Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I ssue 05, May-2021

Optimization and Simulation of A Navigation
Robot in Mazes

Joel Yew-Hao Hii, Jer-Vui Lee, Yea-Dat Chuah
Department of Mechatronics & BioMedical Engineering
Lee Kong Chian Faculty of Engineering and Science
Universiti Tunku Abdul Rahman, Kajang, Malaysia

Abstract — Path planning has been relatively well known in the
fields of robotics, especially on autonomous navigation robot. It
has the capability to venture from one place to another by using
the optimal path acquired from path planning method. Not only
that, path planning has also been implemented for maze solving.
Throughout the years, many scientists had been formulating all
sorts of path planning algorithm, whereby they are implemented
on a navigation robot for experimental testing in real life mazes.
Therefore, this study will focus on three selected path planning
algorithms (A*, Breadth-First Search and Left-Hand Rule),
where a comparison test will be conducted to acquire the most
appropriate one among the rest. The selected one will then be
added with enhanced feature, where it will be simulated in a 2D
graphical rendering surface. After this, the path planning
algorithm will then be implemented in a physical constructed
robot, where it will be tested again in a physical maze. The
findings and results will be discussed accordingly.

Keywords—Path planning; A* algorithm; Breadth First Search
algorithm; Left-Hand Rule algorithm; mazes; navigation robot

l. INTRODUCTION

In recent years, navigation robot has been widely used in
performing tasks such as rescue operation, disaster relief and
space exploration [1]. One of the noteworthy features that can
be considered is their path planning capability. Path navigation
is a process where the route or path that is planned must be
correct to ensure that the navigation robot is able to move
safely and freely without getting lost or colliding with other
objects [2]. It has been relatively well known in the fields of
robotics where it plays an essential role in the navigation of
autonomous robot [3]. Although path planning has coexisted
alongside autonomous robots, it is still unable to obtain a
universal solution [4]. In recent years, various kind of path
planning algorithm had been developed. Each algorithm has
their own specific aspect, where some requires the information
of the maze while others do not. Hance, three selected path
planning algorithm techniques, namely A-Star (A*) algorithm,
Breadth First Search (BFS) algorithm and Left-Hand Rule
(LHR) algorithm are selected for comparison and
examination, where the most appropriate one will be chosen
and implemented with enhanced feature. Moreover, the path
planning algorithm will also be tested in a physical navigation
robot and maze.

Il. PATHPLANNING ALGORITHGMS

A. A-Star (A*) Algorithm

A* algorithm is known as the best path planning
algorithm, where it can be applied on any topological
configuration space [5]. The algorithm is a combination of
both exhaustive search and greedy search [6]. Exhaustive
search guarantees an optimal path but requires long
computational time. Greedy search excludes the optimal path
by obtaining the overall search with less computational time
[7]. Both exhaustive search and greedy search are represented
as the movement cost and heuristic cost of the distance.

Furthermore, A* relies of two lists, namely an open-list
and a closed-list [8]. The open-list contains a list of nodes that
can be travel to, while the closed-list contains all the nodes
that had already been travelled. The algorithm will check all
adjacent nodes from its current location and add them together
into the open-list.

The current location will be added with the adjacent nodes
that are included into the movement cost. At the same time,
the heuristic cost will be computed for those adjacent nodes
that have not yet been calculated [9]. The equation for
movement cost can be seen:

On = 8+ — 1 + (6 — €. (2.2)

Where g, and g, is the movement cost for both adjacent
node and current node, % and ¢, is the row and column
coordinate for adjacent node, while r, and ¢, is the row and
column coordinate for current node. The lower movement cost
on adjacent node will be prioritize [9]. The equation for
heuristic cost can be seen:

b= [0 = %)+ (e = en)? (2.2)

Where hy, represents the calculated heuristic cost, i and cf
represents the row and column coordinate of the desired
ending location, while % and ¢, represents the row and
column coordinate of the adjacent node.

