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Abstract — This paper concerns the numerical solution of 

one-dimensional fluid-structure-interaction (1D-FSI) 

formulation which has been formulated by providing a 

pressure-area constitutive relation to complement the mass and 

linear momentum equations.  However, typical spurious 

oscillations were found for the cases of relatively high pressure 

difference when Bubnov-Galerkin formulation was employed. In 

minimizing the oscillation, SUPG stabilization scheme was then 

formulated and shown as able to stabilize the solutions. For 

validation purposes, an analytical solution for the limited case of 

straight vessel has been derived for a specific pressure-area 

constitutive relation. This study can be important for future 

works in 1D-FSI employing pressure-area constitutive relation.   

     Keywords — Streamline-Upwind-Petrov-Galerkin, Finite 

Element Method, Biomechanics 
 

1. INTRODUCTION 

    Fluid-structure-interaction (FSI) for one-dimensional 
flow can be formulated by providing a pressure-area 
constitutive relation to complement the mass and linear 
momentum equations. Such coupling would allow the 
interaction between volumetric flow rate, Q, cross-sectional 
area, A, and pressure, p, of the flow. The constitutive relation 
can be given in general form as; 

𝑃 − 𝑃0 = 𝑓(𝐴) (1) 

where 𝑃 and 𝑃0 are the local and reference pressure 

respectively, and 𝑓(𝐴) highlights the dependency of the 

pressure’s magnitude and distribution on the cross-sectional 

area of the flow. Various detailed forms of 𝑓(𝐴) have been 
proposed in the literature [1-13] To note, pressure-area 
constitutive relation as in Eqn. (1) is also termed as tube law 
elsewhere [5-6]. Employment of Eqn. (1) thus the formulation 
has a wide range of applications especially in the field of 
biomechanics.   

 

    Due to the complexity of the governing equations, 
solutions are mostly obtained numerically. In recent works of 
Sochi [10, 12], Bubnov-Galerkin finite element method has 
been formulated where good verifications of results were 

reported. However, when we repeated the formulation and 
applied it to high pressure differences that is, in the range 
higher than reported, spurious oscillations were observed. 
These oscillations are typical phenomenon of Bubnov-
Galerkin formulation hence its shortcoming. In minimizing 
the oscillation, we then formulated the well-known 
stabilization scheme, Streamline-Upwind-Petrov-Galerkin 
(SUPG) for the problem.  

 

    Realizing the importance of having stabilized solution in 
ensuring the attainment of reliable information, it is the 
interest of this paper, therefore, to report such a formulation 
for future reference especially in the study of one-dimensional 
fluid-structure-interaction (1D-FSI) flow employing pressure-
area constitutive relation. 

 

2. GOVERNING EQUATIONS 

    1D-FSI steady flow is governed by the conservation 
laws of mass and linear momentum as follows [10, 12]: 

Mass equation 

𝜕𝑄

𝜕𝑥
= 0  (2) 

Momentum equation 

𝜕

𝜕𝑥
(
𝛼𝑄2

𝐴
) +

𝐴

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜅

𝑄

𝐴
= 0 (3) 

where 𝜌 is the fluid density, 𝛼 is the momentum correction 
factor and 𝑥 is the axial coordinate. 𝜅 is defined as viscosity 
friction coefficient as follows 

𝜅 =
2𝜋𝛼𝜇

𝜌(𝛼 − 1)
 

  
(4) 

where 𝜇 is the fluid viscosity. With regards to the second term 
in Eqn. (3), we have 

𝐴

𝜌

𝜕𝑝

𝜕𝑥
=  

𝐴

𝜌

𝜕𝑝

𝜕𝐴

𝜕𝐴

𝜕𝑥
=  

𝜕

𝜕𝑥
∫

𝐴

𝜌

𝜕𝑝

𝜕𝐴

𝜕𝐴

𝜕𝑥
 𝜕𝑥

𝑥

= 
𝜕

𝜕𝑥
∫

𝐴

𝜌

𝜕𝑝

𝜕𝐴
𝑑𝐴

𝐴

 

(5) 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS040777
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 04, April-2017

1045



2.1 Constitutive Relation Equations 
 Since there are three dependent variables, A, Q and p, a 
third equation, that is, the pressure-area constitutive relation, 
must be provided. Despite the various constitutive relations 
available from literatures, only two relationships are 
considered in this study since the main purpose is to 
demonstrate the formulation of a specific numerical technique. 
Herein, the first constitutive equation is termed as 𝑝 − 𝐴 
Model 1 and is given by Eqn. (6). Despite its simplistic nature, 
the equation is chosen because it is the relationship used in 
Sochi [12] which results we are comparing against. For 
completeness, a more realistic constitutive equation (as it 
involves experimental-fit parameters) is thus considered and 
termed herein as 𝑝 − 𝐴 Model 2 (Eqn. (9)). 
 

𝑝 − 𝐴 Model 1  

Pressure-area constitutive relation used in Sherwin et al. [8], 
Quarteroni and Formaggia [9], and Sochi [10-13] is termed as 
𝑝 − 𝐴 Model 1 herein and given as  

𝑓(𝐴) =  
𝛽

𝐴0

(√𝐴 − √𝐴0 ) (6) 

where 𝛽 is known as vessel stiffness, given as  

 

𝛽 =  
√𝜋ℎ0𝐸

1 − 𝜐2
 (7) 

and 𝐴0 and ℎ0 are the cross sectional area of the flow and 
vessel’s wall thickness at reference pressure 𝑝0, respectively 
whilst 𝐸 and 𝜐 are Young’s elastic modulus and Poisson’s 
ratio of the vessel’s wall, respectively. Accordingly, Eq. (5) 
can be written in expanded form as 

𝜕

𝜕𝑥
∫

𝐴

𝜌

𝜕𝑝

𝜕𝐴
𝑑𝐴

𝐴

= 
𝜕

𝜕𝑥
(

𝛽

3𝜌𝐴𝑜

𝐴
3
2) 

