On $\hat{\mu}$ -Continuous Functions In Topological Spaces

S. Pious Missier Department of Mathematics V.O.Chidambaram College Tuticorin – 628 008

E.Sucila

Department of Mathematics G.Venkataswamy Naidu College Kovilpatti.

ABSTRACT

In this paper, we introduce $\hat{\mu}$ -continuous map and their relations with some generalized continuous maps. Various properties and characterizations of $\hat{\mu}$ - continuous map are discussed by using $\hat{\mu}$ -closure and $\hat{\mu}$ -interior under certain conditions.

KEYWORDS:

 $\hat{\mu}$ -continuous map, $\hat{\mu}$ -closure, $\hat{\mu}$ -interior.

2000 Mathematics Subject Code Classification : 54C05, 54C08.

1. INTRODUCTION

Many others ([4] [5] [6] [13]) working in the field of general topology have shown more interest in studying the concepts of generalizations of continuous map. A weak form of continuous map called g-continuous map was introduced by Balachandran, Sundaram and Maki [2].

M.K.R.S.Veerakumar has introduced several generalized closed sets namely, \hat{g} -closed sets, g*-closed sets, g*p-closed sets, *g-closed sets, α *g-closed sets, *gs-closed sets, μ -closed sets, μ p-closed sets and μ s-closed sets and their continuity. The concept of, $\hat{\mu}$ -closed sets was introduced by S.Pious Missier and E.Sucila [12]. In this paper we introduce the concept of $\hat{\mu}$ -continuous map in topological spaces.

2. PRELIMINARIES

Throughout this paper, we consider spaces on which no separation axioms are assumed unless explicitly stated. For $A \subset X$, the closure and interior of A is denoted by cl(A) and int(A) respectively. The complement of A is denoted by A^{C} .

Definition 2.1 :

A subset A of a topological space (X, τ) is called

1. a preopen set [9] if $A \subseteq int(cl(A))$ and preclosed if $cl(int(A)) \subseteq A$.

- 2. a semiopen set [6] if $A \subseteq cl(int(A))$ and a semiclosed set if $int(cl(A)) \subseteq A$.
- 3. an α -open set [11] if $A \subseteq int(cl(int(A)))$ and α -closed set if $cl(int(cl(A))) \subseteq A$.
- 4. a semi preopen set [1] if $A \subseteq cl(int(cl(A)))$ and a semipreclosed set if

int $(cl(int(A))) \subseteq A$.

The intersection of all semiclosed (resp. preclosed, semipreclosed, α -closed) sets containing a subset A of X is called semiclosure (resp. preclosure, semipreclosure, α -closure) of A is denoted by scl(A) (resp. pcl(A), spcl(A), α cl(A)).

Definition 2.2 :

A subset A of a topological space (X, τ) is called

- 1. a generalized closed set (briefly g-closed [7] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 2. an α -generalized closed set (briefly α g-closed) [8] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- 3. a \hat{g} -closed set [15] if cl(A) \subseteq U whenever A \subseteq U and U is semiopen in (X, τ).
- 4. a *g–closed set [16] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in (X, τ) .
- 5. a g*-closed set [16] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .
- 6. a g*-preclosed set (briefly g*p-closed) [17] if pcl(A) ⊆ U whenever A ⊆ U and U is g-open in (X, τ).
- 7. a *g- semiclosed set [20] (briefly *gs-closed) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in (X, τ).
- 8. a α *g-closed set [22] if α cl(A) \subseteq U whenever A \subseteq U, and U is \hat{g} -open in (X, τ).
- 9. a ga*-closed set [8] if $\alpha cl(A) \subseteq int(U)$ whenever $A \subseteq U$ and U is α -open in (X, τ) .
- 10. a ψ -closed set [19] if scl(A) \subseteq U whenever A \subseteq U and U is sg–open in (X, τ).
- 11. a g* ψ -closed set [19] if ψ cl(A) \subseteq U whenever A \subseteq U and U is g-open in (X, τ).

