On $\hat{\mu}$-Continuous Functions In Topological Spaces

S. Pious Missier
Department of Mathematics
V.O.Chidambaram College
Tuticorin - 628008

E.Sucila
Department of Mathematics
G.Venkataswamy Naidu College
Kovilpatti.

Abstract

In this paper, we introduce $\hat{\mu}$-continuous map and their relations with some generalized continuous maps. Various properties and characterizations of $\hat{\mu}$ - continuous map are discussed by using $\hat{\mu}$-closure and $\hat{\mu}$-interior under certain conditions.

KEYWORDS :

$\hat{\mu}$-continuous map, $\hat{\mu}$-closure, $\hat{\mu}$-interior.
2000 Mathematics Subject Code Classification : 54C05, 54C08.

1. INTRODUCTION

Many others ([4] [5] [6] [13]) working in the field of general topology have shown more interest in studying the concepts of generalizations of continuous map. A weak form of continuous map called g-continuous map was introduced by Balachandran, Sundaram and Maki [2].
M.K.R.S.Veerakumar has introduced several generalized closed sets namely, $\hat{\mathrm{g}}$-closed sets, g^{*}-closed sets, $\mathrm{g} * \mathrm{p}$-closed sets, $* \mathrm{~g}$-closed sets, $\alpha^{*} \mathrm{~g}$-closed sets, ${ }^{\text {ggs-closed }}$ sets, μ-closed sets, μ p-closed sets and $\mu \mathrm{s}$-closed sets and their continuity. The concept of, $\hat{\mu}$-closed sets was introduced by S.Pious Missier and E.Sucila [12]. In this paper we introduce the concept of $\hat{\mu}$-continuous map in topological spaces.

2. PRELIMINARIES

Throughout this paper, we consider spaces on which no separation axioms are assumed unless explicity stated. For $A \subset X$, the closure and interior of A is denoted by $\mathrm{cl}(\mathrm{A})$ and $\operatorname{int}(\mathrm{A})$ respectively. The complement of A is denoted by A^{C}.

Definition 2.1 :

A subset A of a topological space (X, τ) is called

1. a preopen set [9] if $\mathrm{A} \subseteq \operatorname{int}(\mathrm{cl}(\mathrm{A}))$ and preclosed if $\operatorname{cl}(\operatorname{int}(\mathrm{A})) \subseteq \mathrm{A}$.
2. a semiopen set $[6]$ if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{A}))$ and a semiclosed set if $\operatorname{int}(\operatorname{cl}(\mathrm{A})) \subseteq \mathrm{A}$.
3. an α-open set [11] if $\mathrm{A} \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A}))$ and α-closed set if $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))) \subseteq \mathrm{A}$.
4. a semi preopen set [1] if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))$ and a semipreclosed set if $\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A}))) \subseteq \mathrm{A}$.

The intersection of all semiclosed (resp. preclosed, semipreclosed, α-closed) sets containing a subset A of X is called semiclosure (resp. preclosure, semipreclosure, α-closure) of A is denoted by $\operatorname{scl}(\mathrm{A})($ resp. $\operatorname{pcl}(\mathrm{A}), \operatorname{spcl}(\mathrm{A}), \alpha \mathrm{\alpha cl}(\mathrm{~A})$).

Definition 2.2 :

A subset A of a topological space (X, τ) is called

1. a generalized closed set (briefly g-closed [7] if $\operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in (X, τ).
2. an α-generalized closed set (briefly $\alpha \mathrm{g}$-closed) [8] if $\alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in (X, τ).
3. a \hat{g}-closed set $[15]$ if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is semiopen in (X, τ).
4. $\mathrm{a} * \mathrm{~g}$-closed set $[16]$ if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\hat{\mathrm{g}}$-open in (X, τ).
5. a g*-closed set $[16]$ if $\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ).
6. a g*-preclosed set (briefly $\mathrm{g}^{*} \mathrm{p}$-closed $)$ [17] if $\operatorname{pcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is g-open in (X, τ).
7. a *g- semiclosed set [20] (briefly $* g s$-closed) if $\operatorname{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\hat{\mathrm{g}}$-open in ($\mathrm{X}, \tau)$.
8. a α^{*} g-closed set [22] if $\alpha c \mathrm{l}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$, and U is $\hat{\mathrm{g}}$-open in (X, τ).
9. a $g \alpha^{*}$-closed set $[8]$ if $\alpha c l(A) \subseteq$ int (U) whenever $A \subseteq U$ and U is α-open in (X, τ).
10. a ψ-closed set [19] if $\operatorname{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open in (X, τ).
11. a $\mathrm{g}^{*} \psi$-closed set $[19]$ if $\psi \operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is g -open in (X, τ).
12. a μ-closed set $[21]$ if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\mathrm{g} \alpha^{*}$-open in (X, τ).
13. a μ-preclosed set (briefly μ p-closed) [22] if $\operatorname{pcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $g \alpha^{*}$ - open in (X, τ).
14. a μ-semiclosed set (briefly $\mu \mathrm{s}$-closed) [23] if $\operatorname{scl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\mathrm{g} \alpha^{*}$-open in (X, τ).
15. a $\hat{\mu}$-closed set $[12]$ if $\operatorname{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is μ-open in (X, τ). The complement of $\hat{\mu}$-closed set is called $\hat{\mu}$ - open set. The class of all $\hat{\mu}$-open (resp. $\hat{\mu}$-closed) subsets of X is denoted by $\hat{\mu} o(X, \tau),($ resp. $\hat{\mu} c(X, \tau))$.

