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        Abstract -    This chapter will provide an overview of 

Operations Research (O.R.) from the perspective of an 

industrial engineer. The focus of the chapter is on the basic 

philosophy behind O.R. and the so-called "O.R. approach" to 

solving design and operational problems that industrial 

engineers commonly encounter. In its most basic form, O.R. 

may be viewed as a scientific approach to solving problems; it 

abstracts the essential elements of the problem into a model, 

which is then analyzed to yield an optimal solution for 

implementation. The mathematical details and the specific 

techniques used to build and analyze these models can be 

quite sophisticated and are addressed elsewhere in this 

handbook; the emphasis of this chapter is on the approach. A 

brief review of the historical origins of O.R. is followed by a 

detailed description of its methodology. The chapter 

concludes with some examples of successful real-world 

applications of O.R.  
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1 INTRODUCTION 

   Although it is a distinct discipline in its own right, 

Operations Research (O.R.) has also become an integral 

part of the Industrial Engineering (I.E.) profession. This is 

hardly a matter of surprise when one considers that they 

both share many of the same objectives, techniques and 

application areas. O.R. as a formal subject is about fifty 

years old and its origins may be traced to the latter half of 

World War II. Most of the O.R. techniques that are 

commonly used today were developed over 

(approximately) the first twenty years following its 

inception. During the next thirty or so years the pace of 

development of fundamentally new O.R. methodologies 

has slowed somewhat. However, there has been a rapid 

expansion in (1) the breadth of problem areas to which 

O.R. has been applied, and (2) in the magnitudes of the 

problems that can be addressed using O.R. methodologies. 

Today, operations research is a mature, well-developed 

field with a sophisticated array of techniques that are used 

routinely to solve problems in a wide range of application 

areas. 

This chapter will provide an overview of O.R. from the 

perspective of an Industrial Engineer. A brief review of its 

historical origins is first provided. This is followed by a 

detailed discussion of the basic philosophy behind O.R. 

and the so-called "O.R. approach." The chapter concludes 

with several examples of successful applications to typical 

problems that might be faced by an Industrial Engineer. 

Broadly speaking, an O.R. project comprises three steps: 

(1) building a model, (2) solving it, and (3) implementing 

the results. The emphasis of this chapter is on the first and 

third steps. The second step typically involves specific 

methodologies or techniques, which could be quite 

sophisticated and require significant mathematical 

development. Several important methods are overviewed 

elsewhere in this handbook. The reader who has an interest 

in learning more about these topics is referred to one of the 

many excellent texts on O.R. that are available today and 

that are listed under "Further Reading" at the end of this 

chapter, e.g., Hillier and Lieberman (1995), Taha (1997) or 

Winston (1994). 

2. A HISTORICAL PERSPECTIVE 

          While there is no clear date that marks the birth of 

O.R., it is generally accepted that the field originated in 

England during World War II. The impetus for its origin 

was the development of radar defense systems for the 

Royal Air Force, and the first recorded use of the term 

Operations Research is attributed to a British Air Ministry 

official named A. P. Rowe who constituted teams to do 

"operational researches" on the communication system and 

the control room at a British radar station. The studies had 

to do with improving the operational efficiency of systems 

(an objective which is still one of the cornerstones of 

modern O.R.). This new approach of picking an 

"operational" system and conducting "research" on how to 

make it run more efficiently soon started to expand into 

other arenas of the war. Perhaps the most famous of the 

groups involved in this effort was the one led by a physicist 

named P. M. S. Blackett which included physiologists, 

mathematicians, astrophysicists, and even a surveyor. This 

multifunctional team focus of an operations research 

project group is one that has carried forward to this day. 

Blackett’s biggest contribution was in convincing the 

authorities of the need for a scientific approach to manage 

complex operations, and indeed he is regarded in many 

circles as the original operations research analyst. 

O.R. made its way to the United States a few years after it 

originated in England. Its first presence in the U.S. was 

through the U.S. Navy’s Mine Warfare Operations 

Research Group; this eventually expanded into the 

Antisubmarine Warfare Operations Research Group that 

was led by Phillip Morse, which later became known 

simply as the Operations Research Group. Like Blackett in 

Britain, Morse is widely regarded as the "father" of O.R. in 

the United States, and many of the distinguished scientists 

and mathematicians that he led went on after the end of the 

war to become the pioneers of O.R. in the United States. 
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In the years immediately following the end of World War 

II, O.R. grew rapidly as many scientists realized that the 

principles that they had applied to solve problems for the 

military were equally applicable to many problems in the 

civilian sector. These ranged from short-term problems 

such as scheduling and inventory control to long-term 

problems such as strategic planning and resource 

allocation. George Dantzig, who in 1947 developed the 

simplex algorithm for Linear Programming (LP), provided 

the single most important impetus for this growth. To this 

day, LP remains one of the most widely used of all O.R. 