- 12. a μ -closed set [21] if cl(A) \subseteq U whenever A \subseteq U and U is $g\alpha^*$ -open in (X, τ).
- 13. a µ-preclosed set (briefly µp–closed) [22] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha^*$ - open in (X, τ) .
- 14. a µ-semiclosed set (briefly µs–closed) [23] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha^*$ -open in (X, τ) .
- 15. a µ̂-closed set [12] if scl(A) ⊆ U whenever A ⊆ U and U is µ-open in (X, τ). The complement of µ̂-closed set is called µ̂- open set. The class of all µ̂-open (resp. µ̂-closed) subsets of X is denoted by µ̂ o(X, τ), (resp. µ̂ c(X, τ)).

Definition 2.3:

A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

- 1. semicontinuous [6] if $f^{-1}(V)$ is semiclosed in (X, τ) for every closed set V in (Y, σ) .
- 2. g-continuous [2] if $f^{1}(V)$ is g-closed in (X, τ) for every closed set V in (Y, σ) .
- 3. α -continuous [10] if f⁻¹(V) is α -closed in (X, τ) for every closed set V in (Y, σ).
- 4. α g-continuous [8] if f⁻¹(V) is α g-closed in (X, τ) for every closed set V in (Y, σ).
- 5. \hat{g} -continuous [15] if $f^{-1}(V)$ is \hat{g} -closed in (X, τ) for every closed set V in (Y, σ) .
- 6. *g-continuous [15] if $f^{-1}(V)$ is *g-closed in (X, τ) for every closed set V in (Y, σ) .
- 7. α^*g continuous [15] if f⁻¹(V) is α^*g -closed in (X, τ) for every closed set V in (Y, σ).
- 8. g*- continuous [16] if $f^{-1}(V)$ is g*-closed in (X, τ) for every closed set V in (Y, σ) .
- 9. g*p- continuous [17] if f $^{-1}(V)$ is g*p-closed in (X, τ) for every closed set V in (Y, σ).
- 10. *gs- continuous [20] if f⁻¹(V) is *gs-closed in (X, τ) for every closed set V in (Y, σ).
- 11. $g^*\psi$ continuous [19] if $f^{-1}(V)$ is $g^*\psi$ -closed in (X, τ) for every closed set V in (Y, σ) .
- 12. μ -continuous [21] if f⁻¹(V) is μ -closed in (X, τ) for every closed set V in (Y, σ).
- 13. µp- continuous [22] if f⁻¹(V) is µp-closed in (X, τ) for every closed set V in (Y, σ).
- 14. μ s- continuous [23] if f⁻¹(V) is μ s-closed in (X, τ) for every closed set V in (Y, σ).

Definition 2.4:

A topological space (X, τ) is called a

1. T $\hat{\mu}$ -space [12] if every $\hat{\mu}$ -closed set is closed.

2. $\alpha T \hat{\mu}$ -space [12] if every $\hat{\mu}$ -closed set is α -closed.

3. sT $\hat{\mu}$ -space [12] if every $\hat{\mu}$ -closed set is semiclosed.

4. pT $\hat{\mu}$ -space [12] if every $\hat{\mu}$ -closed set is preclosed.

5. spT $\hat{\mu}$ -space [12] if every $\hat{\mu}$ -closed set is semipreclosed.

6. $\mu T \hat{\mu}$ -space [12] if every $\hat{\mu}$ -closed set is μ -closed.

3. $\hat{\mu}$ -CONTINUITY

We introduce the following definition.

Definition 3.1:

A function $f: (X, \tau) \to (Y, \sigma)$ is called $\hat{\mu}$ -continuous if $f^{-1}(V)$ is $\hat{\mu}$ -closed subset of

 (X, τ) for every closed subset V of (Y, σ) .

Proposition 3.2 :

Every continuous (resp. semicontinuous) map is $\hat{\mu}$ -continuous but not conversely.

Proof:

The proof follows from the fact that every closed (resp. semiclosed) set is $\hat{\mu}$ -closed.