The summation of both movement cost and heuristic cost
will be evaluated as the fitness cost. It will be listed in the
open-list, while the node with the lowest overall cost will
become the new current node [10]. The equation of the fitness
cost can be seen:

IJERTV10I1S050110

www.ijert.org 222

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I ssue 05, May-2021

fo = gn 0y (2.3)

Where f, represents the fitness cost, g, represents the
movement cost and h,, represents the heuristic cost. The whole
process is repeated until the desired ending location is
reached.

B. Breadth First Search (BFS) Algorithm

Breadth First Search algorithm is an algorithm that is used
for traversing either a tree or graph data structure [11]. The
algorithm works efficiently by visiting and marking all the key
cells in an accurate breadthwise fashion in the graph. It
expands the cell into different levels respectively while
utilizing the First-In, First-Out (FIFO) manner to visit the
nodes [12]. The ordering is based on the enumeration of cells
in a graph where the possible output is applicable. Hence,
using Graph, G = (V, E) and a source cell v, the BFS will
traverse the edges of G to find all the reachable cells from v.
At the same time, the algorithm will also compute the shortest
distance to any reachable cell. Any path between two points in
a BFS tree will correspond accordingly from the root v to any
other node s.

In maze solving, BFS is used to find the goal cell from the
given source cell. Starting from the source cell, the overall
layer of unvisited cell will be visited and added into the visited
set [13]. As mentioned, BFS algorithm will label each cell
from the start to all neighbouring vertex while marking the
start cell as ‘zero’ [14]. The algorithm will constantly update
the cell that are immediate neighbours from the start cell. The
search continues until the goal is found.

C. Left-Hand Rule (LHR) Algorithm

Left-Hand Rule algorithm is recognized as the most
common wall follower algorithm [15]. This algorithm operates
by taking precedence to the left-hand side in the maze [16].
Therefore, when the algorithm is placed into the maze, it will
run accordingly by sticking to the left-hand side at all times.
As the algorithm reaches an intersection, the left side will take
priority first. If the left side is open, the algorithm will turn left
then move forward. Otherwise, it will check to see whether it
can move forward or not. If there is no forward option, the
final resort is by turning right [17].

I1l. METHODOLOGY

Software Implementation

__

Programming, Debugging & Simulation

Ci 1and
Left-Hand Rule improvement Selection

|
I
i
Breadth-First Search T : PyChram IDE [—| Python Simulator ;
i ! i
1
I ! i
I |
i !] i
J
A-Star (A%) !

i
1 Programming,
! Debugging &
i
|
|

Actuator

Left Motor

Simulation

Arduino IDE

e s B s

IR Sensor Right Motor

(Optional)

I
i
Serial Monitor ;
i
I

,,,,,,,,,,,,,,,,

Sensor

Fig. 1: Project Overview

The overview of the project is categorized into two parts,
namely hardware and software. The software part will cover
mainly on the comparison, selection, feature added and
implementation of the path planning algorithm into the
navigational robot. First and foremost, the three selected path
planning algorithms will be tested and evaluated using three
different maze size, namely 5 x 5, 10 x 10 and 15 x 15 in
python software platform. This is to verify the most suitable
path planning algorithm in terms of time and number of paths
taken. After that, the selected one will be added with new
feature and tested on the python software. Moreover, the path
planning algorithm code will be implemented into the physical
robot through Arduino software.

On the other hand, the hardware side will cover mainly on
the construction and development of the physical robot and
maze. This includes the hardware purchase and gathering, the
connection of various components and material.

IV. RESULTS AND DISCUSSIONS

A. Comparison Test

1°

Fig. 2: Result for 5 x 5 maze

Fig. 3: Result for 10 x 10 maze

IJERTV10I1S050110

www.ijert.org 223

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I ssue 05, May-2021

NS

T

Fig. 4: Result for 15 x 15 maze

The path planning algorithm was tested in the python
program, where the results can be seen in Figure 2, Figure 3
and Figure 4. The white block represents the wall of the maze
while the block in black colour represents the empty path in
the maze. Moreover, the green colour blocks represent the
searched paths and the yellow blocks represent the optimal
paths. Two criteria were used to evaluate the performance,
namely average time and path taken. The time will cover the
beginning where the algorithm starts to solve the maze until
the optimal path is attained. Nonetheless, the path is taken for
each step the algorithm takes during the process. The result on
each path planning algorithm can be seen in TABLE | (5 x5),
TABLE Il (10 x 10) and TABLE 111 (15 x 15).