 
(8) 

 

𝑝 − 𝐴 Model 2  

Pressure-area constitutive relation used in Ku et al. [3] and 
Downing and Ku [4] is termed as 𝑝 − 𝐴 Model 2 herein and 
given as  

𝑓(𝐴) = 𝐾𝑝 ((
𝐴

𝐴𝑜

)
𝑛1

− (
𝐴

𝐴𝑜

)
−𝑛2

) (9) 

where  𝑛1 and 𝑛2 are parameters obtained from a fit to 
experimental data of pressure versus diameter curve for a 
bovine carotid artery as detailed in  Downing and Ku [4]. The 
vessel stiffness, 𝐾𝑝 is defined as 

𝐾𝑝 =
𝐸ℎ0

3

12(1 − 𝜐2)𝑅3
 (10) 

where 𝑅 is the mean flow radius. One of the set of values of 
𝑛1 and 𝑛2 proposed in Downing and Ku [4] is used in this 
study, which are 7 and 2.5, respectively. Accordingly, for 𝑝 −
𝐴 Model 2, Eqn. (5) can be written in expanded form as 

𝜕

𝜕𝑥
∫

𝐴

𝜌

𝜕𝑝

𝜕𝐴
𝑑𝐴

𝐴

= 
𝜕

𝜕𝑥
(
𝐾𝑝𝐴

𝜌
[
𝑛1𝑒

𝑛1ln (
𝐴
𝐴𝑜

)

𝑛1 + 1

−
𝑛2𝑒

−𝑛2ln (
𝐴
𝐴𝑜

)

𝑛2 − 1
]) 

(11) 

 

3. SPURIOUS OSCILLATIONS 

    In numerical analysis of fluid dynamics, spurious 
oscillations can occur in flows with high Peclet number (for 
advection-diffusion problems) and high Reynolds number (for 
general flows) when solved using either central finite 
difference method or Bubnov-Galerkin finite element method. 
Mathematical wise, both are known to be closely related thus 
inherit the same numerical difficulty [14, 15, 16]. 

 

    As mentioned, when we repeated the Bubnov-Galerkin 
formulation detailed in Sochi [12], whilst we obtained similar 
non-oscillatory results for the reported range of pressure 
differences (< 1000Pa), we started to observe spurious 
oscillation for higher pressure differences. These observations 
are depicted in Figure 1. 

 

Fig. 1 Oscillation due to the employment of Bubnov 
formulation for  𝑝 − 𝐴 Model 1.The tube, fluid and flow 
parameters used are; 𝜌 = 1060 kgm−3, 𝜇 = 0.0035 Pa ∙
s, 𝛼 = 1.3333, 𝐿 = 1 m,𝑅 = 0.1 m and 𝛽 = 5 × 104 Pa ∙ m 
(same data were used in Sochi [12]) 

    In confirming the occurrence of the spurious 
oscillations, we then employed the same Bubnov-Galerkin 
formulation to a different pressure-area constitutive relation 
i.e. (𝑝 − 𝐴 Model 2) only to observe similar phenomenon, as 
depicted in Figure 2.     
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Fig. 2 Oscillation due to the employment of Bubnov formulation for  𝑝 − 𝐴 
Model 2. The tube, fluid and flow parameters used are; 𝜌 = 995 kgm−3, 𝜇 =
0.003Pa ∙ s, 𝛼 = 1.3333, 𝐿 = 0.1 m,𝑅 = 0.003 m and 𝐾𝑝 = 125 Pa (same 

data were used in Downing and Ku [4]) 

Having confirmed the occurrence of the spurious 
oscillations in this 1D-FSI flow as the typical phenomenon of 
Bubnov-Galerkin formulation and also realized the 
importance for a stabilized solution, we then formulated 
SUPG stabilization scheme for this particular problem which 
derivation and results are reported herein.  

 

4. ANALYTICAL SOLUTIONS 

 In this work, we verify our SUPG formulation against 
analytical solutions which are available for limited case of 
straight vessel.  For 𝑝 − 𝐴 Model 1, the analytical solution for 
the volumetric flow rate, 𝑄  has been derived in Sochi [10, 12] 
which is given herein as 

𝑄

=  

−𝜅𝐿 + √𝜅2𝐿2 − 4𝛼 ln(
𝐴𝑖𝑛

𝐴𝑜𝑢
)

𝛽
5𝜌𝐴0

(𝐴𝑜𝑢

5
2 − 𝐴

𝑖𝑛

5
2 )

2𝛼 ln(
𝐴𝑖𝑛

𝐴𝑜𝑢
)

 

(12) 

where  𝐿 is the length of vessel whilst 𝐴𝑖𝑛 and 𝐴𝑜𝑢 are the 
flow cross sectional area at the inlet and outlet respectively. 

 

4.1 Derivation of Analytical Solution for 𝑝 − 𝐴 Model 2 

    For 𝑝 − 𝐴 Model 2, we have derived the analytical 
solution which derivation is detailed as follows. By inserting 
Eq. (11) into Eq. (3) and the fact that Q is spatially constant 
(refer Eq. (2)), the momentum equation can be restated as 

𝜕

𝜕𝐴
(
𝛼𝑄2

𝐴
+

𝐾𝑝𝑛1𝐴𝑒
𝑛1 ln

𝐴
𝐴0

𝜌(𝑛1 + 1)
−

𝐾𝑝𝑛2𝐴𝑒
−𝑛2 ln

𝐴
𝐴0

𝜌(−1 + 𝑛2)
)

𝜕𝐴

𝜕𝑥

+  𝜅
𝑄

𝐴
= 0 

(13) 

 

 

 

which can be further simplified as 

(−
𝛼𝑄2

𝐴2
+

𝐾𝑝

𝜌
((

𝐴

𝐴𝑜

)
𝑛1

𝑛1 + (
𝐴

𝐴𝑜

)
−𝑛2

𝑛2))
𝜕𝐴

𝜕𝑥

+  𝜅
𝑄

𝐴
= 0                                    

(14) 