Example 3.3 :

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{b\}\}$. Define a map $f : X \rightarrow Y$ by f(a) = a, f(b) = b and f(c) = c is $\hat{\mu}$ -continuous. However f is neither continuous nor semicontinuous, since for the closed set $U = \{a, c\}$ in Y, $f^{-1}(U) = \{a, c\}$ which is neither closed nor semiclosed in X.

Proposition 3.4 :

Every α - continuous map is $\hat{\mu}$ -continuous but not conversely.

Proof : The proof follows from the fact that every α -closed set is $\hat{\mu}$ -closed.

Example 3.5:

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{c, a\}\}$ and $\sigma = \{Y, \phi, \{c\}, \{b, c\}\}$.Define a map $f : X \to Y$ by f(a) = a, f(b) = b and f(c) = c. This map is $\hat{\mu}$ -continuous but not α -continuous, since for the closed set $U = \{a\}$ in Y, $f^{-1}(U) = \{a\}$ is not α -closed in X.

Thus the class of all $\hat{\mu}$ -continuous maps properly contains the classes of continuous maps, semicontinuous maps and α -continuous maps.

Remark 3.6 :

The following examples shows that $\hat{\mu}$ -continuity is independent of μ -continuity.

Example 3.7 :

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{b, c\}\}$. Define $f : X \to Y$ by f(a) = a, f(b) = c, f(c) = b is $\hat{\mu}$ -continuous but not μ -continuous, since for the closed set $U = \{a\}$ in Y, $f^{-1}(U) = \{a\}$ is not μ -closed in X.

Example 3.8:

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Let $f : X \to Y$ be an identity map. Here the map f is μ -continuous but not $\hat{\mu}$ -continuous, since for the closed set $U = \{b, c\}$ in Y, $f^{-1}(U) = \{b, c\}$ is not $\hat{\mu}$ -closed in X.

Remark 3.9 :

The following examples shows that $\hat{\mu}$ -continuous is independent of μp – continuous and μs -continuous.

Example 3.10 :

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{c\}\}$. Let $f : X \to Y$ be an identity map. Then f is μp – continuous and μs – continuous but not $\hat{\mu}$ -continuous, since for the closed set $U = \{a, b\}$ in Y, $f^{-1}(U) = \{a, b\}$ is not $\hat{\mu}$ -closed in X.

Example 3.11:

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{b, c\}\}$. Define a map $f : X \rightarrow Y$ by f(a) = a, f(b) = c and f(c) = b. Here the map f is $\hat{\mu}$ -continuous but not μ p-continuous, since for the closed set $U = \{a\}$ in Y, $f^{-1}(U) = \{a\}$ is not μ p-closed in X.

Example 3.12 :

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{b\}\}$. Let $f : X \to Y$ be an identity map. Then the map f is $\hat{\mu}$ -continuous but not μs – continuous, since for the closed set $U = \{a, c\}$ in Y, $f^{-1}(U) = \{a, c\}$ is not μs –closed in X.

Remark 3.13:

The following examples shows that $\hat{\mu}$ -continuous is independent of *g-continuous, α *g-continuous and *gs-continuous.

Example 3.14:

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{c\}\}$. Define a map $f : X \rightarrow Y$ by f(a) = a, f(b) = c and f(c) = b. Here the map f is $\hat{\mu}$ -continuous but it is not *g-continuous, α *g-continuous and *gs-continuous. Since for the closed set $U = \{a, b\}$ in Y, $f^{-1}(U) = \{a, c\}$ which is not *g-closed, α *g-closed and *gs-closed in X.

Example 3.15:

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{c\}\}$. Let $f : X \to Y$ be a map defined by f(a) = b, f(b) = c and f(c) = a. Here the map f is *g-continuous, α *g-continuous and *gs-continuous but not $\hat{\mu}$ -continuous, since for the closed set $U = \{a, b\}$ in Y, $f^{-1}(U) = \{a, c\}$ which is not $\hat{\mu}$ -closed in X.

Remark 3.16:

The following examples shows that $\hat{\mu}$ -continuous is independent of g*-continuous, g-continuous, αg – continuous and g*p-continuous.

