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ABSTRACT

In this paper, we introduce [i-continuous map and their relations with some
generalized continuous maps. Various properties and characterizations of [1- continuous map
are discussed by using [1-closure and [1 -interior under certain conditions.
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1. INTRODUCTION
Many others ([4] [5] [6] [13]) working in the field of general topology have shown
more interest in studying the concepts of generalizations of continuous map. A weak form of
continuous map called g-continuous map was introduced by Balachandran, Sundaram and
Maki [2].
M.K.R.S.Veerakumar has introduced several generalized closed sets namely,

g -closed sets, g*-closed sets, g*p—closed sets, *g—closed sets, a*g—closed sets, *gs-closed

sets, u-closed sets, up-closed sets and us-closed sets and their continuity. The concept of,

[i-closed sets was introduced by S.Pious Missier and E.Sucila [12]. In this paper we

introduce the concept of [i-continuous map in topological spaces.
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2. PRELIMINARIES

Throughout this paper, we consider spaces on which no separation axioms are
assumed unless explicity stated . For A < X, the closure and interior of A is denoted by
cl(A) and int(A) respectively. The complement of A is denoted by A°.

Definition 2.1 :

A subset A of a topological space (X, 7) is called

1. a preopen set [9] if A < int(cl(A)) and preclosed if cl(int(A)) < A.

2. a semiopen set [6] if A — cl(int(A)) and a semiclosed set if int(cl(A)) < A.

3. an a-open set [11] if A < int(cl(int(A)) and a-closed set if cl(int(cl(A))) < A.

4. a semi preopen set [1] if A < cl(int(cl(A))) and a semipreclosed set if

int (cl(int(A))) c A.

The intersection of all semiclosed (resp. preclosed, semipreclosed, a-closed) sets
containing a subset A of X is called semiclosure (resp. preclosure, semipreclosure, a-closure)
of A is denoted by scl(A) (resp. pcl(A), spcl(A), acl(A)).
Definition 2.2 :

A subset A of a topological space (X, 1) is called

1. a generalized closed set (briefly g—closed [7] if cl(A) < U whenever A c U

and U is open in (X, 7).
2. an a-generalized closed set (briefly ag—closed ) [8] if acl(A) < U whenever
A c Uand U isopenin (X, 1).

.a §-closed set [15] if cl(A) < U whenever A < U and U is semiopen in (X, 7).
.a*g—closed set [16] if cl(A) < U whenever Ac Uand U is §-openin (X, 7).
.a g*-closed set [16] if cl(A) < U whenever A — U and U is g-open in (X, 1).

oo o1 AW

. a g*-preclosed set (briefly g*p—closed ) [17] if pcl(A) < U whenever A c U

and U is g—open in (X, 7).
7. a *g- semiclosed set [20] (briefly *gs-closed ) if scl(A) < U whenever A c U

and U is § -open in (X, 1).

8. a a*g-closed set [22] if acl(A) < U whenever A c U, and U is § -open in (X, 7).
9. a ga*-closed set [8] if acl(A) < int (U) whenever A < U and U is a-open in (X, 1).
10. a y-closed set [19] if scl(A) < U whenever A — U and U is sg—open in (X, 1).
11. a g* y-closed set [19] if y cl(A) < U whenever A — U and U is g—open in (X, 7).
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12. a p-closed set [21] if cl(A) < U whenever A < U and U is ga*-open in (X, 1).
13. a p-preclosed set (briefly up—closed ) [22] if pcl(A) < U whenever A c U
and U is ga*- open in (X, 1) .
14. a pu-semiclosed set (briefly us—closed) [23] if scl(A) < U whenever A — U and
U is ga*-open in (X, 1).
15. a [i-closed set [12] if scl(A) < U whenever A c U and U is p-open in (X, t). The
complement of [1-closed set is called [i - open set. The class of all [1-open (resp.
[1-closed) subsets of X is denoted by [10(X, 1), (resp. {1 c(X, 1)).
Definition 2.3:
Amapf: (X 1) > (Y, o)iscalled
1. semicontinuous [6] if f*(V) is semiclosed in (X, t) for every closed set V in (Y, o).
2. g-continuous [2] if f1(V) is g-closed in (X, 7) for every closed set V in (Y, o).
. a-continuous [10] if f (V) is a-closed in (X,t) for every closed set V in (Y, o).
. ag—continuous [8] if f (V) is ag-closed in (X, t) for every closed set V in (Y, o).
. § -continuous [15] if f (V) is § -closed in (X, ) for every closed set V in (Y, o).