techniques and despite the relatively recent development of 

interior point methods as an alternative approach, the 

simplex algorithm (with numerous computational 

refinements) continues to be widely used. The second 

major impetus for the growth of O.R. was the rapid 

development of digital computers over the next three 

decades. The simplex method was implemented on a 

computer for the first time in 1950, and by 1960 such 

implementations could solve problems with about 1000 

constraints. Today, implementations on powerful 

workstations can routinely solve problems with hundreds 

of thousands of variables and constraints. Moreover, the 

large volumes of data required for such problems can be 

stored and manipulated very efficiently. 

Once the simplex method had been invented and used, the 

development of other methods followed at a rapid pace. 

The next twenty years witnessed the development of most 

of the O.R. techniques that are in use today including 

nonlinear, integer and dynamic programming, computer 

simulation, PERT/CPM, queuing theory, inventory models, 

game theory, and sequencing and scheduling algorithms. 

The scientists who developed these methods came from 

many fields, most notably mathematics, engineering and 

economics. It is interesting that the theoretical bases for 

many of these techniques had been known for years, e.g., 

the EOQ formula used with many inventory models was 

developed in 1915 by Harris, and many of the queuing 

formulae were developed by Erlang in 1917. However, the 

period from 1950 to 1970 was when these were formally 

unified into what is considered the standard toolkit for an 

operations research analyst and successfully applied to 

problems of industrial significance. The following section 

describes the approach taken by operations research in 

order to solve problems and explores how all of these 

methodologies fit into the O.R. framework. 

3. WHAT IS OPERATIONS RESEARCH? 

                    A common misconception held by many is that 

O.R. is a collection of mathematical tools. While it is true 

that it uses a variety of mathematical techniques, operations 

research has a much broader scope. It is in fact a systematic 

approach to solving problems, which uses one or more 

analytical tools in the process of analysis. Perhaps the 

single biggest problem with O.R. is its name; to a 

layperson, the term "operations research" does not conjure 

up any sort of meaningful image! This is an unfortunate 

consequence of the fact that the name that A. P. Rowe is 

credited with first assigning to the field was somehow 

never altered to something that is more indicative of the 

things that O.R. actually does. Sometimes O.R. is referred 

to as Management Science (M.S.) in order to better reflect 

its role as a scientific approach to solving management 

problems, but it appears that this terminology is more 

popular with business professionals and people still quibble 

about the differences between O.R. and M.S. 

Compounding this issue is the fact that there is no clear 

consensus on a formal definition for O.R. For instance, C. 

W. Churchman who is considered one of the pioneers of 

O.R. defined it as the application of scientific methods, 

techniques and tools to problems involving the operations 

of a system so as to provide those in control of the system 

with optimum solutions to problems.  

 

4. THE OPERATIONS RESEARCH APPROACH 

                 Given that O.R. represents an integrated 

framework to help make decisions, it is important to have a 

clear understanding of this framework so that it can be 

applied to a generic problem. To achieve this, the so-

called O.R. approach is now detailed. This approach 

comprises the following seven sequential steps: (1) 

Orientation, (2) Problem Definition, (3) Data Collection, 

(4) Model Formulation, (5) Solution, (6) Model Validation 

and Output Analysis, and (7) Implementation and 

Monitoring. Tying each of these steps together is a 

mechanism for continuous feedback; Figure 1 shows this 

schematically. 

 
Figure 1: The Operations Research Approach 

 

Each of these steps is now discussed in further detail.  

Orientation: The first step in the O.R. approach is referred 

to as problem orientation. The primary objective of this 

step is to constitute the team that will address the problem 

at hand and ensure that all its members have a clear picture 

of the relevant issues. It is worth noting that a 

distinguishing characteristic of any O.R. study is that it is 

done by a multifunctional team. To digress slightly, it is 
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also interesting that in recent years a great deal has been 

written and said about the benefits of project teams and that 

almost any industrial project today is conducted by multi-

functional teams. Even in engineering education, teamwork 

has become an essential ingredient of the material that is 

taught to students and almost all academic engineering 

programs require team projects of their students. The team 

approach of O.R. is thus a very natural and desirable 

phenomenon. 

Problem Definition: This is the second, and in a significant 

number of cases, the most difficult step of the O.R. 

process. The objective here is to further refine the 

deliberations from the orientation phase to the point where 

there is a clear definition of the problem in terms of its 

scope and the results desired. This phase should not be 

confused with the previous one since it is much more 

focused and goal oriented; however, a clear orientation aids 

immeasurably in obtaining this focus. Most practicing 

industrial engineers can relate to this distinction and the 

difficulty in moving from general goals such "increasing 

productivity" or "reducing quality problems" to more 

specific, well-defined objectives that will aid in meeting 

these goals. 