Example 3.17:

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a, b\}\}$. Let $f : X \to Y$ be an identity map. Here the map f is $\hat{\mu}$ -continuous but not g*-continuous, g-continuous and g*p-continuous. Since for the closed set $U = \{c\}$ in Y, $f^{-1}(U) = \{c\}$ which is not g*-closed, g-closed, α g-closed and g*p-closed in X.

Example 3.18:

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{c\}\}$. Let $f : X \to Y$ be an identity map. Then the map f is g*-continuous, g-continuous, α g-continuous and g*p-continuous but not $\hat{\mu}$ -continuous. Since for the closed set $U = \{a, b\}$ in Y, $f^{-1}(U) = \{a, b\}$ is not $\hat{\mu}$ -closed in X.

Remark 3.19:

The following examples shows that $\hat{\mu}$ -continuous is independent of $g^*\psi$ -continuous.

Example 3.20:

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{b, c\}\}$. Define a map $f : X \rightarrow Y$ by f(a) = c, f(b) = a and f(c) = b. Here f is $\hat{\mu}$ -continuous but not $g^*\psi$ - continuous, since for the closed set $U = \{a\}$ in Y, $f^{-1}(U) = \{b\}$ which is not $g^*\psi$ -closed in X.

Example 3.21:

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Let $f : X \to Y$ be an identity map. Then f is $g^*\psi$ - continuous but not $\hat{\mu}$ -continuous, since for the closed set $U = \{b, c\}$ in Y, $f^{-1}(U) = \{b, c\}$ is not $\hat{\mu}$ -closed in X.

Remark 3.22:

The following diagram shows the relationship established between $\hat{\mu}$ -continuous function and some other continuous functions. A \rightarrow B (resp.A \triangleleft + \rightarrow B) represents A implies B but not conversely (resp. A and B are independent of each other).

From the above Propositions and Examples, we have the following diagram.

DIAGRAM

Remark 3.23:

The composition of two $\hat{\mu}$ -continuous maps need not be $\hat{\mu}$ -continuous.

Example 3.24:

Let $X = Y = Z = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, c\}\}, \sigma = \{Y, \phi, \{b, c\}\}$ and $\eta = \{Z, \phi, \{c\}\}$. Define a map $f : X \to Y$ by f(a) = b, f(b) = c and f(c) = a. Let $g : Y \to Z$ be an identity map. Then both f and g are $\hat{\mu}$ -continuous, but $g \circ f$ is not $\hat{\mu}$ -continuous. Since for the closed set $U = \{a, b\}$ in Z, $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) = f^{-1}(\{a, b\}) = \{c, a\}$ which is not $\hat{\mu}$ -closed in X.

Proposition 3.25:

If $f: X \to Y$ is $\hat{\mu}$ -continuous and $g: Y \to Z$ is continuous then their composition

 $g \circ f : X \to Z$ is $\hat{\mu}$ - continuous.

Proof:

Clearly follows from the definitions.

Proposition 3.26:

A map $f : (X, \tau) \to (Y, \sigma)$ is $\hat{\mu}$ -continuous if and only if $f^{-1}(U)$ is $\hat{\mu}$ -open in (X, τ) , for every open set U in (Y, σ) .

Proof:

Let $f : X \to Y$ be $\hat{\mu}$ -continuous and U be an open set in Y. Then $f^{-1}(U^c)$ is $\hat{\mu}$ -closed in X. But $f^{-1}(U^c) = (f^{-1}(U))^c$ and $f^{-1}(U)$ is $\hat{\mu}$ -open in X. Converse is similar.

4. $\hat{\mu}$ - CLOSURE AND $\hat{\mu}$ - INTERIOR

Definition 4.1 :

For every set $E \subset X$ we define the $\hat{\mu}$ -closure of E to be the intersection of all $\hat{\mu}$ -closed sets containing E. In symbols, $\hat{\mu} \operatorname{cl}(E) = \bigcirc \{A : E \subset A, A \in \hat{\mu} \operatorname{C}(X, \tau)\}.$

Lemma 4.2 :

For any $E \subset X$, $E \subset \hat{\mu} \operatorname{cl}(E) \subset \operatorname{cl}(E)$.

