
Optimization and Simulation of A Navigation

Robot in Mazes

Joel Yew-Hao Hii, Jer-Vui Lee, Yea-Dat Chuah
Department of Mechatronics & BioMedical Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman, Kajang, Malaysia

Abstract — Path planning has been relatively well known in the

fields of robotics, especially on autonomous navigation robot. It

has the capability to venture from one place to another by using

the optimal path acquired from path planning method. Not only

that, path planning has also been implemented for maze solving.

Throughout the years, many scientists had been formulating all

sorts of path planning algorithm, whereby they are implemented

on a navigation robot for experimental testing in real life mazes.

Therefore, this study will focus on three selected path planning

algorithms (A*, Breadth-First Search and Left-Hand Rule),

where a comparison test will be conducted to acquire the most

appropriate one among the rest. The selected one will then be

added with enhanced feature, where it will be simulated in a 2D

graphical rendering surface. After this, the path planning

algorithm will then be implemented in a physical constructed

robot, where it will be tested again in a physical maze. The

findings and results will be discussed accordingly.

Keywords—Path planning; A* algorithm; Breadth First Search

algorithm; Left-Hand Rule algorithm; mazes; navigation robot

I. INTRODUCTION

In recent years, navigation robot has been widely used in

performing tasks such as rescue operation, disaster relief and

space exploration [1]. One of the noteworthy features that can

be considered is their path planning capability. Path navigation

is a process where the route or path that is planned must be

correct to ensure that the navigation robot is able to move

safely and freely without getting lost or colliding with other

objects [2]. It has been relatively well known in the fields of

robotics where it plays an essential role in the navigation of

autonomous robot [3]. Although path planning has coexisted

alongside autonomous robots, it is still unable to obtain a

universal solution [4]. In recent years, various kind of path

planning algorithm had been developed. Each algorithm has

their own specific aspect, where some requires the information

of the maze while others do not. Hance, three selected path

planning algorithm techniques, namely A-Star (A*) algorithm,

Breadth First Search (BFS) algorithm and Left-Hand Rule

(LHR) algorithm are selected for comparison and

examination, where the most appropriate one will be chosen

and implemented with enhanced feature. Moreover, the path

planning algorithm will also be tested in a physical navigation

robot and maze.

II. PATH PLANNING ALGORITHGMS

A. A-Star (A*) Algorithm

A* algorithm is known as the best path planning

algorithm, where it can be applied on any topological

configuration space [5]. The algorithm is a combination of

both exhaustive search and greedy search [6]. Exhaustive

search guarantees an optimal path but requires long

computational time. Greedy search excludes the optimal path

by obtaining the overall search with less computational time

[7]. Both exhaustive search and greedy search are represented

as the movement cost and heuristic cost of the distance.

Furthermore, A* relies of two lists, namely an open-list

and a closed-list [8]. The open-list contains a list of nodes that

can be travel to, while the closed-list contains all the nodes

that had already been travelled. The algorithm will check all

adjacent nodes from its current location and add them together

into the open-list.

The current location will be added with the adjacent nodes

that are included into the movement cost. At the same time,

the heuristic cost will be computed for those adjacent nodes

that have not yet been calculated [9]. The equation for

movement cost can be seen:

 (2.1)

Where and is the movement cost for both adjacent

node and current node, and is the row and column

coordinate for adjacent node, while and is the row and

column coordinate for current node. The lower movement cost

on adjacent node will be prioritize [9]. The equation for

heuristic cost can be seen:

 (2.2)

Where represents the calculated heuristic cost, and

represents the row and column coordinate of the desired

ending location, while and represents the row and

column coordinate of the adjacent node.

The summation of both movement cost and heuristic cost

will be evaluated as the fitness cost. It will be listed in the

open-list, while the node with the lowest overall cost will

become the new current node [10]. The equation of the fitness

cost can be seen:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS050110
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 05, May-2021

222

www.ijert.org
www.ijert.org
www.ijert.org

 (2.3)

Where represents the fitness cost, represents the

movement cost and represents the heuristic cost. The whole

process is repeated until the desired ending location is

reached.

B. Breadth First Search (BFS) Algorithm

Breadth First Search algorithm is an algorithm that is used

for traversing either a tree or graph data structure [11]. The

algorithm works efficiently by visiting and marking all the key

cells in an accurate breadthwise fashion in the graph. It

expands the cell into different levels respectively while

utilizing the First-In, First-Out (FIFO) manner to visit the

nodes [12]. The ordering is based on the enumeration of cells

in a graph where the possible output is applicable. Hence,

using Graph, G = (V, E) and a source cell υ, the BFS will

traverse the edges of G to find all the reachable cells from υ.