 

With some algebraic manipulations, Eq. (14) becomes 

𝜕𝑥

𝜕𝐴
=  

−𝛼
𝑄2

𝐴
+

𝐾𝑝𝐴
𝜌

((
𝐴
𝐴𝑜

)
𝑛1

𝑛1 + (
𝐴
𝐴𝑜

)
−𝑛2

𝑛2)

−𝜅𝑄
 

  
(15) 

By integrating Eqn. (15) with respect to 𝐴, we obtain 

𝑥 =  
𝛼𝑄 ln

𝐴
𝐴0

𝜅
+

𝐾𝑝𝑛2𝐴
2𝑒

−𝑛2 ln
𝐴
𝐴0

𝑄𝜅𝜌(−2 + 𝑛2)
−

𝐾𝑝𝑛1𝐴
2𝑒

𝑛1 ln
𝐴
𝐴0

𝑄𝜅𝜌(2 + 𝑛1)
+ 𝐶 

 
(16) 

where 𝐶 is the constant of integration which can be 
determined from the boundary condition where 𝐴 = 𝐴𝑖𝑛  at 
𝑥 = 0, thus 

𝐶 =  −
𝛼𝑄 ln

𝐴𝑖𝑛

𝐴0

𝜅
−

𝐾𝑝𝑛2𝐴𝑖𝑛
2 𝑒

−𝑛2 ln
𝐴𝑖𝑛
𝐴0

𝑄𝜅𝜌(−2 + 𝑛2)

+
𝐾𝑝𝑛1𝐴𝑖𝑛

2 𝑒
𝑛1 ln

𝐴𝑖𝑛
𝐴0

𝑄𝜅𝜌(2 + 𝑛1)
 

 
(17) 

 

Substituting Eqn. (17) into Eqn. (16), we obtain 

𝑥 =  
𝛼𝑄 ln

𝐴
𝐴0

𝜅
+

𝐾𝑝𝑛2𝐴
2𝑒

−𝑛2 ln
𝐴
𝐴0

𝑄𝜅𝜌(−2 + 𝑛2)

−
𝐾𝑝𝑛1𝐴

2𝑒
𝑛1 ln

𝐴
𝐴0

𝑄𝜅𝜌(2 + 𝑛1)
 −

𝛼𝑄 ln
𝐴𝑖𝑛

𝐴0

𝜅

−
𝐾𝑝𝑛2𝐴𝑖𝑛

2 𝑒
−𝑛2 ln

𝐴𝑖𝑛
𝐴0

𝑄𝜅𝜌(−2 + 𝑛2)

+
𝐾𝑝𝑛1𝐴𝑖𝑛

2 𝑒
𝑛1 ln

𝐴𝑖𝑛
𝐴0

𝑄𝜅𝜌(2 + 𝑛1)
 

 
(18) 

 

Now, to obtain a closed form solution for 𝑄, we then employ 
the other boundary condition that is at the outlet which can be 
given as, 𝐴 = 𝐴𝑜𝑢  at 𝑥 = 𝐿. This result in 
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𝐿 =  
𝛼𝑄

𝜅
(− ln

𝐴𝑖𝑛

𝐴0

+ ln
𝐴𝑜𝑢

𝐴0

)

+
1

𝑄𝜅𝜌
(−

𝐾𝑝𝑛2𝐴𝑖𝑛
2 𝑒

−𝑛2 ln
𝐴𝑖𝑛
𝐴0

(−2 + 𝑛2)

+
𝐾𝑝𝑛2𝐴𝑜𝑢

2 𝑒
−𝑛2 ln

𝐴𝑜𝑢
𝐴0

(−2 + 𝑛2)

−
𝐾𝑝𝑛1𝐴𝑜𝑢

2 𝑒
𝑛1 ln

𝐴𝑜𝑢
𝐴0

(2 + 𝑛1)
 

+
𝐾𝑝𝑛1𝐴𝑖𝑛

2 𝑒
𝑛1 ln

𝐴𝑖𝑛
𝐴0

(2 + 𝑛1)
) 

(19) 

Eqn. (19) can be rearranged to yield a quadratic polynomial in 
Q, given as 

𝛼𝑄2

𝜅
 (− ln

𝐴𝑜𝑢

𝐴0
+ ln

𝐴𝑖𝑛

𝐴0
) + 𝐿𝑄 −

(−
𝐾𝑝𝑛2𝐴𝑖𝑛

2 𝑒
−𝑛2 ln

𝐴𝑖𝑛
𝐴0

𝜅𝜌(−2+𝑛2)
+

𝐾𝑝𝑛2𝐴𝑜𝑢
2 𝑒

−𝑛2 ln
𝐴𝑜𝑢
𝐴0

𝜅𝜌(−2+𝑛2)
−

𝐾𝑝𝑛1𝐴𝑜𝑢
2 𝑒

𝑛1 ln
𝐴𝑜𝑢
𝐴0

𝜅𝜌(2+𝑛1)
 +

𝐾𝑝𝑛1𝐴𝑖𝑛
2 𝑒

𝑛1 ln
𝐴𝑖𝑛
𝐴0

𝜅𝜌(2+𝑛1)
) = 0   

(20) 

 

We can solve Eqn. (20) for the roots of 𝑄 by applying the 
quadratic formula, thus obtain 

 

𝑄 =

−𝐿 ± √𝐿2 − 
4𝛼
𝜅

(− ln
𝐴𝑜𝑢

𝐴0
 +  ln

𝐴𝑖𝑛

𝐴0
) (− 

𝐾𝑝𝑛2

𝜅𝜌(−2 + 𝑛2)
[𝐴𝑜𝑢

2 ((
𝐴𝑜𝑢

𝐴0
)

−𝑛2

− 𝐴𝑖𝑛
2 (

𝐴𝑖𝑛

𝐴0
)