Proof:

Since every closed set is $\hat{\mu}$ -closed but not conversely.

Lemma 4.3 :

If $A \subset B$, then $\hat{\mu} \operatorname{cl}(A) \subseteq \hat{\mu} \operatorname{cl}(B)$

Proof:

Clearly follows from Definition 4.1.

Lemma 4.4:

If E is $\hat{\mu}$ -closed, then $\hat{\mu}$ cl(E) = E.

Proof:

Clearly follows from Definition 4.1.

Proposition 4.5 :

Let A be a subset of a topological space X. For any $x \in X$, $x \in \hat{\mu} cl(A)$ if and only if

 $U \cap A \neq \phi$ for every $\hat{\mu}$ -open set U containing x.

Proof:

Necessity : Suppose that $x \in \hat{\mu} \operatorname{cl}(A)$. Let U be an $\hat{\mu}$ -open set containing x such that $U \cap A = \phi$ and so $A \subset U^c$. But U^c is $\hat{\mu}$ -closed and hence $\hat{\mu} \operatorname{cl}(A) \subset U^c$. Since $x \notin U^c$ we obtain $x \notin \hat{\mu} \operatorname{cl}(A)$ which is contrary to the hypothesis.

Sufficiency: Suppose that every $\hat{\mu}$ -open set of X containing x meets A. If $x \notin \hat{\mu} \operatorname{cl}(A)$, then there exists an $\hat{\mu}$ -closed F of X such that $A \subset F$ and $x \notin F$. Therefore, $x \in F^c$ and F^c is an $\hat{\mu}$ -open set containing x. But $F^c \cap A = \phi$. This is contrary to the hypothesis.

Definition 4.6 :

For any $A \subset X$, $\hat{\mu}$ int(A) is defined as the union of all $\hat{\mu}$ -open sets contained in A. That is, $\hat{\mu}$ int(A) = U{U : U \subset A and U \in \hat{\mu} o(X, \tau)}

Lemma 4.7:

For any set $A \subset X$, $int(A) \subset \hat{\mu}$ int(A).

Proof:

For any two subsets A_1 and A_2 of X,

- (i) If $A_1 \subset A_2$, then $\hat{\mu} \operatorname{int}(A_1) \subseteq \hat{\mu} \operatorname{int}(A_2)$.
- (ii) $\hat{\mu}$ int $(A_1 \cup A_2) \supset \hat{\mu}$ int $(A_1) \cup \hat{\mu}$ int (A_2) .

Lemma 4.9 :

If A is $\hat{\mu}$ -open, then A = $\hat{\mu}$ int(A).

Proof:

Clearly follows from the Definition 4.6.

Proposition 4.9 :

Let A be a subset of a space X, then the following are true.

- (i) $(\hat{\mu} \operatorname{int}(A))^{c} = \hat{\mu} \operatorname{cl}(A^{c})$
- (ii) $\hat{\mu}$ int(A) = $(\hat{\mu} cl(A^c))^c$
- (iii) $\hat{\mu} \operatorname{cl}(A) = (\hat{\mu} \operatorname{int}(A^c))^c$

Proof:

(i) Let $x \in (\hat{\mu} \operatorname{int}(A))^c$. Then $x \notin \hat{\mu} \operatorname{int}(A)$. That is, every $\hat{\mu}$ -open set U containing x such that $U \not\subset A$. Thus every $\hat{\mu}$ -open set U containing x is such that $U \cap A^c \neq \phi$. By Proposition 4.5, $x \in \hat{\mu} \operatorname{cl}(A^c)$ and therefore, $(\hat{\mu} \operatorname{int}(A))^c \subset \hat{\mu} \operatorname{cl}(A^c)$.

