Special Issue- 2017

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCETCPM - 2017 Conference Proceedings

Operations Research

A. Vigneshwari
UG scholar, Imayam College of Engineering,
Tamil Nadu, India

Abstract - This chapter will provide an overview of
Operations Research (O.R.) from the perspective of an
industrial engineer. The focus of the chapter is on the basic
philosophy behind O.R. and the so-called ""O.R. approach™ to
solving design and operational problems that industrial
engineers commonly encounter. In its most basic form, O.R.
may be viewed as a scientific approach to solving problems; it
abstracts the essential elements of the problem into a model,
which is then analyzed to yield an optimal solution for
implementation. The mathematical details and the specific
techniques used to build and analyze these models can be
quite sophisticated and are addressed elsewhere in this
handbook; the emphasis of this chapter is on the approach. A
brief review of the historical origins of O.R. is followed by a
detailed description of its methodology. The chapter
concludes with some examples of successful real-world
applications of O.R.
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1 INTRODUCTION

Although it is a distinct discipline in its own right,
Operations Research (O.R.) has also become an integral
part of the Industrial Engineering (1.E.) profession. This is
hardly a matter of surprise when one considers that they
both share many of the same objectives, techniques and
application areas. O.R. as a formal subject is about fifty
years old and its origins may be traced to the latter half of
World War Il. Most of the O.R. techniques that are
commonly used today were developed over
(approximately) the first twenty years following its
inception. During the next thirty or so years the pace of
development of fundamentally new O.R. methodologies
has slowed somewhat. However, there has been a rapid
expansion in (1) the breadth of problem areas to which
O.R. has been applied, and (2) in the magnitudes of the
problems that can be addressed using O.R. methodologies.
Today, operations research is a mature, well-developed
field with a sophisticated array of techniques that are used
routinely to solve problems in a wide range of application
areas.

This chapter will provide an overview of O.R. from the
perspective of an Industrial Engineer. A brief review of its
historical origins is first provided. This is followed by a
detailed discussion of the basic philosophy behind O.R.
and the so-called "O.R. approach." The chapter concludes
with several examples of successful applications to typical
problems that might be faced by an Industrial Engineer.
Broadly speaking, an O.R. project comprises three steps:
(1) building a model, (2) solving it, and (3) implementing

the results. The emphasis of this chapter is on the first and
third steps. The second step typically involves specific
methodologies or techniques, which could be quite
sophisticated and require significant mathematical
development. Several important methods are overviewed
elsewhere in this handbook. The reader who has an interest
in learning more about these topics is referred to one of the
many excellent texts on O.R. that are available today and
that are listed under "Further Reading" at the end of this
chapter, e.g., Hillier and Lieberman (1995), Taha (1997) or
Winston (1994).

2. AHISTORICAL PERSPECTIVE

While there is no clear date that marks the birth of
O.R,, it is generally accepted that the field originated in
England during World War 1l. The impetus for its origin
was the development of radar defense systems for the
Royal Air Force, and the first recorded use of the term
Operations Research is attributed to a British Air Ministry
official named A. P. Rowe who constituted teams to do
"operational researches” on the communication system and
the control room at a British radar station. The studies had
to do with improving the operational efficiency of systems
(an objective which is still one of the cornerstones of
modern O.R.). This new approach of picking an
"operational™ system and conducting "research" on how to
make it run more efficiently soon started to expand into
other arenas of the war. Perhaps the most famous of the
groups involved in this effort was the one led by a physicist
named P. M. S. Blackett which included physiologists,
mathematicians, astrophysicists, and even a surveyor. This
multifunctional team focus of an operations research
project group is one that has carried forward to this day.
Blackett’s biggest contribution was in convincing the
authorities of the need for a scientific approach to manage
complex operations, and indeed he is regarded in many
circles as the original operations research analyst.