Definition 2.3:

A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is called

1. semicontinuous [6] if $f^{-1}(V)$ is semiclosed in (X, τ) for every closed set V in (Y, σ).
2. g-continuous [2] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V in (Y, σ).
3. α-continuous [10] if $f^{-1}(\mathrm{~V})$ is α-closed in (X, $\left.\tau\right)$ for every closed set V in (Y, σ).
4. $\alpha \mathrm{g}$-continuous [8] if $\mathrm{f}^{-1}(\mathrm{~V})$ is $\alpha \mathrm{g}$-closed in (X, τ) for every closed set V in (Y, σ).
5. $\hat{\mathrm{g}}$-continuous [15] if $\mathrm{f}^{-1}(\mathrm{~V})$ is $\hat{\mathrm{g}}$-closed in (X, τ) for every closed set V in (Y, σ).
6. $* \mathrm{~g}$-continuous [15] if $\mathrm{f}^{-1}(\mathrm{~V})$ is $* \mathrm{~g}$-closed in (X, τ) for every closed set V in (Y, σ).
7. $\alpha^{*} g$ - continuous [15] if $f^{-1}(V)$ is $\alpha^{*} g$-closed in (X, τ) for every closed set V in (Y, σ).
8. g^{*} - continuous [16] if $\mathrm{f}^{-1}(\mathrm{~V})$ is g^{*}-closed in (X, τ) for every closed set V in (Y, σ).
9. $g^{*} p$ - continuous [17] if $f^{-1}(V)$ is $g^{*} p$-closed in (X, τ) for every closed set V in (Y, σ).
10. *gs- continuous [20] if $\mathrm{f}^{-1}(\mathrm{~V})$ is *gs-closed in (X, $\left.\tau\right)$ for every closed set V in (Y, σ).
11. $g^{*} \psi$ - continuous [19] if $f^{-1}(V)$ is $g^{*} \psi$-closed in (X, τ) for every closed set V in (Y, σ).
12. μ-continuous [21] if $\mathrm{f}^{-1}(\mathrm{~V})$ is μ-closed in (X, τ) for every closed set V in (Y, σ).
13. $\mu \mathrm{p}$ - continuous [22] if $\mathrm{f}^{-1}(\mathrm{~V})$ is $\mu \mathrm{p}$-closed in (X, τ) for every closed set V in (Y, σ).
14. $\mu \mathrm{s}$ - continuous [23] if $\mathrm{f}^{-1}(\mathrm{~V})$ is $\mu \mathrm{s}$-closed in (X, τ) for every closed set V in (Y, σ).

Definition 2.4:

A topological space (X, τ) is called a

1. T $\hat{\mu}$-space [12] if every $\hat{\mu}$-closed set is closed.
2. $\alpha \mathrm{T} \hat{\mu}$-space [12] if every $\hat{\mu}$-closed set is α-closed.
3. sT $\hat{\mu}$-space [12] if every $\hat{\mu}$-closed set is semiclosed.
4. $\mathrm{pT} \hat{\mu}$-space [12] if every $\hat{\mu}$-closed set is preclosed.
5. spT $\hat{\mu}$-space [12] if every $\hat{\mu}$-closed set is semipreclosed.
6. $\mu \mathrm{T} \hat{\mu}$-space [12] if every $\hat{\mu}$-closed set is μ-closed.

3. $\hat{\mu}$-CONTINUITY

We introduce the following definition.

Definition 3.1:

A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called $\hat{\mu}$-continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is $\hat{\mu}$-closed subset of (X, τ) for every closed subset V of (Y, σ).

Proposition 3.2 :

Every continuous (resp. semicontinuous) map is $\hat{\mu}$-continuous but not conversely.

Proof :

The proof follows from the fact that every closed (resp. semiclosed) set is $\hat{\mu}$-closed.

Example 3.3 :

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \phi,\{\mathrm{b}\}\}$. Define a map $f: X \rightarrow Y$ by $f(a)=a, f(b)=b$ and $f(c)=c$ is $\hat{\mu}$-continuous. However f is neither continuous nor semicontinuous, since for the closed set $U=\{a, c\}$ in $Y, f^{-1}(U)=\{a, c\}$ which is neither closed nor semiclosed in X.

Proposition 3.4 :

Every α - continuous map is $\hat{\mu}$-continuous but not conversely.
Proof : The proof follows from the fact that every α-closed set is $\hat{\mu}$-closed.