−𝑛2

) ]  +  
𝐾𝑝𝑛1

𝜅𝜌(2 + 𝑛1)
[𝐴𝑜𝑢

2 ((
𝐴𝑜𝑢

𝐴0
)

𝑛1

− 𝐴𝑖𝑛
2 (

𝐴𝑖𝑛

𝐴0
)

𝑛1

) ])

2𝛼
𝜅

(− ln
𝐴𝑜𝑢

𝐴0
 +  ln

𝐴𝑖𝑛

𝐴0
)

  

 (21) 

If we limit the solution to a specific condition of 𝐴𝑖𝑛 > 𝐴𝑜𝑢𝑡, the two roots must be real. Also, in ensuring the flow to be 
consistent in direction with the pressure gradient, the root with the plus sign should be chosen so that positive flow rate is 
obtained. This is because, since 𝐴𝑖𝑛 > 𝐴𝑜𝑢𝑡 it can be shown that the denominator is always positive and the square root is always 
greater than 𝐿. So, the flow rate can be given as  

𝑄 = 

−𝐿 + √𝐿2 − 
4𝛼
𝜅

(− ln
𝐴𝑜𝑢

𝐴0
 +  ln

𝐴𝑖𝑛

𝐴0
) ( − 

𝐾𝑝𝑛2

𝜅𝜌(−2 + 𝑛2)
 [𝐴𝑜𝑢

2 ((
𝐴𝑜𝑢

𝐴0
)

−𝑛2

−  𝐴𝑖𝑛
2 (

𝐴𝑖𝑛

𝐴0
)

−𝑛2

) ] +
𝐾𝑝𝑛1

𝜅𝜌(2 + 𝑛1)
 [𝐴𝑜𝑢

2 ((
𝐴𝑜𝑢

𝐴0
)

𝑛1

− 𝐴𝑖𝑛
2 (

𝐴𝑖𝑛

𝐴0
)

𝑛1

) ] )

2𝛼
𝜅

(− ln
𝐴𝑜𝑢

𝐴0
 +  ln

𝐴𝑖𝑛

𝐴0
)

 

(22) 

Eqn. (22) is the equivalent of the Poiseuille equation for 
rigid tubes but instead of pressure difference, it is expressed 
in terms of the specified inlet and outlet areas i.e. 𝐴𝑖𝑛, 𝐴𝑜𝑢 
which actually represent the specification of pressure at 
boundaries through the constitutive equation given by Eqn. 
(9) (e.g. using Eqn. (9), 𝐴𝑖𝑛 or 𝐴𝑜𝑢 is solved for the desired 
pressure at the boundary) . 

 

5. FINITE ELEMENT FORMULATION 

 The weak form of the formulation (after conducting 
integration by parts to Eq. (2) and (3)) can be written as 

∫ (−𝐅 ∙ (
∂𝐰

∂x
) +  𝐁 ∙ 𝐰 ) 𝑑x

x

+ [𝐅 ⋅ 𝐰]|𝑥=0
𝑥=𝐿 = 0 (23) 

where 𝐰 is the linear weighting functions whilst 𝐅and 𝐁 
give the vector representation of Eq. (2) and (3),  given 
herein as  

F = [
𝑄

𝛼𝑄2

𝐴
+ ∫

𝐴
𝜌

𝜕𝑝
𝜕𝐴

𝑑𝐴
] 

 
(24) 

B =  [
0

𝜅
𝑄
𝐴

] (25) 

 

 The weak formulation of Eq. (37) is then coupled with 
the suitable boundary conditions through the introduction of 

compatibility conditions. The non-reflecting boundary 
conditions are used to project the differential equations in 
the direction of outgoing characteristic variables at the inlet 
and outlet in producing the compatibility conditions as 
proposed in Sochi [10, 12] and Thompson [17] and as 
detailed next.     Based on the method of characteristics and 
by assuming that 𝐴 > 0, the eigenvalues and left 
eigenvectors of a matrix 𝐇 defined as  

𝐇 = 
𝜕𝐅

𝜕𝐔
 (26) 

can be obtained as follows. The eigenvalues can be obtained 
by solving  

det( 𝐇 − 𝛌𝐈 ) = 0 (27) 

where  𝛌 is the eigenvalues, I is identity matrix and 𝐇 is 
defined in Eq. (26) as the matrix of partial derivative of 𝐅 

with respect to 𝐔. The matrix 𝐇 has two eigenvalues 
represented as 𝜆1,2 which can be obtained by the quadratic 

formula. Left eigenvectors are then obtained by solving the 
following system 

𝐋𝐇 = 𝚲𝐋 (28) 

where 𝐋 is the left eigenvectors of 𝐇  and 𝚲 is given as 

𝚲 = [
𝜆1 0
0 𝜆2

] (29) 
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Once the left eigenvectors, 𝐋 is obtained, the desired 
compatibility conditions is then given by  

L1,2 (H
𝜕U

𝜕𝑥
+ B) = 0 (30) 

where 𝐋𝟏,𝟐  are the left-eigenvectors. The imposition of 

boundary condition is accomplished by replacing the 
continuity equation at the boundary node with Eq. (30).  
The expanded expressions of the eigenvalues, left 
eigenvectors and compatibility conditions for each of the 
constitutive model are given next.  