At the same time, the algorithm will also compute the shortest

distance to any reachable cell. Any path between two points in

a BFS tree will correspond accordingly from the root υ to any

other node s.

In maze solving, BFS is used to find the goal cell from the

given source cell. Starting from the source cell, the overall

layer of unvisited cell will be visited and added into the visited

set [13]. As mentioned, BFS algorithm will label each cell

from the start to all neighbouring vertex while marking the

start cell as ‘zero’ [14]. The algorithm will constantly update

the cell that are immediate neighbours from the start cell. The

search continues until the goal is found.

C. Left-Hand Rule (LHR) Algorithm

Left-Hand Rule algorithm is recognized as the most

common wall follower algorithm [15]. This algorithm operates

by taking precedence to the left-hand side in the maze [16].

Therefore, when the algorithm is placed into the maze, it will

run accordingly by sticking to the left-hand side at all times.

As the algorithm reaches an intersection, the left side will take

priority first. If the left side is open, the algorithm will turn left

then move forward. Otherwise, it will check to see whether it

can move forward or not. If there is no forward option, the

final resort is by turning right [17].

III. METHODOLOGY

Fig. 1: Project Overview

 The overview of the project is categorized into two parts,

namely hardware and software. The software part will cover

mainly on the comparison, selection, feature added and

implementation of the path planning algorithm into the

navigational robot. First and foremost, the three selected path

planning algorithms will be tested and evaluated using three

different maze size, namely 5 x 5, 10 x 10 and 15 x 15 in

python software platform. This is to verify the most suitable

path planning algorithm in terms of time and number of paths

taken. After that, the selected one will be added with new

feature and tested on the python software. Moreover, the path

planning algorithm code will be implemented into the physical

robot through Arduino software.

 On the other hand, the hardware side will cover mainly on

the construction and development of the physical robot and

maze. This includes the hardware purchase and gathering, the

connection of various components and material.

IV. RESULTS AND DISCUSSIONS

A. Comparison Test

Fig. 2: Result for 5 x 5 maze

Fig. 3: Result for 10 x 10 maze

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS050110
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 05, May-2021

223

www.ijert.org
www.ijert.org
www.ijert.org

Fig. 4: Result for 15 x 15 maze

The path planning algorithm was tested in the python

program, where the results can be seen in Figure 2, Figure 3

and Figure 4. The white block represents the wall of the maze

while the block in black colour represents the empty path in

the maze. Moreover, the green colour blocks represent the

searched paths and the yellow blocks represent the optimal

paths. Two criteria were used to evaluate the performance,

namely average time and path taken. The time will cover the

beginning where the algorithm starts to solve the maze until

the optimal path is attained. Nonetheless, the path is taken for

each step the algorithm takes during the process. The result on

each path planning algorithm can be seen in TABLE I (5 x5),

TABLE II (10 x 10) and TABLE III (15 x 15).

TABLE I. COMPARISON TEST FOR PATH PLANNING

ALGORITHM IN A 5 X 5 MAZE

Parameter A* BFS LHR

1st Time Taken

(s)

0.848896 1.444130 1.572429

2nd Time Taken

(s)

0.844153 1.352412 1.550257

3rd Time Taken

(s)

0.845855 1.397986 1.554386

Average Time

Taken (s)

0.846301

(≈ 0.85)

1.398176

(≈ 1.40)

1.559024

(≈ 1.56)

Total Path

Length (cells)

36 36 42

TABLE II. COMPARISON TEST FOR PATH PLANNING

ALGORITHM IN A 10 X 10 MAZE

Parameter A* BFS LHR

1st Time Taken

(s)

1.943768 5.058832 9.947831

2nd Time Taken

(s)

1.893884 5.088562 9.779287

3rd Time Taken

(s)

1.908919 5.009050 9.911231

Average Time

Taken (s)

1.915523

(≈ 1.92)

5.052148

(≈ 5.05)

9.879450

(≈ 9.88)

Total Path

Length (cells)

82 82 274

TABLE III. COMPARISON TEST FOR PATH PLANNING ALGORITHM IN A 15

X 15 MAZE

Parameter A* BFS LHR

1st Time Taken

(s)

6.164448 13.469903 19.645816

2nd Time Taken

(s)

6.042483 13.428365 19.616728

3rd Time Taken

(s)

6.045526 13.535261 19.618392

Average Time

Taken (s)

6.084152

(≈ 6.08)

13.477843

(≈ 13.48)

19.626977

(≈ 19.63)

Total Path

Length (cells)

248 248 539

 From the comparison test, the average time for LHR

algorithm was the longest when compared to BFS and A*

algorithm, requiring an average time of 1.56 seconds, 9.88

seconds and 19.63 seconds to solve the 5 x 5, 10 x 10 and 15 x

15 maze respectively. Besides that, the total path length it took

was 42 cells, 274 cells and 539 cells. This is because the

algorithm did not require any assumptions whereby it moves

along the maze by staying on the left hand side. This will

cause it to make numerous U-turns in the event of a bigger

maze, thereby resulting in longer time needed to complete on a

bigger maze.