Example 3.5:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \varphi,\{\mathrm{b}\},\{\mathrm{c}, \mathrm{a}\}\}$ and $\sigma=\{\mathrm{Y}, \phi,\{\mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$.Define a map $f: X \rightarrow Y$ by $f(a)=a, f(b)=b$ and $f(c)=c$. This map is $\hat{\mu}$-continuous but not α-continuous, since for the closed set $U=\{a\}$ in $Y, f^{-1}(U)=\{a\}$ is not α-closed in X.

Thus the class of all $\hat{\mu}$-continuous maps properly contains the classes of continuous maps, semicontinuous maps and α-continuous maps.

Remark 3.6 :

The following examples shows that $\hat{\mu}$-continuity is independent of μ-continuity.

Example 3.7 :

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \phi,\{\mathrm{b}, \mathrm{c}\}\}$. Define $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $f(a)=a, f(b)=c, f(c)=b$ is $\hat{\mu}$-continuous but not μ-continuous, since for the closed set $U=\{a\}$ in $Y, f^{-1}(U)=\{a\}$ is not μ-closed in X.

Example 3.8:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \varphi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \phi,\{\mathrm{a}\}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an identity map. Here the map f is μ-continuous but not $\hat{\mu}$-continuous, since for the closed set $U=\{b, c\}$ in $Y, f^{-1}(U)=\{b, c\}$ is not $\hat{\mu}$-closed in X.

Remark 3.9 :

The following examples shows that $\hat{\mu}$-continuous is independent of $\mu \mathrm{p}$ - continuous and $\mu \mathrm{s}$-continuous.

Example 3.10 :

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \phi,\{\mathrm{c}\}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an identity map. Then f is $\mu \mathrm{p}$ - continuous and $\mu \mathrm{s}$ - continuous but not $\hat{\mu}$-continuous, since for the closed set $U=\{a, b\}$ in $Y, f^{-1}(U)=\{a, b\}$ is not $\hat{\mu}$-closed in X.

Example 3.11:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \phi,\{\mathrm{b}, \mathrm{c}\}\}$. Define a map $f: X \rightarrow Y$ by $f(a)=a, f(b)=c$ and $f(c)=b$. Here the map f is $\hat{\mu}$-continuous but not μ p-continuous, since for the closed set $\mathrm{U}=\{\mathrm{a}\}$ in $\mathrm{Y}, \mathrm{f}^{-1}(\mathrm{U})=\{\mathrm{a}\}$ is not μ p-closed in X .

Example 3.12 :

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \phi,\{\mathrm{b}\}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an identity map. Then the map f is $\hat{\mu}$-continuous but not $\mu \mathrm{s}$ - continuous, since for the closed set $U=\{a, c\}$ in $Y, f^{-1}(U)=\{a, c\}$ is not $\mu \mathrm{s}-$ closed in X.

Remark 3.13:

The following examples shows that $\hat{\mu}$-continuous is independent of $* \mathrm{~g}$-continuous, $\alpha * \mathrm{~g}$-continuous and *gs-continuous.

Example 3.14:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \phi,\{\mathrm{c}\}\}$. Define a map $f: X \rightarrow Y$ by $f(a)=a, f(b)=c$ and $f(c)=b$. Here the map f is $\hat{\mu}$-continuous but it is not *g-continuous, $\alpha^{*} \mathrm{~g}-$ continuous and $* \mathrm{gs}-$ continuous. Since for the closed set $\mathrm{U}=\{\mathrm{a}, \mathrm{b}\}$ in Y , $\mathrm{f}^{-1}(\mathrm{U})=\{\mathrm{a}, \mathrm{c}\}$ which is not $* \mathrm{~g}$-closed, $\alpha^{*} \mathrm{~g}$-closed and $* \mathrm{gs}$-closed in X .

Example 3.15:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \phi,\{\mathrm{c}\}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a map defined by $f(a)=b, f(b)=c$ and $f(c)=a$. Here the map f is $* g$-continuous, $\alpha^{*} \mathrm{~g}$-continuous and $*$ gs-continuous but not $\hat{\mu}$-continuous, since for the closed set $\mathrm{U}=\{\mathrm{a}, \mathrm{b}\}$ in $Y, f^{-1}(U)=\{a, c\}$ which is not $\hat{\mu}$-closed in X.

Remark 3.16:

The following examples shows that $\hat{\mu}$-continuous is independent of g^{*}-continuous, g -continuous, $\alpha \mathrm{g}$ - continuous and g *p-continuous.

Example 3.17:

Let $X=Y=\{a, b, c\}, \tau=\{X, \phi,\{b\},\{c\},\{b, c\}\}$ and $\sigma=\{Y, \phi,\{a, b\}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an identity map. Here the map f is $\hat{\mu}$-continuous but not g^{*}-continuous, g -continuous, $\alpha \mathrm{g}$-continuous and $\mathrm{g} * \mathrm{p}$-continuous. Since for the closed set $\mathrm{U}=\{\mathrm{c}\}$ in Y , $f^{1}(U)=\{c\}$ which is not g^{*}-closed, g-closed, α g-closed and $g^{*} p$-closed in X.