 

 𝑝 − 𝐴 Model 1  

The eigenvalues of 𝐇 for 𝑝 − 𝐴 Model 1, obtained by 
solving Eq. (27) can be given in expanded form as  

𝜆1,2 =  𝛼
𝑄

𝐴
 ± √

𝑄2

𝐴2
(𝛼2 − 𝛼) + (

𝛽 √𝐴

2𝜌𝐴0

)    (31) 

Inserting Eq. (31) into Eq. (29) and by solving Eq. (28), the 
left eigenvalues of 𝐇 for 𝑝 − 𝐴 Model 1, can be given as 

𝐋𝟏,𝟐

= [−𝛼
𝑄

𝐴
 ± √

𝑄2

𝐴2
 (𝛼2 − 𝛼) + (

𝛽 √𝐴

2𝜌𝐴0

)  1]   
(32) 

Inserting Eq. (32) into Eq. (30), we then obtain the 
compatibility conditions for 𝑝 − 𝐴 Model 1 which can be 
given as 

  (−𝛼
𝑄

𝐴
 ± √

𝑄2

𝐴2
 (𝛼2 − 𝛼) +  (

𝛽 √𝐴

2𝜌𝐴0

)  )
𝜕𝑄

𝜕𝑥

+ (−𝛼
𝑄2

𝐴2
+ (

𝛽 √𝐴

2𝜌𝐴0

))
𝜕𝐴

𝜕𝑥

+ (2𝛼
𝜕𝑄

𝜕𝑥
+  𝜅)

𝑄

𝐴
= 0 

(33) 

 

𝑝 − 𝐴 Model 2 

The eigenvalues of 𝐇 for 𝑝 − 𝐴 Model 2, obtained by 
solving Eq. (27) can be given in expanded form as 

𝜆1,2

=  𝛼
𝑄

𝐴
 

± √
𝑄2

𝐴2
(𝛼2 − 𝛼) +

𝐾𝑝

𝜌
[(

𝐴

𝐴0

)
−𝑛2

𝑛2 + (
𝐴

𝐴0

)
𝑛1

𝑛1]   

(34) 

 

Inserting Eq. (34) into Eq. (29) and by solving Eq. (28), the 
left eigenvalues of 𝐇 for 𝑝 − 𝐴 Model 2, can be given as 

 

 

 

𝐋𝟏,𝟐 =

[−𝛼
𝑄

𝐴
 ±  √

𝑄2

𝐴2  (𝛼
2 − 𝛼) + 

𝐾𝑝

𝜌
[(

𝐴

𝐴0
)
−𝑛2

𝑛2 + (
𝐴

𝐴0
)
𝑛1

𝑛1]   1]  

 (35) 
 

 

Inserting Eq. (35) into Eq. (30), we then obtain the 
compatibility conditions for 𝑝 − 𝐴 Model 2 which can be as 

(−𝛼
𝑄

𝐴
 

± √
𝑄2

𝐴2
 (𝛼2 − 𝛼) + 

𝐾𝑝

𝜌
[(

𝐴

𝐴0

)
−𝑛2

𝑛2 + (
𝐴

𝐴0

)
𝑛1

𝑛1]  )
𝜕𝑄

𝜕𝑥

+ (−𝛼
𝑄2

𝐴2
+ 

𝐾𝑝

𝜌
[(

𝐴

𝐴0

)
−𝑛2

𝑛2 + (
𝐴

𝐴0

)
𝑛1

𝑛1])
𝜕𝐴

𝜕𝑥

+ (2𝛼
𝜕𝑄

𝜕𝑥
+  𝜅)

𝑄

𝐴
= 0 

 (36) 
 

5.1 SUPG Formulation 

 In employing the SUPG stabilization technique, the 
stabilization term is added to Eq. (23) to give 

∫ (−𝐅 ∙ (
∂𝐰

∂x
) +  𝐁 ∙ 𝐰 ) 𝑑x

x

+ ∫(𝐏(𝐰) 𝝉 𝐑(𝐔))
𝑥

𝑑x

+ [𝐅 ⋅ 𝐰]|𝑥=0
𝑥=𝐿 = 0 

(37) 

where 𝐏(𝐰) is the operator applied to the test function, 
𝐑(𝐔) is the residual of the governing equation, and 𝝉 is the 
stabilization parameter, all as detailed in Donea and Huerta 
[18] and Soulaïmani and Fortin [19] and given herein as  

P(w) = H
𝜕w

𝜕𝑥
 (38) 

R(U) =
∂F

∂x
+ B (39) 

𝜏 = (𝑏𝑏)−
1
2 (40) 

𝑏 =
𝜕𝜉

𝜕𝑥
H (41) 

where 𝑥 = 𝑥(𝜉) is the actual coordinates whilst 𝜉 refers to 
normalized local coordinates. To note, the weighting 
function 𝐰 in Eq. (37) is the same as the shape functions, 
𝑁𝑖. The expanded expression of Eq. (37) for each 
constitutive model is detailed next for the discretization that 
uses linear shape functions (i.e. 𝑁𝑖 where 𝑖 = 1,2).  

 

𝑝 − 𝐴 Model 1  

With the descriptions given by Eq. (38) to (41), expanded 
expression of Eq. (37) can be given for 𝑝 − 𝐴 Model 1 as 
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−∫

[
 
 
 
 0

𝜕𝑁𝑗
𝑇

𝜕𝑥
𝑁𝑖

𝜕𝑁𝑗
𝑇

𝜕𝑥
 

𝛽

3𝜌𝐴𝑜
√𝑁𝑚𝐴𝑚𝑁𝑖

𝜕𝑁𝑗
𝑇

𝜕𝑥
 𝛼

𝑁𝑘𝑄𝑘

𝑁𝑚𝐴𝑚

𝑁𝑖]
 
 
 
 

x

 𝑑x {
𝐴
𝑄

} + ∫ [
0 0

0 𝑁𝑗
𝑇  

𝜅

𝑁𝑚𝐴𝑚

𝑁𝑖
]

x

𝑑x  {
𝐴
𝑄

}  

+∫

[
 
 
 
 0

𝜕𝑁𝑗
𝑇

𝜕𝑥
(−𝛼

𝑁𝑘𝑄𝑘
2

𝑁𝑚𝐴𝑚
2 +

𝛽

2𝜌𝐴𝑜
√𝑁𝑚𝐴𝑚)

𝜕𝑁𝑗
𝑇

𝜕𝑥
 

𝜕𝑁𝑗
𝑇

𝜕𝑥
 (2𝛼

𝑁𝑘𝑄𝑘

𝑁𝑚𝐴𝑚

)
]
 