TABLE I. COMPARISON TEST FOR PATH PLANNING
ALGORITHM IN A5 X5 MAZE
Parameter A* BFS LHR
1% Time Taken 0.848896 1.444130 1.572429
©)
2" Time Taken 0.844153 1.352412 1.550257
()
34 Time Taken 0.845855 1.397986 1.554386
()
Average Time 0.846301 1.398176 1.559024
Taken (5) (= 0.85) (= 1.40) (= 1.56)
Total Path 36 36 42
Length (cells)

TABLE II. COMPARISON TEST FOR PATH PLANNING

ALGORITHM IN A 10 X 10 MAZE

TABLE III. COMPARISON TEST FOR PATH PLANNING ALGORITHM IN A 15
X 15 MAZE
Parameter A* BFS LHR
1% Time Taken 6.164448 13.469903 19.645816
©)
2" Time Taken 6.042483 13.428365 19.616728
©)
3" Time Taken 6.045526 13.535261 19.618392
©)
Average Time 6.084152 13.477843 19.626977
Taken (s) (= 6.08) (= 13.48) (= 19.63)
Total Path 248 248 539
Length (cells)

From the comparison test, the average time for LHR
algorithm was the longest when compared to BFS and A*
algorithm, requiring an average time of 1.56 seconds, 9.88
seconds and 19.63 seconds to solve the 5 x 5, 10 x 10 and 15 x
15 maze respectively. Besides that, the total path length it took
was 42 cells, 274 cells and 539 cells. This is because the
algorithm did not require any assumptions whereby it moves
along the maze by staying on the left hand side. This will
cause it to make numerous U-turns in the event of a bigger
maze, thereby resulting in longer time needed to complete on a
bigger maze.

Next, the average time taken using BFS algorithm was
lesser compared to LHR algorithm, roughly using an average
time of 1.40 seconds, 5.05 seconds and 13.48 seconds to solve
the 5 x 5, 10 x 10 and 15 x 15 maze respectively. The total
path length it took was 36 cells, 82 cells and 248 cells. It was
able to do so because it had an initial understanding on the
given maze and it does not require a person to enter and solve
it, thereby using a shorter time to solve the maze respectively.

A* algorithm was able to obtained the shortest time in
solving the maze as compared to LHR and BFS algorithm,
requiring an average time of 0.85 seconds, 1.92 seconds and
6.08 seconds to solve the 5 by 5, 10 by 10 and 15 by 15 maze
respectively. Just like BFS algorithm, A* algorithm had also
used 36 cells, 82 cells and 248 cells to finish the given maze.

* - - - -
Parameter A BFS LHR The reason behind this was that the algorithm consists of both
1 Time Taken | 1943768 5.058832 9.947831 movement cost and heuristic cost. Unlike BFS algorithm, A*
() was able to find the exit faster without considering every path
2" Time Taken 1.893884 5088562 9779287 in the maze, thereby using_shor_ter_time_to solved the maze.
© The summary of the comparison is listed in TABLE V.
3" Time Taken 1.908919 5.009050 9.911231 TABLE IV. SUMMARY OF COMPARISON BETWEEN THREE SELECTED PATH
(S) PLANNING ALGORITHMS
Average Time 1.915523 5.052148 9.879450 Parameter A* BFS LHR
Taken (s) (=1.92) (=5.05) (= 9.88) Average Time
Taken (s) Shortest Moderate Longest
Total Path 82 82 274 Total Path
Length (cells) Length Lowest Lowest Highest
IJERTV 101 S050110 www.ijert.org 224

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I'ssue 05, May-2021

Based on the comparison made on each path planning
algorithm on different size of maze, the most appropriate one
to be chosen was A* algorithm. LHR algorithm had used the
longest time and highest path taken whereas BFS algorithm
had used moderate time and lowest path taken. On the other
hand, A* algorithm was the only one that had used the shortest
amount of time and path taken, thereby chosen as the
appropriate one among the three.

