   and a new simplex is started 

 

 

2.1.2 Expansion 

 If a reflection process gives a point 𝑋𝑟  for which f(Xr) < f(Xl), if the reflection  

produces a new minimum ,one can generally expect to dcrease the function value 

further by moving along the direction Xo  and Xr  .hence we expand Xr  to Xe  by the 

relation  

Xe = γXr + (1 − γ)Xo         
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Where γ is called the expansion coefficient define as, 

γ =  
distance between Xeand Xo

distance between Xr  and Xo
 > 1 

if f(Xe) < f(Xl) ,we replace the point Xhby Xe  and restrat the process of reflection .on 

the other hand ,if f(Xr)>f(Xl) ,it means that expansion process is not successful and 

hence we replace the point Xhby Xr , and start the reflection process again. 

 

2.1.3 Contraction 

If the reflection process gives a point Xr  for which f(Xr) > f(Xi) for all I excepting i=h 

,and f(Xr) < f(Xh) , then we replace the point Xhby Xr  .Thus the new Xh  will be Xr . In 

this case, we contract the simplex method as follows: 

Xc = βXh + (1 − β) Xo         

Where β is called the contraction coefficient (0<=β<=1), and is defined as,  

β =
distance between  Xc  and Xo

distance between Xhand Xo
 

if f(Xr )>f(Xh ) we still use the xc with out changing the previous point Xh .if the 

contraction process produce a point 𝑋𝑐  for which f(Xc) < min[f(Xh), f(Xr)] ,replace the 

point Xh  in 𝑋1, X2……Xn+1 by 𝑋𝑐   and proceed with the reflection process again .on 

the other hand ,if f(Xc) >= min[f(Xh),f(Xr)],the contraction process will be a failure 

and this case ,we replace all Xi by (Xi + Xl)/2 , and restart the reflection process. 

 

3 Problem formulation 

3.1 Formulation of the Problem for Planar Mechanism 

 