O.R. made its way to the United States a few years after it
originated in England. Its first presence in the U.S. was
through the U.S. Navy’s Mine Warfare Operations
Research Group; this eventually expanded into the
Antisubmarine Warfare Operations Research Group that
was led by Phillip Morse, which later became known
simply as the Operations Research Group. Like Blackett in
Britain, Morse is widely regarded as the "father" of O.R. in
the United States, and many of the distinguished scientists
and mathematicians that he led went on after the end of the
war to become the pioneers of O.R. in the United States.
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In the years immediately following the end of World War
I, O.R. grew rapidly as many scientists realized that the
principles that they had applied to solve problems for the
military were equally applicable to many problems in the
civilian sector. These ranged from short-term problems
such as scheduling and inventory control to long-term
problems such as strategic planning and resource
allocation. George Dantzig, who in 1947 developed the
simplex algorithm for Linear Programming (LP), provided
the single most important impetus for this growth. To this
day, LP remains one of the most widely used of all O.R.
techniques and despite the relatively recent development of
interior point methods as an alternative approach, the
simplex algorithm  (with numerous computational
refinements) continues to be widely used. The second
major impetus for the growth of O.R. was the rapid
development of digital computers over the next three
decades. The simplex method was implemented on a
computer for the first time in 1950, and by 1960 such
implementations could solve problems with about 1000
constraints.  Today, implementations on powerful
workstations can routinely solve problems with hundreds
of thousands of variables and constraints. Moreover, the
large volumes of data required for such problems can be
stored and manipulated very efficiently.

Once the simplex method had been invented and used, the
development of other methods followed at a rapid pace.
The next twenty years witnessed the development of most
of the O.R. techniques that are in use today including
nonlinear, integer and dynamic programming, computer
simulation, PERT/CPM, queuing theory, inventory models,
game theory, and sequencing and scheduling algorithms.
The scientists who developed these methods came from
many fields, most notably mathematics, engineering and
economics. It is interesting that the theoretical bases for
many of these techniques had been known for years, e.g.,
the EOQ formula used with many inventory models was
developed in 1915 by Harris, and many of the queuing
formulae were developed by Erlang in 1917. However, the
period from 1950 to 1970 was when these were formally
unified into what is considered the standard toolkit for an
operations research analyst and successfully applied to
problems of industrial significance. The following section
describes the approach taken by operations research in
order to solve problems and explores how all of these
methodologies fit into the O.R. framework.

3. WHAT IS OPERATIONS RESEARCH?

A common misconception held by many is that
O.R. is a collection of mathematical tools. While it is true
that it uses a variety of mathematical techniques, operations
research has a much broader scope. It is in fact a systematic
approach to solving problems, which uses one or more
analytical tools in the process of analysis. Perhaps the
single biggest problem with O.R. is its name; to a
layperson, the term "operations research™ does not conjure
up any sort of meaningful image! This is an unfortunate
consequence of the fact that the name that A. P. Rowe is
credited with first assigning to the field was somehow

never altered to something that is more indicative of the
things that O.R. actually does. Sometimes O.R. is referred
to as Management Science (M.S.) in order to better reflect
its role as a scientific approach to solving management
problems, but it appears that this terminology is more
popular with business professionals and people still quibble
about the differences between O.R. and M.S.
Compounding this issue is the fact that there is no clear
consensus on a formal definition for O.R. For instance, C.
W. Churchman who is considered one of the pioneers of
O.R. defined it asthe application of scientific methods,
techniques and tools to problems involving the operations
of a system so as to provide those in control of the system
with optimum solutions to problems.

4. THE OPERATIONS RESEARCH APPROACH

Given that O.R. represents an integrated
framework to help make decisions, it is important to have a
clear understanding of this framework so that it can be
applied to a generic problem. To achieve this, the so-
called O.R. approachis now detailed. This approach
comprises the following seven sequential steps: (1)
Orientation, (2) Problem Definition, (3) Data Collection,
(4) Model Formulation, (5) Solution, (6) Model Validation
and Output Analysis, and (7) Implementation and
Monitoring. Tying each of these steps together is a
mechanism for continuous feedback; Figure 1 shows this
schematically.

Orientation

|

Problem Definition

|

Data Collection

|

Model Formulation

|

Model Solution

|

Validation and Output Analysis

Implementation and Monitoring
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Figure 1: The Operations Research Approach

Each of these steps is now discussed in further detail.

Orientation: The first step in the O.R. approach is referred
to as problem orientation. The primary objective of this
step is to constitute the team that will address the problem
at hand and ensure that all its members have a clear picture
of the relevant issues. It is worth noting that a
distinguishing characteristic of any O.R. study is that it is
done by a multifunctional team. To digress slightly, it is
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also interesting that in recent years a great deal has been
written and said about the benefits of project teams and that
almost any industrial project today is conducted by multi-
functional teams. Even in engineering education, teamwork
has become an essential ingredient of the material that is
taught to students and almost all academic engineering
programs require team projects of their students. The team
approach of O.R. is thus a very natural and desirable
phenomenon.