Example 3.18:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \phi,\{\mathrm{c}\}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an identity map. Then the map f is g^{*}-continuous, g -continuous, $\alpha \mathrm{g}$-continuous and $\mathrm{g}^{*} \mathrm{p}$-continuous but not $\hat{\mu}$-continuous. Since for the closed set $\mathrm{U}=\{\mathrm{a}, \mathrm{b}\}$ in Y , $f^{1}(U)=\{a, b\}$ is not $\hat{\mu}$-closed in X.

Remark 3.19:

The following examples shows that $\hat{\mu}$-continuous is independent of $\mathrm{g}^{*} \psi$-continuous.

Example 3.20:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \phi,\{\mathrm{b}, \mathrm{c}\}\}$. Define a map $\mathrm{f}: X \rightarrow Y$ by $f(a)=c, f(b)=a$ and $f(c)=b$. Here f is $\hat{\mu}$-continuous but not $g^{*} \psi-$ continuous, since for the closed set $U=\{a\}$ in $Y, f^{-1}(U)=\{b\}$ which is not $\mathrm{g}^{*} \psi$-closed in X.

Example 3.21:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \phi,\{\mathrm{a}\}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an identity map. Then f is $\mathrm{g}^{*} \psi$ - continuous but not $\hat{\mu}$-continuous, since for the closed set $\mathrm{U}=\{\mathrm{b}, \mathrm{c}\}$ in $\mathrm{Y}, \mathrm{f}^{-1}(\mathrm{U})=\{\mathrm{b}, \mathrm{c}\}$ is not $\hat{\mu}$-closed in X .

Remark 3.22:

The following diagram shows the relationship established between $\hat{\mu}$-continuous function and some other continuous functions. $\mathrm{A} \rightarrow \mathrm{B}$ (resp. $\mathrm{A} \longleftrightarrow \mathrm{B}$) represents A implies B but not conversely (resp. A and B are independent of each other).

From the above Propositions and Examples, we have the following diagram.

Remark 3.23:

The composition of two $\hat{\mu}$-continuous maps need not be $\hat{\mu}$-continuous.

Example 3.24:

Let $\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\}\}, \sigma=\{\mathrm{Y}, \phi,\{\mathrm{b}, \mathrm{c}\}\}$ and $\eta=\{Z, \phi,\{c\}\}$. Define a map $f: X \rightarrow Y$ by $f(a)=b, f(b)=c$ and $f(c)=a$. Let $g: Y \rightarrow Z$ be an identity map. Then both f and g are $\hat{\mu}$-continuous, but $\mathrm{g} \circ \mathrm{f}$ is not $\hat{\mu}$-continuous. Since for the closed set $U=\{a, b\}$ in $Z,(g \circ f)^{-1}(U)=f^{-1}\left(g^{-1}(U)\right)=f^{-1}(\{a, b\})=\{c, a\}$ which is not $\hat{\mu}$-closed in X .

Proposition 3.25:

If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\hat{\mu}$-continuous and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is continuous then their composition $\mathrm{g} \circ \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ is $\hat{\mu}$ - continuous.

Proof :

Clearly follows from the definitions.

Proposition 3.26:

A map $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\hat{\mu}$-continuous if and only if $\mathrm{f}^{-1}(\mathrm{U})$ is $\hat{\mu}$-open in (X, τ), for every open set U in (Y, σ).

Proof :

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be $\hat{\mu}$-continuous and U be an open set in Y . Then $\mathrm{f}^{-1}\left(\mathrm{U}^{\mathrm{c}}\right)$ is $\hat{\mu}$-closed in X. But $f^{1}\left(U^{c}\right)=\left(f^{-1}(U)\right)^{c}$ and $f^{-1}(U)$ is $\hat{\mu}$-open in X. Converse is similar.

4. $\hat{\mu}$ - CLOSURE AND $\hat{\mu}$ - INTERIOR

Definition 4.1 :

For every set $\mathrm{E} \subset \mathrm{X}$ we define the $\hat{\mu}$-closure of E to be the intersection of all $\hat{\mu}$-closed sets containing E . In symbols, $\hat{\mu} \mathrm{cl}(\mathrm{E})=\bigcirc\{\mathrm{A}: \mathrm{E} \subset \mathrm{A}, \mathrm{A} \in \hat{\mu} \mathrm{C}(\mathrm{X}, \tau)\}$.

Lemma 4.2 :

For any $\mathrm{E} \subset \mathrm{X}, \mathrm{E} \subset \hat{\mu} \mathrm{cl}(\mathrm{E}) \subset \mathrm{cl}(\mathrm{E})$.

Proof :

Since every closed set is $\hat{\mu}$-closed but not conversely.

Lemma 4.3 :

If $\mathrm{A} \subset \mathrm{B}$, then $\hat{\mu} \mathrm{cl}(\mathrm{A}) \subseteq \hat{\mu} \mathrm{cl}(\mathrm{B})$

Proof :

Clearly follows from Definition 4.1.