A clear definition of the problem has three broad 

components to it. The first is the statement of an 

unambiguous objective. Along with a specification of the 

objective it is also important to define its scope, i.e., to 

establish limits for the analysis to follow. While a complete 

system level solution is always desirable, this may often be 

unrealistic when the system is very large or complex and in 

many cases one must then focus on a portion of the system 

that can be effectively isolated and analyzed. In such 

instances it is important to keep in mind that the scope of 

the solutions derived will also be bounded. Some examples 

of appropriate objectives might be (1) "to maximize profits 

over the next quarter from the sales of our products," (2) 

"to minimize the average downtime at workcenter X," (3) 

"to minimize total production costs at Plant Y," or (4) "to 

minimize the average number of late shipments per month 

to customers." 

The second component of problem definition is a 

specification of factors that will affect the objective. These 

must further be classified into alternative courses of action 

that are under the control of the decision maker and 

uncontrollable factors over which he or she has no control. 

For example, in a production environment, the planned 

production rates can be controlled but the actual market 

demand may be unpredictable (although it may be possible 

to scientifically forecast these with reasonable accuracy). 

The idea here is to form a comprehensive list of all the 

alternative actions that can be taken by the decision maker 

and that will then have an effect on the stated objective. 

Eventually, the O.R. approach will search for the particular 

course of action that optimizes the objective. 

The third and final component of problem definition is a 

specification of the constraints on the courses of action, 

i.e., of setting boundaries for the specific actions that the 

decision-maker may take. As an example, in a production 

environment, the availability of resources may set limits on 

what levels of production can be achieved. This is one 

activity where the multifunctional team focus of O.R. is 

extremely useful since constraints generated by one 

functional area are often not obvious to people in others. In 

general, it is a good idea to start with a long list of all 

possible constraints and then narrow this down to the ones 

that clearly have an effect on the courses of action that can 

be selected. The aim is to be comprehensive yet 

parsimonious when specifying constraints. 

Continuing with our hypothetical illustration, the objective 

might be to maximize profits from the sales of the two 

products. The alternative courses of action would be the 

quantities of each product to produce next month, and the 

alternatives might be constrained by the fact that the 

amounts of each of the three resources required to meet the 

planned production must not exceed the expected 

availability of these resources. An assumption that might 

be made here is that all of the units produced can be sold. 

Note that at this point the entire problem is stated in words; 

later on the O.R. approach will translate this into an 

analytical model. 

Data Collection: In the third phase of the O.R. process data 

is collected with the objective of translating the problem 

defined in the second phase into a model that can then be 

objectively analyzed.  

 

Model Formulation: This is the fourth phase of the O.R. 

process. It is also a phase that deserves a lot of attention 

since modeling is a defining characteristic of all operations 

research projects. The term "model" is misunderstood by 

many, and is therefore explained in some detail here. A 

model may be defined formally as a selective abstraction of 

reality. This definition implies that modeling is the process 

of capturing selected characteristics of a system or a 

process and then combining these into an abstract 

representation of the original. The main idea here is that it 

is usually far easier to analyze a simplified model than it is 

to analyze the original system, and as long as the model is a 

reasonably accurate representation, conclusions drawn 

from such an analysis may be validly extrapolated back to 

the original system. 

 

Models may be broadly classified into four categories: 

Physical Models, Analogic Models, Computer Simulation 

Models, Mathematical Models 

 

Mathematical Models: This is the final category of models, 

and the one that traditionally has been most commonly 

identified with O.R. In this type of model one captures the 

characteristics of a system or process through a set of 

mathematical relationships. Mathematical models can be 

deterministic or probabilistic. In the former type, all 

parameters used to describe the model are assumed to be 

known (or estimated with a high degree of certainty). With 

probabilistic models, the exact values for some of the 

parameters may be unknown but it is assumed that they are 
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capable of being characterized in some systematic fashion 

(e.g., through the use of a probability distribution). As an 

illustration, the Critical Path Method (CPM) and the 

Program Evaluation and Review Technique (PERT) are 

two very similar O.R. techniques used in the area of project 

planning. However, CPM is based on a deterministic 

mathematical model that assumes that the duration of each 

project activity is a known constant, while PERT is based 

on a probabilistic model that assumes that each activity 

duration is random but follows some specific probability 

distribution (typically, the Beta distribution). Very broadly 

speaking, deterministic models tend to be somewhat easier 

to analyze than probabilistic ones; however, this is not 

universally true. 