 
 
 

𝑥

[𝜏]

[
 
 
 
 0

𝜕𝑁𝑖

𝜕𝑥
 

(−𝛼
𝑁𝑘𝑄𝑘

2

𝑁𝑚𝐴𝑚
2 +

𝛽

2𝜌𝐴𝑜
√𝑁𝑚𝐴𝑚)

𝜕𝑁𝑖

𝜕𝑥
(2𝛼

𝑁𝑘𝑄𝑘

𝑁𝑚𝐴𝑚

)
𝜕𝑁𝑖

𝜕𝑥 ]
 
 
 
 

𝑑𝑥 {
𝐴
𝑄

}

+ ∫

[
 
 
 
 0

𝜕𝑁𝑗
𝑇

𝜕𝑥
(−𝛼

𝑁𝑘𝑄𝑘
2

𝑁𝑚𝐴𝑚
2 +

𝛽

2𝜌𝐴𝑜
√𝑁𝑚𝐴𝑚)

𝜕𝑁𝑗
𝑇

𝜕𝑥
 

𝜕𝑁𝑗
𝑇

𝜕𝑥
 (2𝛼

𝑁𝑘𝑄𝑘

𝑁𝑚𝐴𝑚

)
]
 
 
 
 

𝑥

[𝜏] [

0 0

0 𝜅
𝑁𝑘𝑄𝑘

𝑁𝑚𝐴𝑚

𝑁𝑖
] 𝑑𝑥 {

𝐴
𝑄

}

+ ([

0 𝑁𝑗
𝑇𝑁𝑖

𝑁𝑗
𝑇  

𝛽

3𝜌𝐴𝑜
√𝑁𝑚𝐴𝑚 𝑁𝑖 𝑁𝑗

𝑇 𝛼
𝑁𝑘𝑄𝑘

𝑁𝑚𝐴𝑚

 𝑁𝑖|
])|

𝑥=0

𝑥=𝐿

{
𝐴
𝑄

} = {
0
0
} 

(42) 
 

where  

𝜏 = ([

0 1

−𝛼
𝑁𝑘𝑄𝑘

2

𝑁𝑚𝐴𝑚
2 +

𝛽

2𝜌𝐴𝑜
√𝑁𝑚𝐴𝑚 2𝛼

𝑁𝑘𝑄𝑘

𝑁𝑚𝐴𝑚

] [

0 1

−𝛼
𝑁𝑘𝑄𝑘

2

𝑁𝑚𝐴𝑚
2 +

𝛽

2𝜌𝐴𝑜
√𝑁𝑚𝐴𝑚 2𝛼

𝑁𝑘𝑄𝑘

𝑁𝑚𝐴𝑚

])

−
1
2

 

 (43) 

𝑝 − 𝐴 Model 2  

With the descriptions given by Eq. (38) to (41), expanded expression of Eq. (37) can be given for 𝑝 − 𝐴 Model 2 as 

−∫

[
 
 
 
 
 0

𝜕𝑁𝑗
𝑇

𝜕𝑥
𝑁𝑖

𝜕𝑁𝑗
𝑇

𝜕𝑥
 
𝐾𝑝

𝜌
(
𝑛1𝑒

𝑛1 ln(
𝑁𝑚𝐴𝑚

𝐴0
)

𝑛1 + 1
−

𝑛2𝑒
−𝑛2 ln(

𝑁𝑚𝐴𝑚
𝐴0

)

𝑛2 − 1
)𝑁𝑖

𝜕𝑁𝑗
𝑇

𝜕𝑥
 𝛼

𝑁𝑘𝑄𝑘

𝑁𝑚𝐴𝑚

𝑁𝑖

]
 
 
 
 
 

x

 𝑑x {
𝐴
𝑄
} + ∫ [

0 0

0 𝑁𝑗
𝑇  

𝜅

𝑁𝑚𝐴𝑚

𝑁𝑖
]

𝑥

𝑑x  {
𝐴
𝑄

}  

 

+ ∫

[
 
 
 
 0

𝜕𝑁𝑗
𝑇

𝜕𝑥
(
𝐾𝑝

𝜌
[(

𝑁𝑚𝐴𝑚

𝐴0

)
−𝑛2

𝑛2 + (
𝑁𝑚𝐴𝑚

𝐴0

)
𝑛1

𝑛1] −  
𝛼𝑁𝑘𝑄𝑘

2

𝑁𝑚𝐴𝑚
2 )

𝜕𝑁𝑗
𝑇

𝜕𝑥
 

𝜕𝑁𝑗
𝑇

𝜕𝑥
 (2𝛼

𝑁𝑘𝑄𝑘

𝑁𝑚𝐴𝑚

)
]
 
 
 
 

𝑥

[𝜏] 

[
 
 
 
 0

𝜕𝑁𝑖

𝜕𝑥
 

(
𝐾𝑝

𝜌
[(

𝑁𝑚𝐴𝑚

𝐴0

)
−𝑛2

𝑛2 + (
𝑁𝑚𝐴𝑚

𝐴0

)
𝑛1

𝑛1] −  
𝛼𝑁𝑘𝑄𝑘

2

𝑁𝑚𝐴𝑚
2)

𝜕𝑁𝑖

𝜕𝑥
(2𝛼

𝑁𝑘𝑄𝑘

𝑁𝑚𝐴𝑚

)
𝜕𝑁𝑖

𝜕𝑥 ]
 
 
 
 

𝑑𝑥 {
𝐴
𝑄

}   

+ ∫

[
 
 
 
 0

𝜕𝑁𝑗
𝑇

𝜕𝑥
(
𝐾𝑝

𝜌
[(

𝑁𝑚𝐴𝑚

𝐴0

)
−𝑛2

𝑛2 + (
𝑁𝑚𝐴𝑚

𝐴0

)
𝑛1

𝑛1] −  
𝛼𝑁𝑘𝑄𝑘

2

𝑁𝑚𝐴𝑚
2)