Lemma 4.4:

If E is $\hat{\mu}$-closed, then $\hat{\mu} \operatorname{cl}(\mathrm{E})=\mathrm{E}$.

Proof :

Clearly follows from Definition 4.1.

Proposition 4.5 :

Let A be a subset of a topological space X. For any $x \in X, x \in \hat{\mu} c l(A)$ if and only if $\mathrm{U} \cap \mathrm{A} \neq \phi$ for every $\hat{\mu}$-open set U containing x .

Proof :

Necessity : Suppose that $x \in \hat{\mu} \operatorname{cl}(A)$. Let U be an $\hat{\mu}$-open set containing x such that $\mathrm{U} \cap \mathrm{A}=\phi$ and so $\mathrm{A} \subset \mathrm{U}^{\mathrm{c}}$. But U^{c} is $\hat{\mu}$-closed and hence $\hat{\mu} \mathrm{cl}(\mathrm{A}) \subset \mathrm{U}^{\mathrm{c}}$. Since $\mathrm{x} \notin \mathrm{U}^{\mathrm{c}}$ we obtain $\mathrm{x} \notin \hat{\mu} \mathrm{cl}$ (A) which is contrary to the hypothesis.

Sufficiency: Suppose that every $\hat{\mu}$-open set of X containing x meets A. If $\mathrm{x} \notin \hat{\mu} \mathrm{cl}(\mathrm{A})$, then there exists an $\hat{\mu}$-closed F of X such that $\mathrm{A} \subset \mathrm{F}$ and $\mathrm{x} \notin \mathrm{F}$. Therefore, $\mathrm{x} \in \mathrm{F}^{\mathrm{c}}$ and F^{c} is an $\hat{\mu}$-open set containing x . But $\mathrm{F}^{\mathrm{c}} \cap \mathrm{A}=\phi$. This is contrary to the hypothesis.

Definition 4.6 :

For any $\mathrm{A} \subset \mathrm{X}, \hat{\mu} \operatorname{int}(\mathrm{A})$ is defined as the union of all $\hat{\mu}$-open sets contained in A . That is, $\hat{\mu} \operatorname{int}(A)=\mathrm{U}\{\mathrm{U}: \mathrm{U} \subset \mathrm{A}$ and $\mathrm{U} \in \hat{\mu} \mathrm{o}(\mathrm{X}, \tau)\}$

Lemma 4.7:

For any set $A \subset X, \operatorname{int}(A) \subset \hat{\mu} \operatorname{int}(A)$.

Proof :

For any two subsets A_{1} and A_{2} of X ,
(i) If $A_{1} \subset A_{2}$, then $\hat{\mu} \operatorname{int}\left(A_{1}\right) \subseteq \hat{\mu} \operatorname{int}\left(A_{2}\right)$.
(ii) $\quad \hat{\mu} \operatorname{int}\left(A_{1} \cup A_{2}\right) \supset \hat{\mu} \operatorname{int}\left(A_{1}\right) \cup \hat{\mu} \operatorname{int}\left(A_{2}\right)$.

Lemma 4.9 :

If A is $\hat{\mu}$-open, then $A=\hat{\mu} \operatorname{int}(A)$.

Proof :

Clearly follows from the Definition 4.6.

Proposition 4.9 :

Let A be a subset of a space X , then the following are true.
(i) $(\hat{\mu} \operatorname{int}(A))^{c}=\hat{\mu} \operatorname{cl}\left(A^{c}\right)$
(ii) $\hat{\mu} \operatorname{int}(\mathrm{A})=\left(\hat{\mu} \operatorname{cl}\left(\mathrm{A}^{\mathrm{c}}\right)\right)^{\mathrm{c}}$
(iii) $\hat{\mu} \operatorname{cl}(\mathrm{A})=\left(\hat{\mu} \operatorname{int}\left(\mathrm{A}^{\mathrm{c}}\right)\right)^{\mathrm{c}}$

Proof :

(i) Let $x \in(\hat{\mu} \operatorname{int}(A))^{c}$. Then $x \notin \hat{\mu} \operatorname{int}(A)$. That is, every $\hat{\mu}$-open set U containing x such that $U \not \subset A$. Thus every $\hat{\mu}$-open set U containing x is such that $U \cap A^{c} \neq \phi$. By Proposition 4.5, $\mathrm{x} \in \hat{\mu} \operatorname{cl}\left(\mathrm{A}^{\mathrm{c}}\right)$ and therefore, $(\hat{\mu} \operatorname{int}(\mathrm{A}))^{\mathrm{c}} \subset \hat{\mu} \operatorname{cl}\left(\mathrm{A}^{\mathrm{c}}\right)$.