Most mathematical models tend to be characterized by 

three main elements: decision variables, constraints and 

objective function(s). Decision variables are used to model 

specific actions that are under the control of the decision-

maker. An analysis of the model will seek specific values 

for these variables that are desirable from one or more 

perspectives. Very often – especially in large models – it is 

also common to define additional "convenience" variables 

for the purpose of simplifying the model or for making it 

clearer. Strictly speaking, such variables are not under the 

control of the decision-maker, but they are also referred to 

as decision variables.Constraints are used to set limits on 

the range of values that each decision variable can take on, 

and each constraint is typically a translation of some 

specific restriction (e.g., the availability of some resource) 

or requirement (e.g., the need to meet contracted demand). 

Clearly, constraints dictate the values that can be feasibly 

assigned to the decision variables, i.e., the specific 

decisions on the system or process that can be taken. The 

third and final component of a mathematical model is 

the objective function. This is a mathematical statement of 

some measure of performance (such as cost, profit, time, 

revenue, utilization, etc.) and is expressed as a function of 

the decision variables for the model. It is usually desired 

either to maximize or to minimize the value of the 

objective function, depending on what it represents. Very 

often, one may simultaneously have more than one 

objective function to optimize (e.g., maximize 

profits and minimize changes in workforce levels, say). In 

such cases there are two options. First, one could focus on 

a single objective and relegate the others to a secondary 

status by moving them to the set of constraints and 

specifying some minimum or maximum desirable value for 

them. This tends to be the simpler option and the one most 

commonly adopted. The other option is to use a technique 

designed specifically for multiple objectives (such as goal 

programming). 

In using a mathematical model the idea is to first capture 

all the crucial aspects of the system using the three 

elements just described, and to then optimize the objective 

function by choosing (from among all values for the 

decision variables that do not violate any of the constraints 

specified) the specific values that also yield the most 

desirable (maximum or minimum) value for the objective 

function. This process is often called mathematical 

programming. Although many mathematical models tend 

to follow this form, it is certainly not a requirement; for 

example, a model may be constructed to simply define 

relationships between several variables and the decision-

maker may use these to study how one or more variables 

are affected by changes in the values of others. Decision 

trees, Markov chains and many queuing models could fall 

into this category. 

Before concluding this section on model formulation, we 

return to our hypothetical example and translate the 

statements made in the problem definition stage into a 

mathematical model by using the information collected in 

the data collection phase. To do this we define two decision 

variables G and W to represent respectively the number of 

gizmos and widgets to be made and sold next month. Then 

the objective is to maximize total profits given 

by 10G+9W. There is a constraint corresponding to each of 

the three limited resources, which should ensure that the 

production of G gizmos and W widgets does not use up 

more of the corresponding resource than is available for 

use. Thus for resource 1, this would be translated into the 

following mathematical statement 0.7G+1.0W ≤ 630, 

where the left-hand-side of the inequality represents the 

resource usage and the right-hand-side the resource 

availability. Additionally, we must also ensure that 

each G and W value considered is a nonnegative integer, 

since any other value is meaningless in terms of our 

definition of G and W. The completely mathematical model 

is: 
 

Maximize {Profit = 10G+9W}, subject to 

 0.7G+1.0W ≤ 630 

 1.0G+(2/3)W ≤ 708 

 0.1G+0.25W ≤ 135 

 G, W ≥ 0 and integers. 

 

This mathematical program tries to maximize the profit as 

a function of the production quantities (G and W), while 

ensuring that these quantities are such that the 

corresponding production is feasible with the resources 

available. 

Model Solution: The fifth phase of the O.R. process is the 

solution of the problem represented by the model. This is 

the area on which a huge amount of research and 

development in O.R. has been focused, and there is a 

plethora of methods for analyzing a wide range of models. 

It is impossible to get into details of these various 

techniques in a single introductory chapter such as this; 

however, an overview of some of the more important 

methods can be found elsewhere in this handbook. 

Generally speaking, some formal training in operations 

research is necessary in order to appreciate how many of 

these methods work and the interested reader is urged to 

peruse an introductory text on O.R.; the section on "Further 

Reading" at the end of the chapter lists some good books. It 

is also worth mentioning that in recent years a number of 

software systems have emerged which (at least in theory) 

are "black boxes" for solving various models. However, 
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some formal education in O.R. methods is still required (or 

at least strongly recommended) before using such systems. 

From the perspective of the practitioner, the most important 

thing is to be able to recognize which of the many available 

techniques is appropriate for the model constructed. 

Usually, this is not a hard task for someone with some 

rudimentary training in operations research. The techniques 

themselves fall into several categories. 