Problem Definition: This is the second, and in a significant
number of cases, the most difficult step of the O.R.
process. The objective here is to further refine the
deliberations from the orientation phase to the point where
there is a clear definition of the problem in terms of its
scope and the results desired. This phase should not be
confused with the previous one since it is much more
focused and goal oriented; however, a clear orientation aids
immeasurably in obtaining this focus. Most practicing
industrial engineers can relate to this distinction and the
difficulty in moving from general goals such "increasing
productivity" or "reducing quality problems” to more
specific, well-defined objectives that will aid in meeting
these goals.

A clear definition of the problem has three broad
components to it. The first is the statement of an
unambiguous objective. Along with a specification of the
objective it is also important to define its scope, i.e., to
establish limits for the analysis to follow. While a complete
system level solution is always desirable, this may often be
unrealistic when the system is very large or complex and in
many cases one must then focus on a portion of the system
that can be effectively isolated and analyzed. In such
instances it is important to keep in mind that the scope of
the solutions derived will also be bounded. Some examples
of appropriate objectives might be (1) "to maximize profits
over the next quarter from the sales of our products,” (2)
"to minimize the average downtime at workcenter X," (3)
"to minimize total production costs at Plant Y," or (4) "to
minimize the average number of late shipments per month
to customers."

The second component of problem definition is a
specification of factors that will affect the objective. These
must further be classified into alternative courses of action
that are under the control of the decision maker and
uncontrollable factors over which he or she has no control.
For example, in a production environment, the planned
production rates can be controlled but the actual market
demand may be unpredictable (although it may be possible
to scientifically forecast these with reasonable accuracy).
The idea here is to form a comprehensive list of all the
alternative actions that can be taken by the decision maker
and that will then have an effect on the stated objective.
Eventually, the O.R. approach will search for the particular
course of action that optimizes the objective.

The third and final component of problem definition is a
specification of the constraints on the courses of action,
i.e., of setting boundaries for the specific actions that the

decision-maker may take. As an example, in a production
environment, the availability of resources may set limits on
what levels of production can be achieved. This is one
activity where the multifunctional team focus of O.R. is
extremely useful since constraints generated by one
functional area are often not obvious to people in others. In
general, it is a good idea to start with a long list of all
possible constraints and then narrow this down to the ones
that clearly have an effect on the courses of action that can
be selected. The aim is to be comprehensive yet
parsimonious when specifying constraints.

Continuing with our hypothetical illustration, the objective
might be to maximize profits from the sales of the two
products. The alternative courses of action would be the
quantities of each product to produce next month, and the
alternatives might be constrained by the fact that the
amounts of each of the three resources required to meet the
planned production must not exceed the expected
availability of these resources. An assumption that might
be made here is that all of the units produced can be sold.
Note that at this point the entire problem is stated in words;
later on the O.R. approach will translate this into an
analytical model.

Data Collection: In the third phase of the O.R. process data
is collected with the objective of translating the problem
defined in the second phase into a model that can then be
objectively analyzed.

Model Formulation: This is the fourth phase of the O.R.
process. It is also a phase that deserves a lot of attention
since modeling is a defining characteristic of all operations
research projects. The term "model™ is misunderstood by
many, and is therefore explained in some detail here. A
model may be defined formally as a selective abstraction of
reality. This definition implies that modeling is the process
of capturing selected characteristics of a system or a
process and then combining these into an abstract
representation of the original. The main idea here is that it
is usually far easier to analyze a simplified model than it is
to analyze the original system, and as long as the model is a
reasonably accurate representation, conclusions drawn
from such an analysis may be validly extrapolated back to
the original system.

Models may be broadly classified into four categories:
Physical Models, Analogic Models, Computer Simulation
Models, Mathematical Models

Mathematical Models: This is the final category of models,
and the one that traditionally has been most commonly
identified with O.R. In this type of model one captures the
characteristics of a system or process through a set of
mathematical relationships. Mathematical models can be
deterministic or probabilistic. In the former type, all
parameters used to describe the model are assumed to be
known (or estimated with a high degree of certainty). With
probabilistic models, the exact values for some of the
parameters may be unknown but it is assumed that they are
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capable of being characterized in some systematic fashion
(e.g., through the use of a probability distribution). As an
illustration, the Critical Path Method (CPM) and the
Program Evaluation and Review Technique (PERT) are
two very similar O.R. techniques used in the area of project
planning. However, CPM is based on a deterministic
mathematical model that assumes that the duration of each
project activity is a known constant, while PERT is based
on a probabilistic model that assumes that each activity
duration is random but follows some specific probability
distribution (typically, the Beta distribution). Very broadly
speaking, deterministic models tend to be somewhat easier
to analyze than probabilistic ones; however, this is not
universally true.