Conversely, let $\mathrm{x} \in \hat{\mu} \operatorname{cl}\left(\mathrm{A}^{\mathrm{c}}\right)$. Then by Proposition 4.5, every $\hat{\mu}$-open set U containing x is such that $U \cap A^{c} \neq \phi$. By definition 4.6, $x \notin \hat{\mu} \operatorname{int}(A)$, hence $x \in(\hat{\mu} \operatorname{int}(A))^{c}$ and so $\hat{\mu} \operatorname{cl}\left(\mathrm{A}^{\mathrm{c}}\right) \subset(\hat{\mu} \operatorname{int}(\mathrm{A}))^{\mathrm{c}}$. Thus $\hat{\mu} \operatorname{cl}\left(\mathrm{A}^{\mathrm{c}}\right)=(\hat{\mu} \operatorname{int}(\mathrm{A}))^{\mathrm{c}}$
(ii) Follows by taking complements in (i)
(iii) Follows by replacing A by A^{c} in (i)

Proposition 4.10 :

For a subset A of a topological space X , the following conditions are equivalent :
(i) $\hat{\mu} \mathrm{o}(\mathrm{X}, \tau)$ is closed under any union,
(ii) A is $\hat{\mu}$-closed if and only if $\hat{\mu} \mathrm{cl}(\mathrm{A})=\mathrm{A}$.
(iii) A is $\hat{\mu}$-open if and only if $\hat{\mu} \operatorname{int}(\mathrm{A})=\mathrm{A}$.

Proof :

(i) \Rightarrow (ii) : Let A be an $\hat{\mu}$-closed set. Then by definition of $\hat{\mu}$-closure, we get $\hat{\mu} \operatorname{cl}(A)=A$. Conversely, assume that $\hat{\mu} \operatorname{cl}(A)=A$. For each $x \in A^{c}, x \notin \hat{\mu} c l(A)$, by Proposition 4.5 there exist an $\hat{\mu}$-openset G_{x} such that $G_{x} \cap A=\phi$ and hence $x \in G_{x} \subset A^{c}$. Therefore, we obtain $A^{c}=\bigcup_{x \in A^{c}} G_{x}$. By (i) A^{c} is $\hat{\mu}$-open and hence A is $\hat{\mu}$-closed.
(ii) \Rightarrow (iii) $=$ Follows by (ii) and proposition 4.9.
(iii) \Rightarrow (i) $=$ Let $\left\{\mathrm{U}_{\alpha} / \alpha \in \wedge\right\}$ be a family of $\hat{\mu}$-open sets of X . Put $\mathrm{U}={\underset{\alpha}{ }}_{U} \mathrm{U}_{\alpha}$. For each $\mathrm{x} \in \mathrm{U}$, there exist $\alpha(\mathrm{x}) \in \wedge$ such that $\mathrm{x} \in \mathrm{U}_{\alpha(\mathrm{x})} \subset \mathrm{U}$. Since $\mathrm{U}_{\alpha(\mathrm{x})}$ is $\hat{\mu}$-open, $x \in \hat{\mu} \operatorname{int}(\mathrm{U})$ and so $\mathrm{U}=\hat{\mu} \operatorname{int}(\mathrm{U})$. By (iii), U is $\hat{\mu}$-open. Thus $\hat{\mu} \mathrm{o}(\mathrm{X}, \tau)$ is closed under any union.

Proposition 4.11:

In a topological space X, assume that $\hat{\mu}$ o (X, τ) is closed under any union. Then $\hat{\mu} \mathrm{cl}(\mathrm{A})$ is an $\hat{\mu}$-closed set for every subset A of X .

Proof :

Since $\hat{\mu} \operatorname{cl}(\mathrm{A})=\hat{\mu} \operatorname{cl}(\hat{\mu} \operatorname{cl}(\mathrm{A}))$ and by Proposition 4.10, we get $\hat{\mu} \operatorname{cl}(\mathrm{A})$ is an $\hat{\mu}$-closed set.

Theorem 4.12 :

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a map. Assume that $\hat{\mu} \mathrm{o}(\mathrm{X}, \tau)$ is closed under any union. Then the following are equivalent :
(i) The map f is $\hat{\mu}$-continuous;
(ii) The inverse of each open set is $\hat{\mu}$-open;
(iii) For each point x in X and each open set V in Y with $f(x) \in V$, there is an $\hat{\mu}$-open set U in X such that $x \in U, f(U) \subset V$;
(iv) For each subset A of $\mathrm{X}, \mathrm{f}(\hat{\mu} \mathrm{cl}(\mathrm{A})) \subset \operatorname{cl}(\mathrm{f}(\mathrm{A}))$;
(v) For each subset B of $\mathrm{Y}, \hat{\mu} \mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~B}) \subset \mathrm{f}^{-1}(\mathrm{cl}(\mathrm{B}))\right.$;
(vi) For each subset B of $\mathrm{Y}, \mathrm{f}^{-1}(\operatorname{int}(\mathrm{~B})) \subset \hat{\mu} \operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$.