. *g-continuous [15] if f (V) is *g-closed in (X, 1) for every closed set V in (Y, o).

~N o o1 B~ W

. a*g- continuous [15] if f (V) is.a*g-closed in (X, 1) for every closed set V in
(Y, o).
8. g*- continuous [16] if f (V) is g*-closed in (X, t) for every closed set V in (Y, o).
9. g*p- continuous [17] if f (V) is g*p-closed in (X, t) for every closed set V in
(Y, o).
10. *gs- continuous [20] if f (V) is *gs-closed in (X, 1) for every closed set V in
(Y, o).
11. g*y- continuous [19] if f (V) is g*y-closed in (X, t) for every closed set V in
(Y, o).
12. p-continuous [21] if f (V) is p-closed in (X, 1) for every closed set V in (Y, o).
13. pp- continuous [22] if f (V) is up-closed in (X, t) for every closed set V in
(Y, o).
14. ps- continuous [23] if f (V) is ps-closed in (X, 1) for every closed set V in
(Y, o).
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Definition 2.4:
A topological space (X, 1) is called a
1. T{i-space [12] if every [1-closed set is closed.
2. oT [1-space [12] if every [i-closed set is o -closed.
3. sT1-space [12] if every [1-closed set is semiclosed.
4. pT [1-space [12] if every [i-closed set is preclosed.
5. spT [1-space [12] if every [1-closed set is semipreclosed.

6. uT (1 -space [12] if every [1-closed set is u-closed.

3. L-CONTINUITY

We introduce the following definition.
Definition 3.1:

A function f : (X, 1) — (Y, o) is called [i-continuous if (V) is [i-closed subset of
(X, 1) for every closed subset V of (Y, o).
Proposition 3.2 :

Every continuous (resp. semicontinuous) map is [ -continuous but not conversely.
Proof :

The proof follows from the fact that every closed (resp. semiclosed) set is [i-closed.
Example 3.3 :

Let X =Y ={a, b, c}, t = {X, ¢, {a}, {b, c}} and & = {Y, ¢, {b}}. Define a map
f: X —> Y byf(a) =a, f(b) = b and f(c) = c is [1-continuous. However f is neither continuous
nor semicontinuous, since for the closed set U = {a, ¢} in Y, f1(U) = {a, c} which is neither
closed nor semiclosed in X.
Proposition 3.4 :

Every o - continuous map is [1 -continuous but not conversely.
Proof : The proof follows from the fact that every a-closed set is [1 -closed.
Example 3.5:

Let X =Y ={a, b, c}, 1 = {X, o, {b}, {c, a}} and & = {Y, ¢, {c}, {b, c}}.Define a
map f: X — Y by f(a) = a, f(b) = b and f(c) = c. This map is [1-continuous but not

a-continuous, since for the closed set U = {a} in Y, f* (U) = {a} is not a -closed in X.
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Thus the class of all [i-continuous maps properly contains the classes of continuous
maps, semicontinuous maps and a-continuous maps.
Remark 3.6 :

The following examples shows that [1 -continuity is independent of p-continuity.
Example 3.7 :

Let X =Y={a, b, c}, t={X, ¢, {b}, {a c}}and o = {Y, ¢, {b, c}}. Definef: X > Y
by f(a) = a, f(b) = c, f(c) = b is [1-continuous but not p-continuous, since for the closed set
U={a}inY, f}(U) = {a} is not p-closed in X.

Example 3.8:

Let X =Y ={a, b, c}, T ={X, o, {b}, {a, b}} and o = {Y, ¢, {a}}. Letf: X —> Y be
an identity map. Here the map f is pu-continuous but not i -continuous, since for the closed
setU={b, c}inY, f(U) = {b, c} is not {i-closed in X.

Remark 3.9 :

The following examples shows that {1 -continuous is independent of pup — continuous
and ps-continuous.
Example 3.10:

Let X =Y ={a, b, c}, t ={X, ¢, {a}, {a, b}} and o = {Y, ¢, {c}}. Letf: X > Y be
an identity map. Then f is pp — continuous and us — continuous but not |1 -continuous, since
for the closed set U = {a, b} in Y, £1(U) = {a, b} is not [i-closed in X.