 𝐹 =   𝐹𝑥2 + 𝐹𝑦2       

𝐹𝑥 = −𝑚1𝑥 1 −𝑚2𝑥 2 −𝑚3𝑥 3      

𝐹𝑦 = −𝑚1𝑦 1 −𝑚2𝑦 2 −𝑚3𝑦 3 

Links angles    ∅3 = 2 𝑡𝑎𝑛−1  
𝐴+ 𝐴2+𝐵2+𝐶2

𝐵+𝐶
      

                                        𝐴 = 𝑠𝑖𝑛 ∅1 

 𝐵 = 𝑐𝑜𝑠 𝜙1 −
𝑣

𝜆
  

 𝐶 =
𝜆2+𝜇2+𝜐2−1

2𝜇𝜆
−

𝑣

𝜇
𝑐𝑜𝑠 𝜙1  

𝜆 =
𝑎1

𝑎2
  

𝜇 =
𝑎3

𝑎2
  

𝜈 =
𝑎4

𝑎2
  

𝜙2 = 𝑡𝑎𝑛−1  
𝜆 𝑠𝑖𝑛 𝜙1−𝜇 𝑠𝑖𝑛 𝜙3

𝜆 𝑐𝑜𝑠 𝜙1−𝜇 𝑐𝑜𝑠 𝜑3−𝜐
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𝜙 2 =
𝜆

𝜏3
𝑠𝑖𝑛 𝜙1 − 𝜙3 𝜙 1    

𝜙 3 =
𝜏1𝜆

𝜏3𝜇
𝜙 1  

                            Where   

𝜏1 = 𝜇 𝑠𝑖𝑛 𝜙1 − 𝜙2 + 𝜈 𝑠𝑖𝑛 𝜙1  

𝜏3 = 𝜆 𝑠𝑖𝑛 𝜙1 − 𝜙2 + 𝜈 𝑠𝑖𝑛 𝜙3   

Link angular accelerations 

𝜙 2 =  
𝜙 2

𝜙 1
𝜙 1 +

𝜐𝜆

𝜏3
2  𝑐𝑜𝑠 𝜙1 − 𝜙3 𝑠𝑖𝑛 𝜙3 𝜙 1 − 𝑠𝑖𝑛𝜙1𝜙 3 𝜙 1             

ϕ 3 =  
ϕ 3

ϕ 1
ϕ 1 +

λ

τ3 
 cos ϕ1 − ϕ3  ϕ 1−ϕ 3 

2
+  

ν

μτ3

 λ cosϕ1ϕ 1 
2 −   μ cosϕ3ϕ 3

2    

Accelerations of center of mass 

x 1 = −ϕ 1
2 p1 cosϕ1 − q1 sinϕ1 − ϕ 1 p1 sinϕ1 + q1 cosϕ1                   

𝑦 1 = −𝜙 1
2 𝑝1 𝑠𝑖𝑛 𝜙1 − 𝑞1 𝑐𝑜𝑠 𝜙1 − 𝜙 1 𝑝1 𝑐𝑜𝑠 𝜙1 +  𝑞1 𝑠𝑖𝑛 𝜙1                       

𝑥 2 =  −𝑎1 𝑠𝑖𝑛 𝜙1𝜙 1 − 𝑎1𝜙 1
2 𝑐𝑜𝑠 𝜙1 − 𝜙 2 𝑝2 𝑠𝑖𝑛 𝜙2 + 𝑞2 𝑐𝑜𝑠 𝜙2 −  𝜙 2

2  𝑝2 𝑐𝑜𝑠 𝜙2 −

             𝑞2 𝑠𝑖𝑛 𝜙2                

𝑦 2 = 𝑎1 𝑐𝑜𝑠 𝜙1𝜙 1  − 𝑎1𝜙 1
2 𝑠𝑖𝑛 𝜙1 + 𝜙 2 𝑝2 𝑐𝑜𝑠 𝜙2 − 𝑞2 𝑠𝑖𝑛 𝜙2 −  𝜙 2

2  𝑝2 𝑠𝑖𝑛 𝜙2 +

          𝑞2 𝑐𝑜𝑠 𝜙2                 

𝑥 3 = −𝜙 3 𝑝3 𝑠𝑖𝑛 𝜙3 + 𝑞3 𝑐𝑜𝑠 𝜙3 − 𝜙 3
2 𝑝3 𝑐𝑜𝑠 𝜙3 −  𝑞3 𝑠𝑖𝑛 𝜙3        

𝑦 3 = 𝜙 3 𝑝3 𝑐𝑜𝑠 𝜙3 − 𝑞3 𝑠𝑖𝑛 𝜙3  − 𝜙 3
2 𝑝3 𝑠𝑖𝑛 𝜙3 + 𝑞3 𝑐𝑜𝑠 𝜙3            

 

3.2 Formulation of the shaking force reducing Problem for Planar Mechanisms   

     after discretization 

  

When the links mass is discretized the expression for the shaking force is given by  

  F =   Fx
2 + Fy

2           

Fx = − δm1i
n
i=1 x 1i −  δm2ix 2i

n
i=1 −  δm3ix 3i

n
i=1    

 Fy = − δm1i
n
i=1 y 1i −  δm2iy2i

n
i=1 −  δm3iy3i

n
i=1     

 δm1i

n

i=1

= m1                       δm2i

n

i=1

= m2                    δm3i

n

i=1

= m3                      
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 X 1i

n

i=1

= X 1                            X 1i

n

i=1

= X 2                           X 1i

n

i=1

= X 3 

 Y 1i

n

i=1

= Y 1                              Y 1i

n

i=1

= Y 2                             Y1i

n

i=1

= Y 3 

3.3 Optimum variables  

Each moving link of the mechanism, i.e. links i = (1,2,3) is discretized .The general  

choice of mass parameters for a planar mechanism are its mass mi , its center of 

gravity (COG) position (p,q) with respect to the local coordinate system of link i to 

mass concentrating point . 

 

Mass constrain  𝛿𝑚𝑖𝑖
𝑛
𝑖=1 = 𝑚1 

 

3.4 Objective function 

 

Instead of minimizing a weighted combination of the three balancing effect indices, 

the balancing trade-off is controlled based on the following approach. 