Proof :

(i) \Leftrightarrow (ii) By theorem 3.26
(i) \Leftrightarrow (iii) : Suppose that (iii) holds and let V be an open set in Y and let $x \in f^{-1}(V)$. Then $\mathrm{f}(\mathrm{x}) \in \mathrm{V}$ and thus there exist an $\hat{\mu}$-open set U_{x} such that $\mathrm{x} \in \mathrm{U}_{\mathrm{x}}$ and $\mathrm{f}\left(\mathrm{U}_{\mathrm{x}}\right) \subset \mathrm{V}$. Now $\mathrm{x} \in \mathrm{U}_{\mathrm{x}} \subset \mathrm{f}^{-1}(\mathrm{~V})$ and $\mathrm{f}^{-1}(\mathrm{~V})=\underset{x \in f^{-1}(\mathrm{~V})}{U} \mathrm{U}_{\mathrm{x}}$. By assumption $\mathrm{f}^{-1}(\mathrm{~V})$ is $\hat{\mu}$-open in X and therefore f is $\hat{\mu}$-continuous.

Conversely, suppose that (i) holds and let $\mathrm{f}(\mathrm{x}) \in \mathrm{V}$. Then $\mathrm{x} \in \mathrm{f}^{-1}(\mathrm{~V})$ which is $\hat{\mu}$-open in X , since f is $\hat{\mu}$-continuous. Let $\mathrm{U}=\mathrm{f}^{-1}(\mathrm{~V})$. Then $\mathrm{x} \in \mathrm{U}$ and $\mathrm{f}(\mathrm{U}) \subset \mathrm{V}$.
(iv) \Leftrightarrow (i) Suppose that (i) holds and A be a subset of X. Since $A \subset f^{-1}(f(A))$. We have $A \subset f^{-1}(\operatorname{cl}(f(A)))$. Since $c l(f(A))$ is a closed set in Y, by assumption $f^{-1}(c l(f(A)))$ is an $\hat{\mu}$-closed set containing A. Consequently, $\hat{\mu} \operatorname{cl}(\mathrm{A}) \subset \mathrm{f}^{-1}(\mathrm{cl}(\mathrm{f}(\mathrm{A})))$.

Thus $f(\hat{\mu} \operatorname{cl}(\mathrm{~A})) \subset \mathrm{f}\left(\mathrm{f}^{-1} \operatorname{cl}(\mathrm{f}(\mathrm{A}))\right) \subset \operatorname{cl}(\mathrm{f}(\mathrm{A}))$.
Conversely, suppose that (iv) holds for any subset A of X. Let F be a closed subset of Y. Then by assumption, $\mathrm{f}\left(\hat{\mu} \mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~F})\right)\right) \subset \operatorname{cl}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~F})\right)\right) \subset \operatorname{cl}(\mathrm{F})=\mathrm{F}$. Thus $\hat{\mu} \operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{~F})\right) \subset \mathrm{f}^{-1}(\mathrm{~F})$ and so $\mathrm{f}^{-1}(\mathrm{~F})$ is $\hat{\mu}$-closed.
(iv) \Leftrightarrow (v) : Suppose that (iv) holds and B be any subset of Y. Then replacing A by $\mathrm{f}^{-1}(\mathrm{~B})$ in $($ iv $)$ we get $\mathrm{f}\left(\hat{\mu} \operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subset \operatorname{cl}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subset \operatorname{cl}(\mathrm{B})$. Thus $\hat{\mu} \operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \subset \mathrm{f}^{-1}(\operatorname{cl}(\mathrm{~B}))$. Conversely, suppose that (v) holds. Let $B=f(A)$ where A is a subset of X. Then we have $\hat{\mu} \operatorname{cl}(\mathrm{A}) \subset \hat{\mu} \operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \subset \mathrm{f}^{-1}(\mathrm{cl}(\mathrm{f}(\mathrm{A})))$ and $\operatorname{so} \mathrm{f}(\hat{\mu} \mathrm{cl}(\mathrm{A})) \subset \mathrm{cl}(\mathrm{f}(\mathrm{A}))$.
$(\mathrm{v}) \Leftrightarrow(\mathrm{vi}):$ Let B be any subset of Y . Then by (v) we have $\hat{\mu} \mathrm{cl}\left(\mathrm{f}^{-1}\left(\mathrm{~B}^{\mathrm{c}}\right)\right) \subset \mathrm{f}^{-1}\left(\mathrm{cl}\left(\mathrm{B}^{\mathrm{c}}\right)\right)$ and hence $\left(\hat{\mu} \operatorname{int} f^{-1}(B)\right)^{c} \subset\left(f^{-1} \operatorname{int}(B)\right)^{c}$. Therefore we obtain $f^{-1}(\operatorname{int}(B)) \subset \hat{\mu} \operatorname{int}\left(f^{-1}(B)\right)$.
(vi) \Leftrightarrow (i) : Suppose that (vi) holds. Let F be any closed subset of Y. We have $\mathrm{f}^{-1}\left(\mathrm{~F}^{\mathrm{c}}\right)=\mathrm{f}^{-1}\left(\operatorname{int}\left(\mathrm{~F}^{\mathrm{c}}\right)\right) \subset \hat{\mu} \operatorname{int}\left(\mathrm{f}^{-1}\left(\mathrm{~F}^{\mathrm{c}}\right)\right)=\left(\hat{\mu} \mathrm{cl}\left(\mathrm{f}^{1}(\mathrm{~F})\right)\right)^{\mathrm{c}}$ and hence $\hat{\mu} \operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{~F})\right) \subset \mathrm{f}^{1}(\mathrm{~F})$. By proposition $4.10 \mathrm{f}^{-1}(\mathrm{~F})$ is $\hat{\mu}$-closed in X . Hence f is $\hat{\mu}$-continuous.