Most mathematical models tend to be characterized by
three main elements: decision variables, constraints and
objective function(s). Decision variables are used to model
specific actions that are under the control of the decision-
maker. An analysis of the model will seek specific values
for these variables that are desirable from one or more
perspectives. Very often — especially in large models — it is
also common to define additional "convenience" variables
for the purpose of simplifying the model or for making it
clearer. Strictly speaking, such variables are not under the
control of the decision-maker, but they are also referred to
as decision variables.Constraints are used to set limits on
the range of values that each decision variable can take on,
and each constraint is typically a translation of some
specific restriction (e.g., the availability of some resource)
or requirement (e.g., the need to meet contracted demand).
Clearly, constraints dictate the values that can be feasibly
assigned to the decision variables, i.e., the specific
decisions on the system or process that can be taken. The
third and final component of a mathematical model is
the objective function. This is a mathematical statement of
some measure of performance (such as cost, profit, time,
revenue, utilization, etc.) and is expressed as a function of
the decision variables for the model. It is usually desired
either to maximize or to minimize the value of the
objective function, depending on what it represents. Very
often, one may simultaneously have more than one
objective  function to optimize (e.g, maximize
profits and minimize changes in workforce levels, say). In
such cases there are two options. First, one could focus on
a single objective and relegate the others to a secondary
status by moving them to the set of constraints and
specifying some minimum or maximum desirable value for
them. This tends to be the simpler option and the one most
commonly adopted. The other option is to use a technique
designed specifically for multiple objectives (such as goal
programming).

In using a mathematical model the idea is to first capture
all the crucial aspects of the system using the three
elements just described, and to then optimize the objective
function by choosing (from among all values for the
decision variables that do not violate any of the constraints
specified) the specific values that also yield the most
desirable (maximum or minimum) value for the objective

function. This process is often called mathematical
programming. Although many mathematical models tend
to follow this form, it is certainly not a requirement; for
example, a model may be constructed to simply define
relationships between several variables and the decision-
maker may use these to study how one or more variables
are affected by changes in the values of others. Decision
trees, Markov chains and many queuing models could fall
into this category.

Before concluding this section on model formulation, we
return to our hypothetical example and translate the
statements made in the problem definition stage into a
mathematical model by using the information collected in
the data collection phase. To do this we define two decision
variables G and W to represent respectively the number of
gizmos and widgets to be made and sold next month. Then
the objective is to maximize total profits given
by 10G+9W. There is a constraint corresponding to each of
the three limited resources, which should ensure that the
production of G gizmos and W widgets does not use up
more of the corresponding resource than is available for
use. Thus for resource 1, this would be translated into the
following mathematical statement 0.7G+1.0W < 630,
where the left-hand-side of the inequality represents the
resource usage and the right-hand-side the resource
availability. Additionally, we must also ensure that
each G and W value considered is a nonnegative integer,
since any other value is meaningless in terms of our
definition of G and W. The completely mathematical model
is:

Maximize {Profit = 10G+9W}, subject to
0.7G+1.0W <630

1.0G+(2/3)W <708

0.1G+0.25W <135

G, W> 0 and integers.

This mathematical program tries to maximize the profit as
a function of the production quantities (G and W), while
ensuring that these quantities are such that the
corresponding production is feasible with the resources
available.

Model Solution: The fifth phase of the O.R. process is the
solution of the problem represented by the model. This is
the area on which a huge amount of research and
development in O.R. has been focused, and there is a
plethora of methods for analyzing a wide range of models.
It is impossible to get into details of these various
techniques in a single introductory chapter such as this;
however, an overview of some of the more important
methods can be found elsewhere in this handbook.
Generally speaking, some formal training in operations
research is necessary in order to appreciate how many of
these methods work and the interested reader is urged to
peruse an introductory text on O.R.; the section on "Further
Reading" at the end of the chapter lists some good books. It
is also worth mentioning that in recent years a number of
software systems have emerged which (at least in theory)
are "black boxes" for solving various models. However,
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some formal education in O.R. methaods is still required (or
at least strongly recommended) before using such systems.
From the perspective of the practitioner, the most important
thing is to be able to recognize which of the many available
techniques is appropriate for the model constructed.
Usually, this is not a hard task for someone with some
rudimentary training in operations research. The techniques
themselves fall into several categories.