𝜕𝑁𝑗
𝑇

𝜕𝑥
 

𝜕𝑁𝑗
𝑇

𝜕𝑥
 (2𝛼

𝑁𝑘𝑄𝑘

𝑁𝑚𝐴𝑚

)
]
 
 
 
 

𝑥

[𝜏] [

0 0

0 𝜅
𝑁𝑘𝑄𝑘

𝑁𝑚𝐴𝑚

𝑁𝑖
] 𝑑𝑥 {

𝐴
𝑄

}

+

(

 
 

[
 
 
 
 

0 𝑁𝑗
𝑇𝑁𝑖

𝑁𝑗
𝑇  

𝐾𝑝

𝜌
(
𝑛1𝑒

𝑛1 ln(
𝑁𝑚𝐴𝑚

𝐴0
)

𝑛1 + 1
−

𝑛2𝑒
−𝑛2 ln(

𝑁𝑚𝐴𝑚
𝐴0

)

𝑛2 − 1
) 𝑁𝑖 𝑁𝑗

𝑇 𝛼
𝑁𝑘𝑄𝑘

𝑁𝑚𝐴𝑚

 𝑁𝑖

]
 
 
 
 

)

 
 

|
|

𝑥=0

𝑥=𝐿

{
𝐴
𝑄

} = {
0
0
} 

(44) 
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where  

𝜏 = 

([

0 1
𝐾𝑝

𝜌
[(

𝑁𝑚𝐴𝑚

𝐴0

)
−𝑛2

𝑛2 + (
𝑁𝑚𝐴𝑚

𝐴0

)
𝑛1

𝑛1] − 
𝛼𝑁𝑘𝑄𝑘

2

𝑁𝑚𝐴𝑚
2 2𝛼

𝑁𝑘𝑄𝑘

𝑁𝑚𝐴𝑚

] [

0 1
𝐾𝑝

𝜌
[(

𝑁𝑚𝐴𝑚

𝐴0

)
−𝑛2

𝑛2 + (
𝑁𝑚𝐴𝑚

𝐴0

)
𝑛1

𝑛1] − 
𝛼𝑁𝑘𝑄𝑘

2

𝑁𝑚𝐴𝑚
2 2𝛼

𝑁𝑘𝑄𝑘

𝑁𝑚𝐴𝑚

])

−
1
2

 

(45) 

 

5.2 Nonlinear Solver 

This study employs Newton-Raphson as the nonlinear 
solver. For this, Eqn.(42) or Eqn.(44) can be arranged in 
matrix form as 

[
[𝑘11] [𝑘12]

[𝑘21] [𝑘22]
] {

𝐴
𝑄

} = {
0
0
} (46) 

which can be further simplified into the general form 

[𝐾(𝑈)]{𝑈} = 0 (47) 

The residual can be expressed as 

{𝑅(𝑈)} ≡ [𝐾(𝑈)]{𝑈} (48) 

 

Expanding Eq. (48) by Taylor’s series about the known 

𝑟𝑡ℎ solution gives 

{𝑅(𝑈)} = 0 = {𝑅(𝑈)𝑟} +
𝜕{𝑅(𝑈)𝑟}

𝜕{𝑈}𝑟
{∆𝑈} (49) 

where the series has been truncated up to linear terms only. 
Rearranging Eq. (49) gives 

[𝑇(𝑈)𝑟]{∆𝑈} =  −{𝑅(𝑈)𝑟} (50) 

where [𝑇(𝑈)𝑟] is thus the tangent stiffness given as  

[𝑇(𝑈)𝑟] =
𝜕{𝑅(𝑈)𝑟}

𝜕{𝑈}𝑟
 (51) 

 

For a vessel with n nodes and for residual {𝑅} expressed 
as (from Eq. (24) and (25)) 

{𝑅} =  {𝐹} + {𝐵} = [
𝑄

𝛼𝑄2

𝐴
+ ∫

𝐴
𝜌

𝜕𝑝
𝜕𝐴

𝑑𝐴
]

+  [
0

𝜅
𝑄
𝐴

] = {
𝑓𝑖

𝑔𝑖
} 

(52) 

 

The expanded form of the tangent stiffness given by Eq. 
(51) can be given as  

 

𝐓 = [𝑇(𝑈)𝑟]

=

[
 
 
 
 
 
 
 
 
 
∂𝑓1
∂𝐴1

∂𝑔1

∂𝐴1

⋯

∂𝑓1
∂𝐴𝑛

∂𝑔1

∂𝐴𝑛

⋮ ⋱ ⋮
∂𝑓𝑛
∂𝐴1

∂𝑔𝑛

∂𝐴1

⋯

∂𝑓𝑛
∂𝐴𝑛

∂𝑔𝑛

∂𝐴𝑛

∂𝑓1
∂𝑄1

∂𝑔1

∂𝑄1

⋯

∂𝑓1
∂𝑄𝑛

∂𝑔1

∂𝑄𝑛

⋮ ⋱ ⋮
∂𝑓𝑛
∂𝑄1

∂𝑔𝑛

∂𝑄1

⋯

∂𝑓𝑛
∂𝑄𝑛

∂𝑔𝑛

∂𝑄𝑛]
 
 
 
 
 
 
 
 
 

 
(53) 

 

The problem is solved by first solving for the change of 
variable, ∆𝐔 symbolically given as 

∆𝐔 = −𝐓−𝟏𝐑 (54) 

Then the variables are updated by 

{𝐔}𝒓+𝟏 = {𝐔}𝒓 + {∆𝐔} (55) 

The above process will be iterated until the satisfaction of 
some specified convergence criteria is attained.  
 

6. VALIDATION OF FORMULATIONS 

 In this study, once the formulations are established, the 
corresponding source codes are written in Matlab. Results 
obtained are then verified against the analytical solutions. 
The following subsections detailed such verifications 
according to the constitutive laws.  
 