Proposition 4.13 :

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a $\hat{\mu}$-continuous map. If (X, τ) is a $\mathrm{T} \hat{\mu}$ space, then f is continuous.

Proof :

The proof follows from definition.

Proposition 4.14 :

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a $\hat{\mu}$-continuous map. If (X, τ) is a $\alpha \mathrm{T} \hat{\mu}$ space, then f is α-continuous.

Proof :

The proof follows from definition.

Proposition 4.15 :

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\hat{\mu}$-continuous map. If (X, τ) is a sT $\hat{\mu}$ space, then f is semicontinuous.

Proof :

The proof follows from definition.

Proposition 4.15 :

If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\hat{\mu}$-continuous map. If (X, τ) is a $\mathrm{pT} \hat{\mu}$ space, then f is precontinuous.

Proof :

The proof follows from definition.

Proposition 4.16:

If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\hat{\mu}$-continuous map. If (X, τ) is a $\operatorname{spT} \hat{\mu}$ space, then f is semiprecontinuous.

Proof :

The proof follows from definition.

Proposition 4.17:

If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\hat{\mu}$-continuous map. If (X, τ) is a $\mu \mathrm{T} \hat{\mu}$ space, then f is μ-continuous.

Proof :

The proof follows from definition.

References:

[1] D.Andrijevic, Semipreopen sets, Mat. Vensik, 38(1986), 24 - 32.
[2] K. Balachandran, P.Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac.Sci. Kochi. Univ.Math., 12(1991), 5-13.
[3] P.Bhattacharya and B.K.Lahiri, Semi generalized closed sets in topology, Indian J. Math. 29 (1987), no.3, 375 - 382.
[4] M.Caldas, S.Jafari and T.Noiri, Notions via g - open sets, Kochi J of Maths.
[5] J.Dontchev, On generalizing semi preopen sets, Mem, Fac. Sci. Kochi Univ. Ser. A.Math., 16(1995), $35-48$.
[6] N. Levine, Semiopen sets and semi continuity in topological spaces.,. Amer. Math.Monthly, 70(1963), 36-41.
[7] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89 - 96.
[8] H. Maki, R.Devi and K. Balachandran Associated topologies of generalized α - closed sets and α-generalized clósed sets, Mem. Fac., Sci., Kochi Uni. Ser.A.Math. 15(1994), 51-63.
[9] A.S.Mashhour, M.E.Abd El - Monsef and S.N. El - Deeb, On pre continuous mapping and weak precontinuous mapping Proc.Math.Phys.
Soc.Egypt,53(1982), 47-53.
[10] A.S. Mashour, M.E. Abd El-Monsef and S.N. El. Deeb, α - continuous and α-open mappings Act a Math. Hung. 41(1983), No - 3-4, 213-218.
[11] O. Njastad, On some classes of nearly open sets, Pacific J.Math. 15(1965), 961-970.
[12] S.Pious Missier and E. Sucila, On $\hat{\mu}$-closed sets in topological spaces. Accepted by International Journal of Mathematical Archieves.
[13] P.Sundaram, Studies on generalizations of continuous maps in topological Spaces, Ph.D. Thesis, Bharathiyar University, Coimbatore (1991).
[14] M.K.R.S.Veerakumar, Between semiclosed sets and semi pre closed sets. Rend. Istit. Mate. Univ. Trieste. XXXII (2000), $25-41$.
[15] M.K.R.S.Veerakumar, On \hat{g}-closed sets in topological spaces, Bull. Allahabad Math. Soc. (18) (2003).
[16] M.K.R.S.Veerakumar, Between closed sets and g^{*}-closed sets, Mem. Fac.Sci. Kochi Univ. Ser A. Math 21 (2000), 1-19.
[17] M.K.R.S. Veerakumar, g*-preclosed sets Acta ciencia Indica (Mathematics) Meerut, XXVIII (M) (1) (2002), $51-60$.
[18] M.K.R.S.Veerakumar., Presemiclosed, Indian J.Math, 44(2) (2002), 165-181.
[19] M.K.R.S. Veerakumar, Between ψ-closed sets and gsp-closed sets, Antartica J. Math, Reprint.
[20] M.K.R.S.Veerakumar, *g-semiclosed sets in topological spaces, Antartica J. Math.
[21] M.K.R.S.Veerakumar, μ-closed sets in topological spaces, Antartica J.Math.
[22] M.K.R.S.Veerakumar, μ p-closed sets in topological spaces, Antartica Journal of Math, 2(1) (2005), 31 - 52.
[23] M.K.R.S.Veerakumar, $\mu \mathrm{s}$-closed sets in topological spaces, Antartica Journal of Math, 2(1) (2005), 91 - 109.