At the lowest level one might be able to use simple
graphical techniques or even trial and error. However,
despite the fact that the development of spreadsheets has
made this much easier to do, it is usually an infeasible
approach for most nontrivial problems. Most O.R.
techniques are analytical in nature, and fall into one of four
broad categories. First, there are simulation techniques,
which obviously are used to analyze simulation models. A
significant part of these are the actual computer programs
that run the model and the methods used to do so correctly.
However, the more interesting and challenging part
involves the techniques used to analyze the large volumes
of output from the programs; typically, these encompass a
number of statistical techniques. The interested reader
should refer to a good book on simulation to see how these
two parts fit together. The second category comprises
techniques of mathematical analysis used to address a
model that does not necessarily have a clear objective
function or constraints but is nevertheless a mathematical
representation of the system in question. Examples include
common statistical techniques such as regression analysis,
statistical inference and analysis of variance, as well as
others such as queuing, Markov chains and decision
analysis. The third category consists of optimum-seeking
techniques, which are typically used to solve the
mathematical programs described in the previous section in
order to find the optimum (i.e., best) values for the decision
variables. Specific techniques include linear, nonlinear,
dynamic, integer, goal and stochastic programming, as well
as various network-based methods. A detailed exposition
of these is beyond the scope of this chapter, but there are a
number of excellent texts in mathematical programming
that describe many of these methods and the interested
reader should refer to one of these. The final category of
techniques is often referred to as heuristics. The
distinguishing feature of a heuristic technique is that it is
one that does not guarantee that the best solution will be
found, but at the same time is not as complex as an
optimum-seeking technique. Although heuristics could be
simple, common-sense, rule-of-thumb type techniques,
they are typically methods that exploit specific problem
features to obtain good results. A relatively recent
development in this area is so-called meta-heuristics (such
as genetic algorithms, tabu search, evolutionary
programming and simulated annealing) which are general
purpose methods that can be applied to a number of
different problems. These methods in particular are
increasing in popularity because of their relative simplicity
and the fact that increases in computing power have greatly
increased their effectiveness.

In applying a specific technique something that is
important to keep in mind from a practitioner's perspective
is that it is often sufficient to obtain a good solution even if
it is not guaranteed to be the best solution. If neither
resource-availability nor time were an issue, one would of
course look for the optimum solution. However, this is
rarely the case in practice, and timeliness is of the essence
in many instances. In this context, it is often more
important to quickly obtain a solution that is satisfactory as
opposed to expending a lot of effort to determine the
optimum one, especially when the marginal gain from
doing so is small. The economist Herbert Simon uses the
term "satisficing" to describe this concept - one searches
for the optimum but stops along the way when an
acceptably good solution has been found.

At this point, some words about computational aspects are
in order. When applied to a nontrivial, real-world problem
almost all of the techniques discussed in this section
require the use of a computer. Indeed, the single biggest
impetus for the increased use of O.R. methods has been the
rapid increase in computational power. Although there are
still large scale problems whose solution requires the use of
mainframe computers or powerful workstations, many big
problems today are capable of being solved on desktop
microcomputer systems. There are many computer
packages (and their number is growing by the day) that
have become popular because of their ease of use and that
are typically available in various versions or sizes and
interface seamlessly with other software systems;
depending on their specific needs end-users can select an
appropriate configuration. Many of the software vendors
also offer training and consulting services to help users
with getting the most out of the systems. Some specific
techniques for which commercial software
implementations are available today include optimization/
mathematical programming (including linear, nonlinear,
integer, dynamic and goal programming), network flows,
simulation, statistical analysis, queuing, forecasting, neural
networks, decision analysis, and PERT/CPM. Also
available today are commercial software systems that
incorporate various O.R. techniques to address specific
application areas including transportation and logistics,
production planning, inventory control, scheduling,
location analysis, forecasting, and supply chain
management. Some examples of popular O.R. software
systems include CPLEX, LINDO, OSL, MPL, SAS, and
SIMAN, to name just a few. While it would clearly be
impossible to describe herein the features of all available
software, magazine such asOR/MS Today and IE
Solutions regularly publish separate surveys of various
categories of software systems and packages. These
publications also provide pointers to different types of
software available; as an example, the December 1997
issue of OR/MS Today (pages 61-75) provides a complete
resource directory for software and consultants. Updates to
such directories are provided periodically. The main point
here is that the ability to solve complex models/problems is
far less of an issue today than it was a decade or two ago,
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and there are plenty of readily available resources to
address this issue.