Example 3.11:

Let X =Y ={a, b, c}, T = {X, ¢, {a}, {c}, {a, c}} and ¢ = {Y, ¢, {b, c}}. Define a
map f: X — Y by f(a) = a, f(b) = ¢ and f(c) = b. Here the map f is [i-continuous but not
up-continuous, since for the closed set U = {a} in Y, f'(U) = {a} is not pp-closed in X.
Example 3.12:

Let X=Y ={a, b, c}, 1 ={X, ¢, {a}, {b, c}} and o = {Y, ¢, {b}}. Letf: X —> Y be
an identity map. Then the map f is {1 -continuous but not us — continuous, since for the closed
setU={a, c}inY, f(U) = {a, c} is not us —closed in X.

Remark 3.13:

The following examples shows that [i-continuous is independent of *g-continuous,

a*g-continuous and *gs-continuous.
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Example 3.14:

Let X =Y ={a, b, c}, 1 = {X, ¢, {a}, {b, c}} and & = {Y, ¢, {c}}. Define a map
f: X —> Y by f(a) = a, f(b) = c and f(c) = b. Here the map f is [i-continuous but it is not
*g-continuous, a*g—continuous and *gs—continuous. Since for the closed set U = {a, b} in 'Y,
£1(U) = {a,c} which is not *g-closed, o*g-closed and *gs-closed in X.

Example 3.15:

Let X=Y ={a, b, c}, t={X, ¢, {a}, {a, b}} and o = {Y, ¢, {c}}. Letf: X > Y bea
map defined by f(a) = b, f(b) = ¢ and f(c) = a. Here the map f is *g-continuous,
a*g-continuous and *gs-continuous but not [i -continuous, since for the closed set U = {a, b}
inY, (V) = {a, ¢} which is not [i-closed in X.

Remark 3.16:

The following examples shows that [i-continuous is independent of g*-continuous,
g-continuous, ag — continuous and g*p-continuous.
Example 3.17:

Let X =Y ={a, b, c}, t = {X, ¢, {b}, {c}, {b, c}} and & = {Y, ¢, {a, b}}.
Let f : X — Y be an identity map. Here the map f is [1-continuous but not g*-continuous,
g-continuous, ag-continuous and g*p-continuous. Since for the closed set U = {c} in Y,
£1(U) = {c} which is not g*-closed, g-closed, o g-closed and g*p-closed in X.

Example 3.18:

Let X=Y ={a, b, c}, t={X, ¢, {a}, {a, c}} and o = {Y, ¢, {c}}. Letf: X —> Y be
an identity map. Then the map f is g*-continuous, g-continuous, og-continuous and
g*p-continuous but not [i-continuous. Since for the closed set U = {a, b} in Y,
£1(U) = {a, b} is not [i-closed in X.

Remark 3.19:

The following examples shows that [1 -continuous is independent of g*y -continuous.
Example 3.20:

Let X =Y ={a, b, c}, 1 = {X, ¢, {a}, {b, c}} and o = {Y, ¢, {b, c}}. Define a map
f: X — Y by f(a) = c, f(b) = a and f(c) = b. Here f is [i-continuous but not g*y - continuous,
since for the closed set U = {a} in Y, f1(U) = {b} which is not g*y-closed in X.
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Example 3.21:
Let X=Y ={a, b, c}, 1 ={X, ¢, {b}, {a, b}} and o = {Y, ¢, {a}}. Letf: X —> Y be
an identity map. Then f is g*y - continuous but not [i-continuous, since for the closed set
U={b,c}inY, f}(U) = {b, c} is not [i-closed in X.
Remark 3.22:
The following diagram shows the relationship established between [i-continuous
function and some other continuous functions. A — B (resp.A<+>B) represents A implies B
but not conversely (resp. A and B are independent of each other).

From the above Propositions and Examples, we have the following diagram.

DIAGRAM

us-continuous <+— p-continuous — pp-continuous <+ g*p-continuous «— g*-continuous
A

A
continuous \i\ jy ?X/ i

v v

<

a -continuous » [L-continuous o | —» ag-continuous

semicontinuous / % \ g*y-continuous

*g-continuous »  o*g-continuous » *gs-continuous
Remark 3.23:
The composition of two [i -continuous maps need not be [1 -continuous.
Example 3.24:
Let X =Y =2Z={a b, c} t={X ¢ {a}, {a c}}, o = {Y, ¢, {b, c}} and
n=9{Z, ¢, {c}}. Defineamapf: X —> Y byf(a)="b,f(b)=cand f(c) =a. Letg:Y — Zbe

an identity map. Then both f and g are {1 -continuous, but g~ f is not [i -continuous. Since for

the closed set U = {a, b} in Z, (g - f)™* (U) = f* (g}(V)) = F'({a, b}) = {c, a} which is not

[1-closed in X.

www.ijert.org 849



International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 4, April - 2013

Proposition 3.25:

If f: X - Y is [i-continuous and g : Y — Z is continuous then their composition

g of: X — Zis [1-continuous.