𝑝 − 𝐴 Model 1 

 Figures 3(a), (b) and (c) show the plotting of results for 
the cross sectional area, pressure and flow rate distribution, 
respectively, along the vessel. The plots are given for 
various pressure difference, ∆𝑃. Based on the figures, it can 
be seen that, for relatively lower values of pressure 
differences, (i.e. ∆𝑃<1800Pa), no oscillations are observed. 
On the other hand, for ∆𝑃=1800Pa, slight oscillation is 
observed for Bubnov Galerkin formulation represented by 
the wiggling-like curve which becomes greater for higher 
pressure differences (i.e. ∆𝑃=2200Pa, ∆𝑃=2500Pa). 
However, these oscillations vanish when SUPG formulation 
is employed hence the attainment of the stabilized solutions. 
This observation marks the success of this study.  
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(a) Area 

 
(b) Pressure 

 
(c) Flow Rate 

Fig. 3 Stabilization of solutions with the employment of SUPG formulation for 𝑝 − 𝐴 Model 1 
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Another trend that can be observed is that, despite the 
wiggling found in the solutions of pressure and area 
distributions, flow rate solutions seem not being affected. 
This highlights that pressure and area solutions are more 
sensitive to instability than the flow rate solution.  

 

    Also, it can be observed that somehow both Bubnov 
and SUPG formulations diverge from the analytical 
solutions towards the outlet as the pressure difference 
increases. This is a typical phenomenon (hence 
shortcoming) of both finite element formulation which 
occurs due to sharp internal and boundary layers as 
identified and studied in Hughes et al. [20] and Tezduyar 
and Park [21].   

 

    For future reference, numerical data of pressure taken 
at 𝑥 = 0.45𝑚 related to the employment of constitutive 
relation of 𝑝 − 𝐴 Model 1 are given in Table 1.  

 

Table 1 Numerical data of pressure distributions taken at 𝑥 = 0.45𝑚 for 
𝑝 − 𝐴 Model 1 

Inlet 
Pressure, 
𝑃𝑖𝑛 (Pa) 

Outlet 
Pressure, 
𝑃𝑜𝑢 (Pa) 

Pressure, P 
-Present 
(Analytical)  

(Pa) 

Pressure, P 
-Present 
(Bubnov)  

(Pa) 

Pressure, P 
-Present  

(SUPG)  

(Pa) 

400 0 219.0113 221.8988 221.9219 

900 0 544.7454 550.6878 551.0865 

 400 679.5921 683.4366 683.4965 

 800 856.4529 857.0487 857.0489 

1400 0 956.2520 960.1980 964.4542 

 400 1021.7960 1028.1233 1028.7451 

 800 1147.6963 1152.2351 1152.3028 

 1200 1311.3055 1312.8957 1312.9524 

1800 0 1332.9789 1309.1983 1343.5355 

 400 1349.2886 1353.3251 1357.4480 

 800 1418.0922 1424.6723 1425.1408 

 1200 1540.6901 1545.3126 1545.3213 

2200 0 1753.8284 1631.7019 1756.4283 

 400 1739.3268 1713.7936 1750.2536 

 800 1755.8363 1760.0212 1763.9044 

 1200 1821.4187 1828.0692 1828.3641 

2500 0 2067.5523 1831.6639 2057.8781 

 400 2042.1463 1951.5272 2050.8800 

 800 2033.6771 2022.2246 2041.8587 

 1200 2061.0896 2067.0662 2069.0130 

 

𝑝 − 𝐴 Model 2 

Figures 4(a), (b) and (c) give the plotting of results for 
𝑝 − 𝐴 Model 2. Based on the figures, similar trends are 
observed where the oscillations are greater for higher 
pressure difference for Bubnov formulation which is 
stabilized when SUPG formulation is employed. Again, no 
oscillation is observed for flow-rate solution thus confirms 
the insensitivity of the variable to instability problem, at 
least in the range of pressure differences considered. The 
typical phenomenon of divergence of the numerical 
formulations from the analytical solution due to sharp 
boundary is also observed.  

 
    For future reference, numerical data of pressure taken 

at 𝑥 = 0.045𝑚 related to the employment of constitutive 
relation of 𝑝 − 𝐴 Model 2 are given in Table 2. 

 

Table 2 Numerical data of pressure distributions taken at 𝑥 = 0.045𝑚 for 
𝑝 − 𝐴 Model 2 

Inlet 
Pressure, 
𝑃𝑖𝑛  

(mmHg) 

Outlet 
Pressure, 
𝑃𝑜𝑢  

(mmHg) 

Pressure, P 
Present 
(Analytical)  

(mmHg) 

Pressure, P 
Present  

(Bubnov) 

(mmHg) 

Pressure, P 
Present  

(SUPG)  

(mmHg) 

70 60 65.7656 65.7697 65.7696 

80 60 72.9638 72.9336 72.9593 

90 60 81.7944 81.1998 81.6302 

 80 85.6916 85.6948 85.6949 

100 60 91.5684 88.4568 90.7133 

 80 92.4244 92.4131 92.4241 

105 60 96.6077 91.5647 95.2215 

 80 96.3631 96.3132 96.3560 
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(a) Area 

 

(b) Pressure 

 

(c) Flow Rate 

Fig. 4 Stabilization of solutions with the employment of SUPG formulation for 𝑝 − 𝐴 Model 2  
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7. SUMMARY AND CONCLUSIONS 

    In this study, SUPG formulation has been developed 
for the one-dimensional fluid-structure-interaction (1D-FS1) 
steady flow that employs pressure-area constitutive relation 
to complement the mass and the momentum equations of 
Navier-Stokes. For validation purposes, an analytical 
solution is derived for one of the constitutive relation. From 
the study, it was found that SUPG able to provide stable 
solutions to the problem which otherwise would wiggle due 
to numerical instability. This study is important as it 
provides the first SUPG formulation and numerical data for 
future reference for the specific problem of 1D-FSI 
employing pressure-area constitutive relation.  
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