 

At the lowest level one might be able to use simple 

graphical techniques or even trial and error. However, 

despite the fact that the development of spreadsheets has 

made this much easier to do, it is usually an infeasible 

approach for most nontrivial problems. Most O.R. 

techniques are analytical in nature, and fall into one of four 

broad categories. First, there are simulation techniques, 

which obviously are used to analyze simulation models. A 

significant part of these are the actual computer programs 

that run the model and the methods used to do so correctly. 

However, the more interesting and challenging part 

involves the techniques used to analyze the large volumes 

of output from the programs; typically, these encompass a 

number of statistical techniques. The interested reader 

should refer to a good book on simulation to see how these 

two parts fit together. The second category comprises 

techniques of mathematical analysis used to address a 

model that does not necessarily have a clear objective 

function or constraints but is nevertheless a mathematical 

representation of the system in question. Examples include 

common statistical techniques such as regression analysis, 

statistical inference and analysis of variance, as well as 

others such as queuing, Markov chains and decision 

analysis. The third category consists of optimum-seeking 

techniques, which are typically used to solve the 

mathematical programs described in the previous section in 

order to find the optimum (i.e., best) values for the decision 

variables. Specific techniques include linear, nonlinear, 

dynamic, integer, goal and stochastic programming, as well 

as various network-based methods. A detailed exposition 

of these is beyond the scope of this chapter, but there are a 

number of excellent texts in mathematical programming 

that describe many of these methods and the interested 

reader should refer to one of these. The final category of 

techniques is often referred to as heuristics. The 

distinguishing feature of a heuristic technique is that it is 

one that does not guarantee that the best solution will be 

found, but at the same time is not as complex as an 

optimum-seeking technique. Although heuristics could be 

simple, common-sense, rule-of-thumb type techniques, 

they are typically methods that exploit specific problem 

features to obtain good results. A relatively recent 

development in this area is so-called meta-heuristics (such 

as genetic algorithms, tabu search, evolutionary 

programming and simulated annealing) which are general 

purpose methods that can be applied to a number of 

different problems. These methods in particular are 

increasing in popularity because of their relative simplicity 

and the fact that increases in computing power have greatly 

increased their effectiveness. 

In applying a specific technique something that is 

important to keep in mind from a practitioner's perspective 

is that it is often sufficient to obtain a good solution even if 

it is not guaranteed to be the best solution. If neither 

resource-availability nor time were an issue, one would of 

course look for the optimum solution. However, this is 

rarely the case in practice, and timeliness is of the essence 

in many instances. In this context, it is often more 

important to quickly obtain a solution that is satisfactory as 

opposed to expending a lot of effort to determine the 

optimum one, especially when the marginal gain from 

doing so is small. The economist Herbert Simon uses the 

term "satisficing" to describe this concept - one searches 

for the optimum but stops along the way when an 

acceptably good solution has been found. 
 

At this point, some words about computational aspects are 

in order. When applied to a nontrivial, real-world problem 

almost all of the techniques discussed in this section 

require the use of a computer. Indeed, the single biggest 

impetus for the increased use of O.R. methods has been the 

rapid increase in computational power. Although there are 

still large scale problems whose solution requires the use of 

mainframe computers or powerful workstations, many big 

problems today are capable of being solved on desktop 

microcomputer systems. There are many computer 

packages (and their number is growing by the day) that 

have become popular because of their ease of use and that 

are typically available in various versions or sizes and 

interface seamlessly with other software systems; 

depending on their specific needs end-users can select an 

appropriate configuration. Many of the software vendors 

also offer training and consulting services to help users 

with getting the most out of the systems. Some specific 

techniques for which commercial software 

implementations are available today include optimization/ 

mathematical programming (including linear, nonlinear, 

integer, dynamic and goal programming), network flows, 

simulation, statistical analysis, queuing, forecasting, neural 

networks, decision analysis, and PERT/CPM. Also 

available today are commercial software systems that 

incorporate various O.R. techniques to address specific 

application areas including transportation and logistics, 

production planning, inventory control, scheduling, 

location analysis, forecasting, and supply chain 

management. Some examples of popular O.R. software 

systems include CPLEX, LINDO, OSL, MPL, SAS, and 

SIMAN, to name just a few. While it would clearly be 

impossible to describe herein the features of all available 

software, magazine such as OR/MS Today and IE 

Solutions regularly publish separate surveys of various 

categories of software systems and packages. These 

publications also provide pointers to different types of 

software available; as an example, the December 1997 

issue of OR/MS Today (pages 61-75) provides a complete 

resource directory for software and consultants. Updates to 

such directories are provided periodically. The main point 

here is that the ability to solve complex models/problems is 

far less of an issue today than it was a decade or two ago, 
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and there are plenty of readily available resources to 

address this issue. 