   Minimize F 

Subjected to 𝜎 ≤ 𝜎𝑦  

The advantage of this approach is that the shaking force is minimized while the 

designer directly controls, through the designer-specified upper bounds  the maximum 

allowed increase > 1), or the minimum wanted reduction (< 1) of the shaking force  

 

4 Numerical results 
The origin and use of the force will now be explained by means of an 

example, using a mechanism with the following dimensions 

 

 
Figure 1 slandered 4-bar configuration 

Link lengths is given as  

a1=50.8 mm 

a2=101.6 mm 

a3=152.4 mm 

a4=152.4 mm 

Angular acceleration is given as  ϕ 1=100 rad/sec 
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4.1 Results For Scheme-I  

In scheme-I the magnititude of the discrete mass is fixed and varying the mass 

concentrated points i.e. coordinates of the discrete mass. Finding the set of 

coordinates which gives optimal forces 

 

Φ (degree) Force (N) 

0 108.4387 

71.74577 108.1865 

107.9968 109.8092 

144.0359 108.8155 

179.9947 106.7311 

215.9478 100.2193 

251.9926 105.5625 

287.9686 62.0558 

323.9503 133.3234 

359.9894 108.4418 

 

Table 1 Shaking Forces For Scheme- I  

p11 p12 p13 q11 q12 q13 

0.19558 11.59256 1.15824 0.03048 -0.58928 0.10668 

0.57658 1.15824 2.31394 0.30988 0.39116 0.03048 

0.96266 1.9304 3.08356 0.1651 -2.81178 0.10922 

1.34874 2.70002 4.24434 0.69342 1.46558 0.30988 

1.73736 3.47218 5.01396 0.10668 -0.52832 0.1651 

2.1209 4.24434 6.16966 0.14224 -0.35814 0.17526 

2.50444 5.01396 6.94182 0.03048 -0.04826 0.1651 

2.89052 5.78104 8.09752 0.17526 0.3556 0.69342 

3.27914 6.55574 8.87222 0.1651 -1.00584 0.03048 

3.47218 6.94182 10.02792 0.10922 -0.44958 0.14224 

Table 2 New Co-Ordinates of Mass Concentration for optimum force 
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4.2 Results for Scheme –II 

In scheme-II mass concentrated points i.e. coordinates of the discrete mass is 

fixed and varying the magnititude of the discrete mass.  Finding the set of magnititude 

of mass which gives optimal forces. 

input angle  ∅  

 (degree) 

Shaking force  

 F (N) 

0 86.6824 

71.74577 91.7267 

107.9968 90.2019 

144.0359 86.7403 

179.9947 79.8967 

215.9478 71.8965 

251.9926 63.5197 

287.9686 57.0764 

323.9503 113.1934 

359.9894 90.9896 

Table 3Shaking Forces for Scheme-II 

Masses for link1  

(Kgs) 

Masses for  link 2 

(Kgs) 

Masses for link 3  

(Kgs) 

1.21e-4 6.17e-5 1.08e-5 

2.34e-4 1.80e-4 3.29e-5 

1.87e-4 1.80e-4 1.41e-5 

1.24e-5 9.57e-4 1.74e-5 

4.41e--5 2.628e-4 3.87e-4 

7.44e-5 2.21e-4 8.21e-5 

2.16e-4 2.88e-4 8.21e-5 

4.36e-5 5.27e-4 2.39e-5 

1.97e-4 3.88e-5 5.49e-5 

6.51e-4 1.08e-4 2.85e-5 

Table 4 New Set of Magnititude of Masses for optimal force   
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Conclusion 

  In this work a procedure to minimize the shaking force in a four bar 

mechanism is presented. The shaking force is minimized by the redistribution of the 

mass in all the three links except the first link that constitute the mechanism the 

redistribution is carried out by using two schemes. One scheme involves variation of 

the locations of the distributed masses that constitute each link. The other schemes 

carries out the redistribution by varying the magnitude of the discretized masses, in 

keeping their locations fixed. For determining the redistributed magnitude or the 

locations of discretized masses for minimum shaking forces, a non linear optimal 

method, Nelder Mead simplex is adopted. 
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