 Next, the average time taken using BFS algorithm was

lesser compared to LHR algorithm, roughly using an average

time of 1.40 seconds, 5.05 seconds and 13.48 seconds to solve

the 5 x 5, 10 x 10 and 15 x 15 maze respectively. The total

path length it took was 36 cells, 82 cells and 248 cells. It was

able to do so because it had an initial understanding on the

given maze and it does not require a person to enter and solve

it, thereby using a shorter time to solve the maze respectively.

A* algorithm was able to obtained the shortest time in

solving the maze as compared to LHR and BFS algorithm,

requiring an average time of 0.85 seconds, 1.92 seconds and

6.08 seconds to solve the 5 by 5, 10 by 10 and 15 by 15 maze

respectively. Just like BFS algorithm, A* algorithm had also

used 36 cells, 82 cells and 248 cells to finish the given maze.

The reason behind this was that the algorithm consists of both

movement cost and heuristic cost. Unlike BFS algorithm, A*

was able to find the exit faster without considering every path

in the maze, thereby using shorter time to solved the maze.

The summary of the comparison is listed in TABLE IV.

TABLE IV. SUMMARY OF COMPARISON BETWEEN THREE SELECTED PATH

PLANNING ALGORITHMS

Parameter A* BFS LHR

Average Time

Taken (s) Shortest Moderate Longest

Total Path

Length Lowest Lowest Highest

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS050110
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 05, May-2021

224

www.ijert.org
www.ijert.org
www.ijert.org

Based on the comparison made on each path planning

algorithm on different size of maze, the most appropriate one

to be chosen was A* algorithm. LHR algorithm had used the

longest time and highest path taken whereas BFS algorithm

had used moderate time and lowest path taken. On the other

hand, A* algorithm was the only one that had used the shortest

amount of time and path taken, thereby chosen as the

appropriate one among the three.

B. Feature Added to the Path Planning Algorithm

The A* algorithm was added with a new feature where 2D

pygame capability was implemented. The implementation has

provided user with more freedom and flexibility in designing

the maze size instead of initializing it in the python code. The

flowchart can be viewed in Figure 5:

Fig. 5: Flowchart regarding to the added feature in A* algorithm.

A 2D program window is generated once the python code

runs. At this moment, the user can freely design the maze

based on their own discretion. The user can position the

starting point, ending point and the wall of the maze. Besides

that, the user can also remove the blocks if needed. The user’s

design must be able to ensure that the path planning algorithm

is able to solve it, else the whole program will generate an

error. Figure 6 shows the sample result of the added feature.

Fig. 6: Simulated results of the feature added to the path planning

algorithm

C. Physical Maze and Navigation Robot

Fig. 7: Physical Maze

 A 3 by 3 physical maze is constructed as shown in Figure

7. The maze is attached using simple materials such as binder

clips and carboards.

Fig. 8: Physical Navigation Robot

 The physical navigation robot is constructed mainly to

examine the path planning algorithm on a physical maze. The

necessary components are listed alongside the constructed

navigation robot in Figure 8.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS050110
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 05, May-2021

225

www.ijert.org
www.ijert.org
www.ijert.org

D. Simulation

.
Fig. 9: Simulation Result in Arduino IDE Serial Monitor

Fig. 10: The movement generated from Arduino to Navigation Robot

 The feature added A* algorithm python code was written

into the Arduino code. The information regarding the 3 by 3

physical maze is coded into the program as well for simulation

purposes. The generated maze in Arduino can be seen in

Figure 9. The information within the maze is initialized

respectively, where 0 will represent the path, 1 will represent

the start position, while 2 represents the wall and 3 represents

the goal position. Once the goal is reached, letters will be

displayed in the bottom side of the serial monitor with the

direction of movement needed for the navigation robot. Figure

10 depicts the intended movement on the navigation robot to

solve the maze. The respective movement for each direction

can be elaborated in TABLE V.

TABLE V. RESPECTIVE DIRECTION AND MOVEMENT FOR THE

NAVIGATION ROBOT

Letter

(Direction)

Movement of navigation robot

l (Left)

r (Right)

u (Up)

d (Down)

 Once the letters are displayed, the navigation robot will

move accordingly to the given letter to solve the maze. Figure

11 shows the initial and final position of the navigation robot.