We conclude this section by examining the solution to the 

model constructed earlier for our hypothetical production 

problem. Using linear programming to solve this model 

yields the optimal solution of G=540 and W=252, i.e., the 

production plan that maximizes profits for the given data 

calls for the production of 540 gizmos and 252 widgets. 

The reader may easily verify that this results in a profit of 

$7668 and fully uses up all of the first two resources while 

leaving 18 units of the last resource unused. Note that this 

solution is certainly not obvious by just looking at the 

mathematical model - in fact, if one were "greedy" and 

tried to make as many gizmos as possible (since they yield 

higher profits per unit than the widgets), this would 

yield G=708 and W=0 (at which point all of the second 

resource is used up). However, the resulting profit of $7080 

is about 8% less than the one obtained via the optimal plan. 

The reason of course, is that this plan does not make the 

most effective use of the available resources and fails to 

take into account the interaction between profits and 

resource utilization. While the actual difference is small for 

this hypothetical example, the benefits of using a good 

O.R. technique can result in very significant improvements 

for large real-world problems. 

Validation and Analysis: Once a solution has been obtained 

two things need to be done before one even considers 

developing a final policy or course of action for 

implementation. The first is to verify that the solution itself 

makes sense. Oftentimes, this is not the case and the most 

common reason is that the model used was not accurate or 

did not capture some major issue. The process of ensuring 

that the model is an accurate representation of the system is 

called validation and this is something that (whenever 

possible) should be done before actual solution. However, 

it is sometimes necessary to solve the model to discover 

inaccuracies in it. A typical error that might be discovered 

at this stage is that some important constraint was ignored 

in the model formulation - this will lead to a solution that is 

clearly recognized as being infeasible and the analyst must 

then go back and modify the model and re-solve it. This 

cycle continues until one is sure that the results are sensible 

and come from a valid system representation. 

The second part of this step in the O.R. process is referred 

to as post optimality analysis, or in layperson's terms, a 

"what-if" analysis. Recall that the model that forms the 

basis for the solution obtained is (a) a selective abstraction 

of the original system, and (b) constructed using data that 

in many cases is not 100% accurate. Since the validity of 

the solution obtained is bounded by the model's accuracy, a 

natural question that is of interest to an analyst is: "How 

robust is the solution with respect to deviations in the 

assumptions inherent in the model and in the values of the 

parameters used to construct it?" To illustrate this with our 

hypothetical production problem, examples of some 

questions that an analyst might wish to ask are, (a) "Will 

the optimum production plan change if the profits 

associated with widgets were overestimated by 5%, and if 

so how?" or (b) "If some additional amount of Resource 2 

could be purchased at a premium, would it be worth buying 

and if so, how much?" or (c) "If machine unreliability were 

to reduce the availability of Resource 3 by 8%, what effect 

would this have on the optimal policy?" Such questions are 

especially of interest to managers and decision-makers who 

live in an uncertain world, and one of the most important 

aspects of a good O.R. project is the ability to provide not 

just a recommended course of action, but also details on its 

range of applicability and its sensitivity to model 

parameters. 

Before ending this section it is worth emphasizing that 

similar to a traditional Industrial Engineering project, the 

end result of an O.R. project is not a definitive solution to a 

problem. Rather, it is an objective answer to the questions 

posed by the problem and one that puts the decision-maker 

in the correct "ball-park." As such it is critical to temper the 

analytical solution obtained with common sense and 

subjective reasoning before finalizing a plan for 

implementation. From a practitioner's standpoint a sound, 

sensible and workable plan is far more desirable than 

incremental improvements in the quality of the solution 

obtained. This is the emphasis of this penultimate phase of 

the O.R. process. 

Implementation and Monitoring: The last step in the O.R. 

process is to implement the final recommendation and 

establish control over it. Implementation entails the 

constitution of a team whose leadership will consist of 

some of the members on the original O.R. team. This team 

is typically responsible for the development of operating 

procedures or manuals and a time-table for putting the plan 

into effect. Once implementation is complete, 

responsibility for monitoring the system is usually turned 

over to an operating team. From an O.R. perspective, the 

primary responsibility of the latter is to recognize that the 

implemented results are valid only as long as the operating 

environment is unchanged and the assumptions made by 

the study remain valid. Thus when there are radical 

departures from the bases used to develop the plan, one 

must reconsider one's strategy. As a simple example with 

our production problem, if a sudden strike by the 

workforce causes a drastic reduction in the availability of 

labor (Resource 1, say), one must reconsider the plan 

completely to derive an alternative course of action. As a 

final word on implementation, it should be emphasized that 

a major responsibility of the operations research analyst is 

to convey the results of the project to management in an 

effective fashion. This is something that is unfortunately 

not emphasized sufficiently, and there are many instances 

of a successful study not being implemented because the 

details and the benefits are not conveyed effectively to 

management. While this is of course true of any project in 

general, it is especially significant with O.R. because of its 

mathematical content and its potential to not be fully 

understood by a manager without a strong quantitative 

background. 
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5. O.R. IN THE REAL WORLD 

              In this section some examples of successful real-

world applications of operations research are provided. 