Conversely, let $x \in \hat{\mu} \operatorname{cl}(A^c)$. Then by Proposition 4.5, every $\hat{\mu}$ -open set U containing x is such that $U \cap A^c \neq \phi$. By definition 4.6, $x \notin \hat{\mu} \operatorname{int}(A)$, hence $x \in (\hat{\mu} \operatorname{int}(A))^c$ and so $\hat{\mu} \operatorname{cl}(A^c) \subset (\hat{\mu} \operatorname{int}(A))^c$. Thus $\hat{\mu} \operatorname{cl}(A^c) = (\hat{\mu} \operatorname{int}(A))^c$

- (ii) Follows by taking complements in (i)
- (iii) Follows by replacing A by A^c in (i)

Proposition 4.10 :

For a subset A of a topological space X, the following conditions are equivalent :

(i) $\hat{\mu} o(X, \tau)$ is closed under any union,

(ii) A is $\hat{\mu}$ -closed if and only if $\hat{\mu} \operatorname{cl}(A) = A$.

(iii) A is $\hat{\mu}$ -open if and only if $\hat{\mu}$ int(A) = A.

Proof:

(i) \Rightarrow (ii) : Let A be an $\hat{\mu}$ -closed set. Then by definition of $\hat{\mu}$ -closure, we get $\hat{\mu} \operatorname{cl}(A) = A$. Conversely, assume that $\hat{\mu} \operatorname{cl}(A) = A$. For each $x \in A^c$, $x \notin \hat{\mu} \operatorname{cl}(A)$, by Proposition 4.5 there exist an $\hat{\mu}$ -openset G_x such that $G_x \cap A = \phi$ and hence $x \in G_x \subset A^c$.

Therefore, we obtain $A^c = \bigcup_{x \in A^c} G_x$. By (i) A^c is $\hat{\mu}$ -open and hence A is $\hat{\mu}$ -closed.

(ii) \Rightarrow (iii) = Follows by (ii) and proposition 4.9.

(iii) \Rightarrow (i) = Let {U_{α}/ $\alpha \in \land$ } be a family of $\hat{\mu}$ -open sets of X. Put U = U U_{α}. For

each $x \in U$, there exist $\alpha(x) \in \wedge$ such that $x \in U_{\alpha(x)} \subset U$. Since $U_{\alpha(x)}$ is $\hat{\mu}$ -open, $x \in \hat{\mu}$ int(U) and so $U = \hat{\mu}$ int(U). By (iii), U is $\hat{\mu}$ -open. Thus $\hat{\mu}$ o (X, τ) is closed under any union.

Proposition 4.11:

In a topological space X, assume that $\hat{\mu} \circ (X, \tau)$ is closed under any union. Then $\hat{\mu} cl(A)$ is an $\hat{\mu}$ -closed set for every subset A of X.

Proof:

Since $\hat{\mu} cl(A) = \hat{\mu} cl(\hat{\mu} cl(A))$ and by Proposition 4.10, we get $\hat{\mu} cl(A)$ is an $\hat{\mu}$ -closed set.

Theorem 4.12 :

Let $f: X \to Y$ be a map. Assume that $\hat{\mu} o(X, \tau)$ is closed under any union. Then the following are equivalent :

- (i) The map f is $\hat{\mu}$ -continuous;
- (ii) The inverse of each open set is $\hat{\mu}$ -open;
- (iii) For each point x in X and each open set V in Y with $f(x) \in V$, there is an $\hat{\mu}$ -open set U in X such that $x \in U$, $f(U) \subset V$;
- (iv) For each subset A of X, $f(\hat{\mu} cl(A)) \subset cl(f(A))$;
- (v) For each subset B of Y, $\hat{\mu} \operatorname{cl}(f^1(B) \subset f^1(\operatorname{cl}(B));$
- (vi) For each subset B of Y, $f^{-1}(int(B)) \subset \hat{\mu} int(f^{-1}(B))$.

Proof:

(i) \Leftrightarrow (ii) By theorem 3.26

(i) \Leftrightarrow (iii) : Suppose that (iii) holds and let V be an open set in Y and let $x \in f^{-1}(V)$. Then $f(x) \in V$ and thus there exist an $\hat{\mu}$ -open set U_x such that $x \in U_x$ and $f(U_x) \subset V$. Now $x \in U_x \subset f^{-1}(V)$ and $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$. By assumption $f^{-1}(V)$ is $\hat{\mu}$ -open in X and therefore

f is $\hat{\mu}$ -continuous.