B. Feature Added to the Path Planning Algorithm

The A* algorithm was added with a new feature where 2D
pygame capability was implemented. The implementation has
provided user with more freedom and flexibility in designing
the maze size instead of initializing it in the python code. The
flowchart can be viewed in Figure 5:

The Python code begins by
creating a 2D program windov

Sketch the maze
(Start point, End point and wall)

No_initiate path planning
algorithm

Implementing A* Algorithm into
the designed maze

Displayed result
(Time and Path taken)

Continue the simulation

If end point is reached

Terminate the program

Fig. 5: Flowchart regarding to the added feature in A* algorithm.

A 2D program window is generated once the python code
runs. At this moment, the user can freely design the maze
based on their own discretion. The user can position the
starting point, ending point and the wall of the maze. Besides
that, the user can also remove the blocks if needed. The user’s
design must be able to ensure that the path planning algorithm
is able to solve it, else the whole program will generate an
error. Figure 6 shows the sample result of the added feature.

Fig. 6: Simulated results of the feature added to the path planning
algorithm

C. Physical Maze and Navigation Robot

Fig. 7: Physical Maze

A 3 by 3 physical maze is constructed as shown in Figure
7. The maze is attached using simple materials such as binder
clips and carboards.

Arduino Uno R3

Breadboard 9V Battery Rocker Switch

Caster Wheel

L298N Motor
Driver
Robot Chassis

Yellow DC Geared

Yellow Wheel

motor

Fig. 8: Physical Navigation Robot

The physical navigation robot is constructed mainly to
examine the path planning algorithm on a physical maze. The
necessary components are listed alongside the constructed
navigation robot in Figure 8.

IJERTV10I1S050110

www.ijert.org 225

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I ssue 05, M ay-2021

D. Simulation

2121212121 21212121]2

Goal Reached
,rrdddrr

Fig. 9: Simulation Result in Arduino IDE Serial Monitor

Fig. 10: The movement generated from Arduino to Navigation Robot

The feature added A* algorithm python code was written
into the Arduino code. The information regarding the 3 by 3
physical maze is coded into the program as well for simulation
purposes. The generated maze in Arduino can be seen in
Figure 9. The information within the maze is initialized
respectively, where 0 will represent the path, 1 will represent
the start position, while 2 represents the wall and 3 represents
the goal position. Once the goal is reached, letters will be
displayed in the bottom side of the serial monitor with the
direction of movement needed for the navigation robot. Figure
10 depicts the intended movement on the navigation robot to
solve the maze. The respective movement for each direction
can be elaborated in TABLE V.

TABLE V. RESPECTIVE DIRECTION AND MOVEMENT FOR THE
NAVIGATION ROBOT
Letter Movement of navigation robot
(Direction)
I (Left) W e o o

& o

r (nght) ! Tum ’ = : Tum N
&b @&
u (Up) & .
d (Down)

2
U-Turn ?
Go
Forward

T

Once the letters are displayed, the navigation robot will
move accordingly to the given letter to solve the maze. Figure
11 shows the initial and final position of the navigation robot.

C

U-Turn

Fig. 11: Initial and Final Position of the Navigation Robot

V. CONCLUSION

In a nutshell, the objectives stated in the report were
achieved. Three path planning algorithms had undergone
comparison test successfully using the python simulation
program in PyCharm. Next, a new feature was added and
implemented into the path planning algorithm where a free
space with designing capability can be done through the
incorporation of pygame library. The feature was added and
tested successfully on a 2D window program simulation.
Furthermore, the path planning algorithm was implemented
into the physical navigation robot. The code was written in
Arduino language whereby the grid was used for representing
the maze virtually. The experiment was done successfully
whereby the navigation robot was able to finish the given
maze.