We conclude this section by examining the solution to the
model constructed earlier for our hypothetical production
problem. Using linear programming to solve this model
yields the optimal solution of G=540 and W=252, i.e., the
production plan that maximizes profits for the given data
calls for the production of 540 gizmos and 252 widgets.
The reader may easily verify that this results in a profit of
$7668 and fully uses up all of the first two resources while
leaving 18 units of the last resource unused. Note that this
solution is certainly not obvious by just looking at the
mathematical model - in fact, if one were "greedy" and
tried to make as many gizmos as possible (since they yield
higher profits per unit than the widgets), this would
yield G=708 and W=0 (at which point all of the second
resource is used up). However, the resulting profit of $7080
is about 8% less than the one obtained via the optimal plan.
The reason of course, is that this plan does not make the
most effective use of the available resources and fails to
take into account the interaction between profits and
resource utilization. While the actual difference is small for
this hypothetical example, the benefits of using a good
O.R. technique can result in very significant improvements
for large real-world problems.

Validation and Analysis: Once a solution has been obtained
two things need to be done before one even considers
developing a final policy or course of action for
implementation. The first is to verify that the solution itself
makes sense. Oftentimes, this is not the case and the most
common reason is that the model used was not accurate or
did not capture some major issue. The process of ensuring
that the model is an accurate representation of the system is
called validation and this is something that (whenever
possible) should be done before actual solution. However,
it is sometimes necessary to solve the model to discover
inaccuracies in it. A typical error that might be discovered
at this stage is that some important constraint was ignored
in the model formulation - this will lead to a solution that is
clearly recognized as being infeasible and the analyst must
then go back and modify the model and re-solve it. This
cycle continues until one is sure that the results are sensible
and come from a valid system representation.

The second part of this step in the O.R. process is referred
to as post optimality analysis, or in layperson's terms, a
"what-if" analysis. Recall that the model that forms the
basis for the solution obtained is (a) a selective abstraction
of the original system, and (b) constructed using data that
in many cases is not 100% accurate. Since the validity of
the solution obtained is bounded by the model's accuracy, a
natural question that is of interest to an analyst is: "How
robust is the solution with respect to deviations in the
assumptions inherent in the model and in the values of the
parameters used to construct it?" To illustrate this with our
hypothetical production problem, examples of some
questions that an analyst might wish to ask are, (a) "Will
the optimum production plan change if the profits

associated with widgets were overestimated by 5%, and if
so how?" or (b) "If some additional amount of Resource 2
could be purchased at a premium, would it be worth buying
and if so, how much?" or (c) "If machine unreliability were
to reduce the availability of Resource 3 by 8%, what effect
would this have on the optimal policy?" Such questions are
especially of interest to managers and decision-makers who
live in an uncertain world, and one of the most important
aspects of a good O.R. project is the ability to provide not
just a recommended course of action, but also details on its
range of applicability and its sensitivity to model
parameters.

Before ending this section it is worth emphasizing that
similar to a traditional Industrial Engineering project, the
end result of an O.R. project is not a definitive solution to a
problem. Rather, it is an objective answer to the questions
posed by the problem and one that puts the decision-maker
in the correct "ball-park.” As such it is critical to temper the
analytical solution obtained with common sense and
subjective reasoning before finalizing a plan for
implementation. From a practitioner's standpoint a sound,
sensible and workable plan is far more desirable than
incremental improvements in the quality of the solution
obtained. This is the emphasis of this penultimate phase of
the O.R. process.

Implementation and Monitoring: The last step in the O.R.
process is to implement the final recommendation and
establish control over it. Implementation entails the
constitution of a team whose leadership will consist of
some of the members on the original O.R. team. This team
is typically responsible for the development of operating
procedures or manuals and a time-table for putting the plan
into effect. Once implementation is complete,
responsibility for monitoring the system is usually turned
over to an operating team. From an O.R. perspective, the
primary responsibility of the latter is to recognize that the
implemented results are valid only as long as the operating
environment is unchanged and the assumptions made by
the study remain valid. Thus when there are radical
departures from the bases used to develop the plan, one
must reconsider one's strategy. As a simple example with
our production problem, if a sudden strike by the
workforce causes a drastic reduction in the availability of
labor (Resource 1, say), one must reconsider the plan
completely to derive an alternative course of action. As a
final word on implementation, it should be emphasized that
a major responsibility of the operations research analyst is
to convey the results of the project to management in an
effective fashion. This is something that is unfortunately
not emphasized sufficiently, and there are many instances
of a successful study not being implemented because the
details and the benefits are not conveyed effectively to
management. While this is of course true of any project in
general, it is especially significant with O.R. because of its
mathematical content and its potential to not be fully
understood by a manager without a strong quantitative
background.
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5. O.R. IN THE REAL WORLD