These should give the reader an appreciation for the diverse 

kinds of problems that O.R. can address, as well as for the 

magnitude of the savings that are possible. Without any 

doubt, the best source for case studies and details of 

successful applications is the journal Interfaces, which is a 

publication of the Institute for Operations Research and the 

Management Sciences (INFORMS). This journal is 

oriented toward the practitioner and much of the exposition 

is in laypersons' terms; at some point, every practicing 

industrial engineer should refer to this journal to appreciate 

the contributions that O.R. can make. All of the 

applications that follow have been extracted from recent 

issues of Interfaces. 

Before describing these applications, a few words are in 

order about the standing of operations research in the real 

world. An unfortunate reality is that O.R. has received 

more than its fair share of negative publicity. It has 

sometimes been looked upon as an esoteric science with 

little relevance to the real-world, and some critics have 

even referred to it as a collection of techniques in search of 

a problem to solve! Clearly, this criticism is untrue and 

there is plenty of documented evidence that when applied 

properly and with a problem-driven focus, O.R. can result 

in benefits that can be quite spectacular; the examples that 

follow in this section clearly attest to this fact. 

On the other hand, there is also evidence to suggest that 

(unfortunately) the criticisms leveled against O.R. are not 

completely unfounded. This is because O.R. is often not 

applied as it should be - people have often taken the 

myopic view that O.R. is a specific method as opposed to a 

complete and systematic process. In particular, there has 

been an inordinate amount of emphasis on the modeling 

and solution steps, possibly because these clearly offer the 

most intellectual challenge. However, it is critical to 

maintain a problem-driven focus - the ultimate aim of an 

O.R. study is to implement a solution to the problem being 

analyzed. Building complex models that are ultimately 

intractable, or developing highly efficient solution 

procedures to models that have little relevance to the real 

world may be fine as intellectual exercises, but run 

contrary to the practical nature of operations research! 

Unfortunately, this fact has sometimes been forgotten. 

Another valid criticism is the fact that many analysts are 

notoriously poor at communicating the results of an O.R. 

project in terms that can be understood and appreciated by 

practitioners who may not necessarily have a great deal of 

mathematical sophistication or formal training in O.R. The 

bottom line is that an O.R. project can be successful only if 

sufficient attention is paid to each of the seven steps of the 

process and the results are communicated to the end-users 

in an understandable form. 

        Some examples of successful O.R. projects are now 

presented. 

Production Planning at Harris Corporation - 

Semiconductor Section: For our first application [1], we 

look at an area that is readily appreciated by every 

industrial engineer - production planning and due date 

quotation. The semiconductor section of Harris 

Corporation was for a number of years a fairly small 

business catering to a niche market in the aerospace and 

defense industries where the competition was minimal. 

However, in 1988 a strategic decision was made to acquire 

General Electric's semiconductor product lines and 

manufacturing facilities. This immediately increased the 

size of Harris Semiconductor's operations and product lines 

by roughly three times, and more importantly, catapulted 

Harris into commercial market areas such as automobiles 

and telecommunications where the competition was stiff. 

Given the new diversity of product lines and the 

tremendous increase in the complexity of production 

planning, Harris was having a hard time meeting delivery 

schedules and in staying competitive from a financial 

perspective; clearly, a better system was required. 

In the orientation phase it was determined that the MRP 

type systems used by a number of its competitors would 

not be a satisfactory answer and a decision was made to 

develop a planning system that would meet Harris' unique 

needs - the final result was IMPReSS, an automated 

production planning and delivery quotation system for the 

entire production network. The system is an impressive 

combination of heuristics as well as optimization-based 

techniques. It works by breaking up the overall problem 

into smaller, more manageable problems by using a 

heuristic decomposition approach. Mathematical models 

within the problem are solved using linear programming 

along with concepts from material requirements planning. 

The entire system interfaces with sophisticated databases 

allowing for forecasting, quotation and order entry, 

materials and dynamic information on capacities. Harris 

estimates that this system has increased on-time deliveries 

from 75% to 95% with no increase in inventories, helped it 

move from $75 million in losses to $40 million in profits 

annually, and allowed it to plan its capital investments 

more efficiently. 