ACKNOWLEDGMENT

I would like to express my gratitude and sincere thanks to
my research supervisors, Dr. Lee Jer Vui and Ir. Dr. Chuah
Yea Dat for their invaluable advices, guidances and enormous
patience thoughout the development of the research.

IJERTV10I1S050110

www.ijert.org 226

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I ssue 05, May-2021

[1]
[2]

[3]
(4]

[5]
(6]

(7

(8]

[9]
[10]

REFERENCES

Gul, F., Rahiman, W., & Nazli Alhady, S. S. (2019). A comprehensive
study for robot navigation techniques. Cogent Engineering, 6(1).
Sariff, N., & Buniyamin, N. (2006). An overview of autonomous
mobile robot path planning algorithms. SCOReD 2006 - Proceedings
of 2006 4th Student Conference on Research and Development
“Towards Enhancing Research Excellence in the Region,” June, 183—
188.

Rahman, M. (2017). Autonomous maze solving robot.

Agel, M. O. A, Issa, A., Khdair, M., Elhabbash, M., Abubaker, M., &
Massoud, M. (2017). Intelligent maze solving robot based on image
processing and graph theory algorithms. Proceedings - 2017
International Conference on Promising Electronic Technologies,
ICPET 2017, October, 48-53.

Cui, S.-G., & Wang, H., & & Yang, L. . (2012). A simulation study of
A-star algorithm for robot path planning. 506-510.

Tjiharjadi, S., Wijaya, M. C., & Setiawan, E. (2017). Optimization
maze robot using A* and flood fill algorithm. International Journal of
Mechanical Engineering and Robotics Research, 6(5), 366-372.
Khantanapoka, K., & Chinnasarn, K. (2009). Pathfinding of 2D & 3D
game real-time strategy with Depth Direction A* algorithm for multi-
layer. 2009 8th International Symposium on Natural Language
Processing, SNLP '09, 184-188.

Warren, C. W. (1993). Fast Path Planning Using Modified A *
Method. 662—667.

Gilbert, G., & Rivera, A. (2012). Path planning for general mazes.
MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY.

E, F. D., Babinec, A., Kajan, M., Be, P., & Florek, M. (2014). Path
planning with modified A star algorithm for a mobile robot. 96, 59-69.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Babula, M. (2009). Simulated Maze Solving Algorithms through
Unknown Mazes. Proceedings of the CS&P 2009, Concurrency,
Specification & Programming, September, 13-22.

Kumar, N., & Kaur, S. (2019). A Review of Various Maze Solving
Algorithms Based on Graph Theory. International Journal for
Scientific Research & Development, 6(12), 2-6.

Sadik, A. M. J., Dhali, M. A,, Farid, H. M. A. B., Rashid, T. U., &
Syeed, A. (2010). A comprehensive and comparative study of maze-
solving techniques by implementing graph theory. Proceedings -
International Conference on Artificial Intelligence and Computational
Intelligence, AICI 2010, 1(1), 52-56.

Sharma, K., & Munshi, C. (2015). A Comprehensive and Comparative
Study Of Maze-Solving Techniques by Implementing Graph Theory.
I0SR Journal of Computer Engineering (IOSR-JCE), 17(1), 24-29.
Hamada, K. (2013). A picturesque maze generation algorithm with any
given endpoints. Journal of Information Processing, 21(3), 393-397.
Hualong, J., Honggi, W., & Yonghong, T. (2011). Design and
realization of a maze robot. 2011 International Conference on
Consumer Electronics, Communications and Networks, CECNet 2011
- Proceedings, 201-204.

Cai, J.,, Wan, X., Huo, M., & Wu, J. (2010). An algorithm of
micromouse maze solving. Proceedings - 10th IEEE International
Conference on Computer and Information Technology, CIT-2010, 7th
IEEE International Conference on Embedded Software and Systems,
ICESS-2010, ScalCom-2010, Cit, 1995-2000.

IJERTV10I1S050110

www.ijert.org

227

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