In this section some examples of successful real-
world applications of operations research are provided.
These should give the reader an appreciation for the diverse
kinds of problems that O.R. can address, as well as for the
magnitude of the savings that are possible. Without any
doubt, the best source for case studies and details of
successful applications is the journal Interfaces, which is a
publication of the Institute for Operations Research and the
Management Sciences (INFORMS). This journal is
oriented toward the practitioner and much of the exposition
is in laypersons' terms; at some point, every practicing
industrial engineer should refer to this journal to appreciate
the contributions that O.R. can make. All of the
applications that follow have been extracted from recent
issues of Interfaces.

Before describing these applications, a few words are in
order about the standing of operations research in the real
world. An unfortunate reality is that O.R. has received
more than its fair share of negative publicity. It has
sometimes been looked upon as an esoteric science with
little relevance to the real-world, and some critics have
even referred to it as a collection of techniques in search of
a problem to solve! Clearly, this criticism is untrue and
there is plenty of documented evidence that when applied
properly and with a problem-driven focus, O.R. can result
in benefits that can be quite spectacular; the examples that
follow in this section clearly attest to this fact.

On the other hand, there is also evidence to suggest that
(unfortunately) the criticisms leveled against O.R. are not
completely unfounded. This is because O.R. is often not
applied as it should be - people have often taken the
myopic view that O.R. is a specific method as opposed to a
complete and systematic process. In particular, there has
been an inordinate amount of emphasis on the modeling
and solution steps, possibly because these clearly offer the
most intellectual challenge. However, it is critical to
maintain a problem-driven focus - the ultimate aim of an
O.R. study is to implement a solution to the problem being
analyzed. Building complex models that are ultimately
intractable, or developing highly efficient solution
procedures to models that have little relevance to the real
world may be fine as intellectual exercises, but run
contrary to the practical nature of operations research!
Unfortunately, this fact has sometimes been forgotten.
Another valid criticism is the fact that many analysts are
notoriously poor at communicating the results of an O.R.
project in terms that can be understood and appreciated by
practitioners who may not necessarily have a great deal of
mathematical sophistication or formal training in O.R. The
bottom line is that an O.R. project can be successful only if
sufficient attention is paid to each of the seven steps of the
process and the results are communicated to the end-users
in an understandable form.

Some examples of successful O.R. projects are now
presented.

Production Planning at Harris Corporation -
Semiconductor Section: For our first application [1], we
look at an area that is readily appreciated by every
industrial engineer - production planning and due date
quotation. The semiconductor section of Harris
Corporation was for a number of years a fairly small
business catering to a niche market in the aerospace and
defense industries where the competition was minimal.
However, in 1988 a strategic decision was made to acquire
General Electric's semiconductor product lines and
manufacturing facilities. This immediately increased the
size of Harris Semiconductor's operations and product lines
by roughly three times, and more importantly, catapulted
Harris into commercial market areas such as automobiles
and telecommunications where the competition was stiff.
Given the new diversity of product lines and the
tremendous increase in the complexity of production
planning, Harris was having a hard time meeting delivery
schedules and in staying competitive from a financial
perspective; clearly, a better system was required.

In the orientation phase it was determined that the MRP
type systems used by a number of its competitors would
not be a satisfactory answer and a decision was made to
develop a planning system that would meet Harris' unique
needs - the final result was IMPReSS, an automated
production planning and delivery quotation system for the
entire production network. The system is an impressive
combination of heuristics as well as optimization-based
techniques. It works by breaking up the overall problem
into smaller, more manageable problems by using a
heuristic decomposition approach. Mathematical models
within the problem are solved using linear programming
along with concepts from material requirements planning.
The entire system interfaces with sophisticated databases
allowing for forecasting, quotation and order entry,
materials and dynamic information on capacities. Harris
estimates that this system has increased on-time deliveries
from 75% to 95% with no increase in inventories, helped it
move from $75 million in losses to $40 million in profits
annually, and allowed it to plan its capital investments
more efficiently.