Conversely, suppose that (i) holds and let $f(x) \in V$. Then $x \in f^{-1}(V)$ which is $\hat{\mu}$ -open in X, since f is $\hat{\mu}$ -continuous. Let $U = f^{-1}(V)$. Then $x \in U$ and $f(U) \subset V$.

(iv) \Leftrightarrow (i) Suppose that (i) holds and A be a subset of X. Since $A \subset f^{-1}(f(A))$. We have $A \subset f^{-1}(cl(f(A)))$. Since cl(f(A)) is a closed set in Y, by assumption $f^{-1}(cl(f(A)))$ is an $\hat{\mu}$ -closed set containing A. Consequently, $\hat{\mu} cl(A) \subset f^{-1}(cl(f(A)))$.

Thus $f(\hat{\mu} cl(A)) \subset f(f^{-1}cl(f(A))) \subset cl(f(A))$.

Conversely, suppose that (iv) holds for any subset A of X. Let F be a closed subset of Y. Then by assumption, $f(\hat{\mu} cl(f^1(F))) \subset cl(f(f^1(F))) \subset cl(F) = F$. Thus $\hat{\mu} cl(f^1(F)) \subset f^1(F)$ and so $f^1(F)$ is $\hat{\mu}$ -closed.

(iv) \Leftrightarrow (v) : Suppose that (iv) holds and B be any subset of Y. Then replacing A by $f^{1}(B)$ in (iv) we get $f(\hat{\mu} cl(f^{1}(B))) \subset cl(f(f^{1}(B))) \subset cl(B)$. Thus $\hat{\mu} cl(f^{1}(B)) \subset f^{1}(cl(B))$. Conversely, suppose that (v) holds. Let B = f(A) where A is a subset of X. Then we have $\hat{\mu} cl(A) \subset \hat{\mu} cl(f^{-1}(B)) \subset f^{-1}(cl(f(A)))$ and so $f(\hat{\mu} cl(A)) \subset cl(f(A))$.

 $(v) \Leftrightarrow (vi)$: Let B be any subset of Y. Then by (v) we have $\hat{\mu} \operatorname{cl}(f^{1}(B^{c})) \subset f^{1}(\operatorname{cl}(B^{c}))$ and hence $(\hat{\mu} \operatorname{int} f^{1}(B))^{c} \subset (f^{1} \operatorname{int} (B))^{c}$. Therefore we obtain $f^{1}(\operatorname{int}(B)) \subset \hat{\mu} \operatorname{int}(f^{1}(B))$. (vi) \Leftrightarrow (i) : Suppose that (vi) holds. Let F be any closed subset of Y. We have $f^{1}(F^{c}) = f^{1}(int(F^{c})) \subset \hat{\mu} int(f^{1}(F^{c})) = (\hat{\mu} cl(f^{1}(F)))^{c}$ and hence $\hat{\mu} cl(f^{1}(F)) \subset f^{1}(F)$. By proposition 4.10 $f^{1}(F)$ is $\hat{\mu}$ -closed in X. Hence f is $\hat{\mu}$ -continuous.

Proposition 4.13 :

Let $f : (X, \tau) \to (Y, \sigma)$ be a $\hat{\mu}$ -continuous map. If (X, τ) is a T $\hat{\mu}$ space, then f is continuous.

Proof:

The proof follows from definition.

Proposition 4.14 :

Let $f: (X, \tau) \to (Y, \sigma)$ be a $\hat{\mu}$ -continuous map. If (X, τ) is a $\alpha T \hat{\mu}$ space, then f is

α -continuous.

Proof :

The proof follows from definition.

Proposition 4.15 :

Let $f: (X, \tau) \to (Y, \sigma)$ is $\hat{\mu}$ -continuous map. If (X, τ) is a $sT\hat{\mu}$ space, then f is

semicontinuous.

Proof:

The proof follows from definition.

Proposition 4.15 :

If $f : (X, \tau) \to (Y, \sigma)$ is $\hat{\mu}$ -continuous map. If (X, τ) is a $pT\hat{\mu}$ space, then f is precontinuous.