Fig. 11: Initial and Final Position of the Navigation Robot

V. CONCLUSION

In a nutshell, the objectives stated in the report were

achieved. Three path planning algorithms had undergone

comparison test successfully using the python simulation

program in PyCharm. Next, a new feature was added and

implemented into the path planning algorithm where a free

space with designing capability can be done through the

incorporation of pygame library. The feature was added and

tested successfully on a 2D window program simulation.

Furthermore, the path planning algorithm was implemented

into the physical navigation robot. The code was written in

Arduino language whereby the grid was used for representing

the maze virtually. The experiment was done successfully

whereby the navigation robot was able to finish the given

maze.

ACKNOWLEDGMENT

 I would like to express my gratitude and sincere thanks to

my research supervisors, Dr. Lee Jer Vui and Ir. Dr. Chuah

Yea Dat for their invaluable advices, guidances and enormous

patience thoughout the development of the research.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS050110
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 05, May-2021

226

www.ijert.org
www.ijert.org
www.ijert.org

REFERENCES

[1] Gul, F., Rahiman, W., & Nazli Alhady, S. S. (2019). A comprehensive
study for robot navigation techniques. Cogent Engineering, 6(1).

[2] Sariff, N., & Buniyamin, N. (2006). An overview of autonomous

mobile robot path planning algorithms. SCOReD 2006 - Proceedings
of 2006 4th Student Conference on Research and Development

“Towards Enhancing Research Excellence in the Region,” June, 183–

188.
[3] Rahman, M. (2017). Autonomous maze solving robot.

[4] Aqel, M. O. A., Issa, A., Khdair, M., Elhabbash, M., Abubaker, M., &

Massoud, M. (2017). Intelligent maze solving robot based on image
processing and graph theory algorithms. Proceedings - 2017

International Conference on Promising Electronic Technologies,

ICPET 2017, October, 48–53.
[5] Cui, S.-G., & Wang, H., & & Yang, L. . (2012). A simulation study of

A-star algorithm for robot path planning. 506–510.

[6] Tjiharjadi, S., Wijaya, M. C., & Setiawan, E. (2017). Optimization
maze robot using A* and flood fill algorithm. International Journal of

Mechanical Engineering and Robotics Research, 6(5), 366–372.

[7] Khantanapoka, K., & Chinnasarn, K. (2009). Pathfinding of 2D & 3D
game real-time strategy with Depth Direction A* algorithm for multi-

layer. 2009 8th International Symposium on Natural Language

Processing, SNLP ’09, 184–188.
[8] Warren, C. W. (1993). Fast Path Planning Using Modified A *

Method. 662–667.

[9] Gilbert, G., & Rivera, A. (2012). Path planning for general mazes.
MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY.

[10] Ė, F. D., Babinec, A., Kajan, M., Be, P., & Florek, M. (2014). Path

planning with modified A star algorithm for a mobile robot. 96, 59–69.

[11] Babula, M. (2009). Simulated Maze Solving Algorithms through

Unknown Mazes. Proceedings of the CS&P 2009, Concurrency,

Specification & Programming, September, 13–22.

[12] Kumar, N., & Kaur, S. (2019). A Review of Various Maze Solving
Algorithms Based on Graph Theory. International Journal for

Scientific Research & Development, 6(12), 2–6.

[13] Sadik, A. M. J., Dhali, M. A., Farid, H. M. A. B., Rashid, T. U., &
Syeed, A. (2010). A comprehensive and comparative study of maze-

solving techniques by implementing graph theory. Proceedings -

International Conference on Artificial Intelligence and Computational
Intelligence, AICI 2010, 1(1), 52–56.

[14] Sharma, K., & Munshi, C. (2015). A Comprehensive and Comparative

Study Of Maze-Solving Techniques by Implementing Graph Theory.
IOSR Journal of Computer Engineering (IOSR-JCE), 17(1), 24–29.

[15] Hamada, K. (2013). A picturesque maze generation algorithm with any

given endpoints. Journal of Information Processing, 21(3), 393–397.
[16] Hualong, J., Hongqi, W., & Yonghong, T. (2011). Design and

realization of a maze robot. 2011 International Conference on

Consumer Electronics, Communications and Networks, CECNet 2011

- Proceedings, 201–204.

[17] Cai, J., Wan, X., Huo, M., & Wu, J. (2010). An algorithm of

micromouse maze solving. Proceedings - 10th IEEE International
Conference on Computer and Information Technology, CIT-2010, 7th

IEEE International Conference on Embedded Software and Systems,

ICESS-2010, ScalCom-2010, Cit, 1995–2000.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS050110
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 05, May-2021

227

www.ijert.org
www.ijert.org
www.ijert.org