Gasoline Blending at Texaco: For another application to
production planning, but this time in a continuous as
opposed to discrete production environment, we look at a
system in use at Texaco [2]. One of the major applications
of O.R. is in the area of gasoline blending at petroleum
refineries, and virtually all major oil companies use
sophisticated optimization models in this area. At Texaco
the system is called StarBlend and runs on networked
microcomputers. As some background, the distillation of
crude petroleum produces a number of different products at
different distillation temperatures. Each of these may be
further refined through cracking (where complex
hydrocarbons are broken into simpler ones) and
recombination. These various output streams are then
blended together to form end-products such as different
grades of gasoline (leaded, unleaded, super-unleaded etc.),
jet fuel, diesel and heating oil. The planning problem is
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very complex, since different grades of crude yield
different concentrations of output streams and incur
different costs, and since different end-products fetch
different revenues and use different amounts of refinery
resources. Considering just one product - gasoline - there
are various properties that constrain the blends produced.
These include the octane number, lead and sulfur content,
volatilities and Reid vapor pressure, to name a few. In
addition, regulatory constraints impose certain restrictions
as well.

As an initial response to this complex problem, in the early
to mid 1980's Texaco developed a system called OMEGA.
At the heart of this was a nonlinear optimization model
which supported an interactive decision support system for
optimally blending gasoline; this system alone was
estimated to have saved Texaco about $30 million
annually. StarBlend is an extension of OMEGA to a multi-
period planning environment where optimal decisions
could be made over a longer planning horizon as opposed
to a single period. In addition to blend quality constraints,
the optimization model also incorporates inventory and
material balance constraints for each period in the planning
horizon. The optimizer uses an algebraic modeling
language called GAMS and a nonlinear solver called
MINQS, along with a relational database system for
managing data. The whole system resides within a user-
friendly interface and in addition to immediate blend
planning it can also be used to analyze various "what-if"
scenarios for the future and for long-term planning.

FMS Scheduling at Caterpillar: For our third application
we look at the use of a simulation model. This model was
applied to derive schedules for a Flexible Manufacturing
System (FMS) at Caterpillar, Inc. [3]. The interested reader
may refer to any text on computer integrated
manufacturing for details about FMSs; typically, they are
systems of general purpose CNC machines linked together
by an automated material handling system and completely
controlled by computers. The FMS in question at
Caterpillar had seven CNC milling machines, a fixturing
station and a tool station, with material and tool handling
being performed by four automated guided vehicles
(AGVs) traveling along a one-way guided wire path. FMSs
can provide tremendous increases in capacity and
productivity because of the high levels of automation
inherent in them and their potential to manufacture a wide
variety of parts. On the other hand, this comes with a price;
these systems are also very complex and the process of
planning and scheduling production on an FMS and then
controlling its operation can be a very difficult one. The
efficiency of the scheduling procedure used can have a
profound effect on the magnitude of the benefits realized.

At Caterpillar, a preliminary analysis showed that the FMS
was being underutilized and the objective of the project
was to define a good production schedule that would
improve utilization and free up more time to produce
additional parts. In the orientation phase it was determined
that the environment was much too complex to represent it

accurately through a mathematical model, and therefore
simulation was selected as an alternative modeling
approach. It was also determined that minimizing the
makespan (which is the time required to produce all daily
requirements) would be the best objective since this would
also maximize as well as balance machine utilization. A
detailed simulation model was then constructed using a
specialized language called SLAM. In addition to the
process plans required to specify the actual machining of
the various part types, this model also accounted for a
number of factors such as material handling, tool handling
and fixturing. Several alternatives were then simulated to
observe how the system would perform and it was
determined that a fairly simple set of heuristic scheduling
rules could yield near optimal schedules for which the
machine utilizations were almost 85%. However, what was
more interesting was that this study also showed that the
stability of the schedule was strongly dependent on the
efficiency with which the cutting tools used by the
machines could be managed. In fact, as tool quality starts
to deteriorate the system starts to get more and more
unstable and the schedule starts to fall behind due dates. In
order to avoid this problem, the company had to suspend
production over the weekends and replace worn-out tools
or occasionally use overtime to get back on schedule. The
key point to note from this application is that a simulation
model could be used to analyze a highly complex system
for a number of what-if scenarios and to gain a better
understanding of the dynamics of the system.

6. SUMMARY
This chapter provides an overview of operations research,
its origins, its approach to solving problems, and some
examples of successful applications. From the standpoint
of an industrial engineer, O.R. is a tool that can do a great
deal to improve productivity. It should be emphasized that
O.R. is neither esoteric nor impractical, and the interested
I.E. is urged to study this topic further for its techniques as
well as its applications; the potential rewards can be
enormous.
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