Proof:

The proof follows from definition.

Proposition 4.16:

If $f: (X, \tau) \to (Y, \sigma)$ is $\hat{\mu}$ -continuous map. If (X, τ) is a spT $\hat{\mu}$ space, then f is semiprecontinuous.

Proof:

The proof follows from definition.

Proposition 4.17:

If $f : (X, \tau) \to (Y, \sigma)$ is $\hat{\mu}$ -continuous map. If (X, τ) is a $\mu T \hat{\mu}$ space, then f is μ -continuous.

Proof :

The proof follows from definition.

References :

- [1] D.Andrijevic, Semipreopen sets, Mat. Vensik, 38(1986), 24 32.
- [2] K. Balachandran, P.Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac.Sci. Kochi. Univ.Math., 12(1991), 5 – 13.
- P.Bhattacharya and B.K.Lahiri, Semi generalized closed sets in topology, Indian J. Math.29 (1987), no.3, 375 – 382.
- [4] M.Caldas, S.Jafari and T.Noiri, Notions via g open sets, Kochi J of Maths.
- [5] J.Dontchev, On generalizing semi preopen sets, Mem, Fac. Sci. Kochi Univ. Ser. A.Math., 16(1995), 35 – 48.
- [6] N. Levine, Semiopen sets and semi continuity in topological spaces., Amer. Math.Monthly, 70(1963), 36-41.
- [7] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89 – 96.
- [8] H. Maki, R.Devi and K. Balachandran Associated topologies of generalized α closed sets and α generalized closed sets, Mem. Fac., Sci., Kochi Uni. Ser.A.Math. 15(1994), 51 63.
- [9] A.S.Mashhour, M.E.Abd El Monsef and S.N. El Deeb, On pre continuous mapping and weak precontinuous mapping Proc.Math.Phys. Soc.Egypt,53(1982), 47 – 53.
- [10] A.S. Mashour, M.E. Abd El-Monsef and S.N. El. Deeb, α continuous and α -open mappings Act a Math. Hung. 41(1983), No 3 4, 213 218.
- [11] O. Njastad, On some classes of nearly open sets, Pacific J.Math. 15(1965), 961 – 970.
- [12] S.Pious Missier and E. Sucila, On $\hat{\mu}$ -closed sets in topological spaces. Accepted by International Journal of Mathematical Archieves.
- [13] P.Sundaram, Studies on generalizations of continuous maps in topological Spaces, Ph.D. Thesis, Bharathiyar University, Coimbatore (1991).
- [14] M.K.R.S.Veerakumar, Between semiclosed sets and semi pre closed sets.Rend. Istit. Mate. Univ. Trieste. XXXII (2000), 25 41.
- [15] M.K.R.S.Veerakumar, On \hat{g} -closed sets in topological spaces, Bull. Allahabad Math. Soc. (18) (2003).

- [16] M.K.R.S.Veerakumar, Between closed sets and g*-closed sets, Mem. Fac.Sci.
 Kochi Univ. Ser A. Math 21 (2000), 1 19.
- [17] M.K.R.S. Veerakumar, g*-preclosed sets Acta ciencia Indica (Mathematics) Meerut, XXVIII (M) (1) (2002), 51 – 60.
- [18] M.K.R.S.Veerakumar., Presemiclosed, Indian J.Math, 44(2) (2002), 165 -181.
- [19] M.K.R.S. Veerakumar, Between ψ -closed sets and gsp-closed sets, Antartica J. Math, Reprint.
- [20] M.K.R.S.Veerakumar, *g-semiclosed sets in topological spaces, Antartica J. Math.
- [21] M.K.R.S.Veerakumar, µ-closed sets in topological spaces, Antartica J.Math.
- [22] M.K.R.S.Veerakumar, μp-closed sets in topological spaces, Antartica Journal of Math, 2(1) (2005), 31 – 52.
- [23] M.K.R.S. Veerakumar, μs-closed sets in topological spaces, Antartica Journal of Math, 2(1) (2005), 91 – 109.