Gasoline Blending at Texaco: For another application to 

production planning, but this time in a continuous as 

opposed to discrete production environment, we look at a 

system in use at Texaco [2]. One of the major applications 

of O.R. is in the area of gasoline blending at petroleum 

refineries, and virtually all major oil companies use 

sophisticated optimization models in this area. At Texaco 

the system is called StarBlend and runs on networked 

microcomputers. As some background, the distillation of 

crude petroleum produces a number of different products at 

different distillation temperatures. Each of these may be 

further refined through cracking (where complex 

hydrocarbons are broken into simpler ones) and 

recombination. These various output streams are then 

blended together to form end-products such as different 

grades of gasoline (leaded, unleaded, super-unleaded etc.), 

jet fuel, diesel and heating oil. The planning problem is 
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very complex, since different grades of crude yield 

different concentrations of output streams and incur 

different costs, and since different end-products fetch 

different revenues and use different amounts of refinery 

resources. Considering just one product - gasoline - there 

are various properties that constrain the blends produced. 

These include the octane number, lead and sulfur content, 

volatilities and Reid vapor pressure, to name a few. In 

addition, regulatory constraints impose certain restrictions 

as well. 

As an initial response to this complex problem, in the early 

to mid 1980's Texaco developed a system called OMEGA. 

At the heart of this was a nonlinear optimization model 

which supported an interactive decision support system for 

optimally blending gasoline; this system alone was 

estimated to have saved Texaco about $30 million 

annually. StarBlend is an extension of OMEGA to a multi-

period planning environment where optimal decisions 

could be made over a longer planning horizon as opposed 

to a single period. In addition to blend quality constraints, 

the optimization model also incorporates inventory and 

material balance constraints for each period in the planning 

horizon. The optimizer uses an algebraic modeling 

language called GAMS and a nonlinear solver called 

MINOS, along with a relational database system for 

managing data. The whole system resides within a user-

friendly interface and in addition to immediate blend 

planning it can also be used to analyze various "what-if" 

scenarios for the future and for long-term planning. 

FMS Scheduling at Caterpillar: For our third application 

we look at the use of a simulation model. This model was 

applied to derive schedules for a Flexible Manufacturing 

System (FMS) at Caterpillar, Inc. [3]. The interested reader 

may refer to any text on computer integrated 

manufacturing for details about FMSs; typically, they are 

systems of general purpose CNC machines linked together 

by an automated material handling system and completely 

controlled by computers. The FMS in question at 

Caterpillar had seven CNC milling machines, a fixturing 

station and a tool station, with material and tool handling 

being performed by four automated guided vehicles 

(AGVs) traveling along a one-way guided wire path. FMSs 

can provide tremendous increases in capacity and 

productivity because of the high levels of automation 

inherent in them and their potential to manufacture a wide 

variety of parts. On the other hand, this comes with a price; 

these systems are also very complex and the process of 

planning and scheduling production on an FMS and then 

controlling its operation can be a very difficult one. The 

efficiency of the scheduling procedure used can have a 

profound effect on the magnitude of the benefits realized. 

At Caterpillar, a preliminary analysis showed that the FMS 

was being underutilized and the objective of the project 

was to define a good production schedule that would 

improve utilization and free up more time to produce 

additional parts. In the orientation phase it was determined 

that the environment was much too complex to represent it 

accurately through a mathematical model, and therefore 

simulation was selected as an alternative modeling 

approach. It was also determined that minimizing the 

makespan (which is the time required to produce all daily 

requirements) would be the best objective since this would 

also maximize as well as balance machine utilization. A 

detailed simulation model was then constructed using a 

specialized language called SLAM. In addition to the 

process plans required to specify the actual machining of 

the various part types, this model also accounted for a 

number of factors such as material handling, tool handling 

and fixturing. Several alternatives were then simulated to 

observe how the system would perform and it was 

determined that a fairly simple set of heuristic scheduling 

rules could yield near optimal schedules for which the 

machine utilizations were almost 85%. However, what was 

more interesting was that this study also showed that the 

stability of the schedule was strongly dependent on the 

efficiency with which the cutting tools used by the 

machines could be managed. In fact, as tool quality starts 

to deteriorate the system starts to get more and more 

unstable and the schedule starts to fall behind due dates. In 

order to avoid this problem, the company had to suspend 

production over the weekends and replace worn-out tools 

or occasionally use overtime to get back on schedule. The 

key point to note from this application is that a simulation 

model could be used to analyze a highly complex system 

for a number of what-if scenarios and to gain a better 

understanding of the dynamics of the system. 

6. SUMMARY 

This chapter provides an overview of operations research, 

its origins, its approach to solving problems, and some 

examples of successful applications. From the standpoint 

of an industrial engineer, O.R. is a tool that can do a great 

deal to improve productivity. It should be emphasized that 

O.R. is neither esoteric nor impractical, and the interested 

I.E. is urged to study this topic further for its techniques as 

well as its applications; the potential rewards can be 

enormous. 
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