Proof :

Clearly follows from the definitions.
Proposition 3.26:

Amap f: (X, 1) > (Y, o) is [i-continuous if and only if f*(U) is fi-open in (X, 1),
for every open set U in (Y, o).

Proof :

Let f: X — Y be [i-continuous and U be an open set in Y. Then f*(U°) is [i -closed
in X. But f1(U°) = (fF*(U))® and f*(U) is i -open in X. Converse is similar.

4. 1- CLOSURE AND [1- INTERIOR
Definition 4.1 :

For every set E < X we define the [i-Closure of E to be the intersection of all
[1-closed sets containing E. In symbols, acl(E)=n{A:Ec A A e LC(X, 1)}.
Lemma4.2:

Forany E c X, E cicl(E) c cl(E).

Proof :

Since every closed set is i -closed but not conversely.
Lemma4.3:

If A < B, then [icl(A) c [icl(B)
Proof :

Clearly follows from Definition 4.1.
Lemma 4.4:

If E is (1-closed, then {icl(E) =E.
Proof :

Clearly follows from Definition 4.1.
Proposition 4.5 :

Let A be a subset of a topological space X. Forany x € X, x € ficl(A) if and only if

U n A = ¢ for every [i-open set U containing x.
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Proof :

Necessity : Suppose that x e [icl(A). Let U be an [i-open set containing x such that
UnA=¢andso A c U But U is [i-closed and hence [icl(A) < U°. Since x ¢ U°® we
obtain x ¢ {1cl (A) which is contrary to the hypothesis.

Sufficiency: Suppose that every [i-open set of X containing x meets A.
If x ¢ (1cl(A), then there exists an [i-closed F of X such that A — F and x ¢ F. Therefore,
X € F® and F® is an [1-open set containing x. But F* N A = ¢. This is contrary to the
hypothesis.

Definition 4.6 :

For any A < X, [iint(A) is defined as the union of all [1-open sets contained in A.
Thatis, int(A)=U{U:Uc Aand U € o(X, 1)}

Lemma 4.7:

For any set A < X, int(A) c i int(A).

Proof :

For any two subsets A; and A; of X,

(i) If Ay < A, then [Lint(A;) < (vint(A,).

(i)  fint (ArUA) D [Lint(A) U Qint(Ay).

Lemma4.9:

If A'is [1-open, then A = [1int(A).
Proof :

Clearly follows from the Definition 4.6.

Proposition 4.9 :

Let A be a subset of a space X, then the following are true.

(i) (Rint(A)° = ficl(A)

(i) fpint(A) = (fcl(A%))

(iii) fcl(A) = (fint(A%)°
Proof :

(i) Let x € ((Lint(A)). Then x ¢ [1int(A). That is, every [i-open set U containing
x such that U & A. Thus every [i-open set U containing X is such that U n A® # ¢. By

Proposition 4.5, x € [1cl(A°) and therefore, (1 int(A))° < (i cl(A°).
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Conversely, let x e [icl(A°). Then by Proposition 4.5, every [i-open set U containing
X is such that U n A° = ¢. By definition 4.6, x ¢ [1int(A), hence x € ({1 int(A))° and so
[ cl(A%) < ([ int(A))". Thus acl(A°) = (fuint (A))°
(i) Follows by taking complements in (i)
(iii)  Follows by replacing A by A in (i)
Proposition 4.10 :
For a subset A of a topological space X, the following conditions are equivalent :
(i) fLo (X, 1) is closed under any union,
(ii) A'is 1 -closed if and only if i cl(A) = A.
(iii) A'is [1-open if and only if 1int(A) = A.
Proof :
(i) = (ii) : Let A be an [i-closed set. Then by definition of [1-closure, we get

fcl(A) = A. Conversely, assume that [icl(A) = A. For each x € A° x ¢[icl(A), by

Proposition 4.5 there exist an [i-openset Gy such that Gx » A = ¢ and hence x € Gy — A°.

Therefore, we obtain A® = U Gx. By (i) A®is 1 -open and hence A is [i-closed.

xe A’
(it) = (iii) = Follows by (ii) and proposition 4.9.
(iii) = (i) = Let {Uo/ a € A} be a family of [i-open sets of X. Put U=U U, . For
(24

each x e U, there exist a(x) € A such that X € Uyx < U. Since Uy is [1-open,
x e pint(U) and so U = [1int(U). By (iii), U is 1 -open. Thus 1 o (X, 7) is closed under any
union.
Proposition 4.11:

In a topological space X, assume that {10 (X, t) is closed under any union. Then
ficl(A) is an [1-closed set for every subset A of X.
Proof :

Since [icl(A) = [icl (ficl(A)) and by Proposition 4.10, we get [icl(A) is an [1-closed
set.
Theorem 4.12 :

Let f: X — Y be a map. Assume that [10(X, t) is closed under any union. Then the

following are equivalent :
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0] The map f is [i -continuous;

(i)  The inverse of each open set is [i-open;

(i) For each point x in X and each open set V in Y with f(x) € V, there is an

[1-open set U in X such that x € U, f(U) c V;

(iv)  For each subset A of X, f([icl(A)) < cl(f(A));

(v)  For each subset B of Y, icl(f!(B) < f(cI(B));

(vi)  For each subset B of Y, f(int(B)) < (i int(f*(B)).
Proof :

(i) < (ii) By theorem 3.26

(i) < (iii) : Suppose that (iii) holds and let \V be an open set in Y and let x e f1(V).
Then f(x) € V and thus there exist an [1-open set Uy such that x € Uy and f(Uy) < V. Now

x e Uyc Fi(V)and FY(V)= U U, By assumption f'(V) is [i-open in X and therefore
xef™(V)

f is [1-continuous.
Conversely, suppose that (i) holds and let f(x).€ V. Then x e f*(V) which is [i-open in X,
since fis [i-continuous. Let U = f!(V). Then x e U and f(U) c V.

(iv) < (i) Suppose that (i) holds and A be a subset of X. Since A = f1(f(A)). We have
A < fHCI(f(A))). Since cl(f(A)) is a closed set in Y, by assumption f(cl(f(A))) is an
(i -closed set containing A. Consequently, i cl(A) = f(cl(f(A))).

Thus f([i cl(A)) < f(FIcl(F(A))) < cI(f(A)).

Conversely, suppose that (iv) holds for any subset A of X. Let F be a closed subset of Y.
Then by assumption, f([i cl(f*(F))) < cl(f(F*(F))) < cI(F) = F. Thus ficl(f*(F)) < f* (F) and
so f*(F) is [i-closed.

(iv) < (v) : Suppose that (iv) holds and B be any subset of Y. Then replacing A by
£1(B) in (iv) we get f(icl(f'(B))) < cl(f(F'(B))) < cl(B). Thus ficl(f}(B)) < f'(cl(B)).
Conversely, suppose that (v) holds. Let B = f(A) where A is a subset of X. Then we have
icl(A) < [icl(FY(B)) = FL(cI(f(A))) and so f([i cI(A)) < cI(f(A)).

(v) < (vi) : Let B be any subset of Y. Then by (v) we have [icl(f*(B%) < f(cl(B%))

and hence ([iint £1(B))° = (f! int (B))°. Therefore we obtain f*(int(B)) = [i int(f*(B)).
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(vi) < (i) : Suppose that (vi) holds. Let F be any closed subset of Y. We have
f1F%) = FY(int(F)) cpintF'(FY) = (fcl(F'(F))° and hence [icl(f*(F)) < f'(F). By
proposition 4.10 f*(F) is [1-closed in X. Hence f is (1 -continuous.

Proposition 4.13 :
Let f: (X, ©) = (Y, o) be a [i1-continuous map. If (X, 1) is a T 1space, then f is
continuous.
Proof :
The proof follows from definition.
Proposition 4.14 :
Let f: (X, t) = (Y, o) be a [i-continuous map. If (X, 1) is a aT( space, then fis

o-continuous.
Proof :
The proof follows from definition.
Proposition 4.15 :
Let f: (X, 1) = (Y, o) is [i-continuous map. If (X, 1) is a sT[ispace, then f is
semicontinuous.
Proof :
The proof follows from definition.
Proposition 4.15 :
If f: (X, 1) = (Y, o) is [i-continuous map. If (X, 1) is a pT[1 space, then f is
precontinuous.
Proof :
The proof follows from definition.
Proposition 4.16:
If f: (X, ©) = (Y, o) is [1-continuous map. If (X, 1) is a spT space, then f is
semiprecontinuous.
Proof :
The proof follows from definition.
Proposition 4.17:
If f: (X, 1) > (Y, o) is (i-continuous map. If (X, ) is a uT [ space, then f is

p-continuous.
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The proof follows from definition.
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