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Abstract—The trapezoidal thin wing with symmetrical airfoil 

(e.g. double wedge--airfoil) is of considerable importance in 

aviation industry.   We consider a non-uniform torsion issue that 

arises in the study of the torsion analysis of a trapezoidal thin 

wing. Motivated by this new engineering theory, i.e. the plate-

beam theory put forward by Prof. W.F. Zhang,  this paper will 

firstly base upon the Kirchhoff’s thin plate theory and Vlasov’s 

rigid section assumption to derive two mechanical models, i.e. 

the energy variational model and differential equation model for 

the problem of the non-uniform torsion for the trapezoidal thin 

wing with double symmetrical airfoil.  Then the approximate 

and exact analytical solutions of twist angle for the cantilever 

case of a trapezoidal thin wing under toque applied at the free 

end are derived and presented by making use of the energy 

variational model and differential equation model, respectively. 

Finally, the correctness of the analytical solutions obtained from 

the non-uniform torsion theory of the trapezoidal thin wing is 

verified by the FEM numerical simulations. 
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I. INTRODUCTION 
The trapezoidal thin wing with symmetrical airfoil (e.g. 

double wedge-airfoil) has been widely used in aviation 
industry. Therefore, the torsion performance of this kind of 
wing is of considerable importance in practical aerospace 
engineering[1,2].  

 As is known to all, the theory of the non-uniform torsion 
of a thin wing is the design fundamental of the flutter or 
aerodynamic instability for high-speed aircraft and hence 
many researchers have devoted themselves to solving these 
kinds of problems. For instance, in the aspect of rectangular 
thin wing, Timoshenko[3,4] obtained the decay index of 
stress by energy varaional method based upon the Foppl's 
work on the stress of the non-uniform torsion, and derived the 
tip rotation angle of narrow rectangular plate under non-
uniform torsion; F.V. Chang[5] utilized the double triangle 
series to derive the tip rotation angle and deflection of a 
narrow rectangular plate under non-uniform torsion based 
upon the Kirchhoff's plate theory and the principle of 
superposition. However, their theoretical derivations are not 
universal, such as the concept of decay index of stress, and 
hence cannot be used in the case of a non-rectangular thin 
wing. This hinders the development of the theory of the non-
uniform torsion of thin wings.  

Moreover, from the literature review, it is found that few 
works has been published on the theory of non-uniform 
torsion of a trapezoidal thin wing.  

The current unsatisfied status of research may be due to 
the complexity of the problem of the non-uniform torsion, 
coupled with the great difficulty of its mathematics and 
mechanics. Therefore, the theoretical study on non-uniform 
torsion (i.e. restrained torsion) member has been developed 
slowly[6].  

In fact, from the point of view on the nature of mechanics, 
non-uniform torsion exits in any twisted member, namely, the 
non-uniform torsion and uniform torsion are co-exist in the  
torsion problem of any shape of cross section, but under 
extreme conditions, some of the cross section, for example, 
the torsion of a member with circular section will be 
dominated by uniform torsion. In other words, in the actual 
project,  "pure torsion" members does not exist.  
Consequently, developing new theory is of great importance 
for the theoretical research on the issue of the non-uniform 
torsion.  

Recently, a new non-uniform torsion theory, i.e. the plate-
beam theory has been put forward by Prof. W.F. Zhang[7-
13], which is not only simple and easy-to-use, but also 
powerful and universal. Motivated by this new theory, this 
paper will firstly present two mechanical models of the non-
uniform torsion for the trapezoidal thin wing with double 
symmetrical airfoil, then the exact and approximate analytical 
solutions are derived and verified by the FEM simulations.   

II.   NON-UNIFORM TORSION THEORY OF 

TRAPEZOIDAL THIN WING 

A. Problem Descripsions and Asssumptions 

1) Problem Descripsions:   
Generally, the research object in this paper is a 

trapezoidal thin wing with double symmetrical airfoil (e.g. 
double wedge- airfoil). For simplicity, this type of wing may 
be thought of as a tapered plate with rectangular cross section. 
One end of the tapered plate is free and subjected to an 
applied torque Mt. The other end is assumed to be fixed and 
cannot warp. Moreover, the distributed torque mz is also 
applied along the centroid of the tapered plate. In this case the 
thin wing will produce torsion deformation, and can be 
simplified as a cantilevered, tapered plate subjected to a tip 
torque and distributed torque as shown in Fig.1a.  

Known: The length of trapezoidal thin wing is L, the 
width of root section is hw, the thickness is tw; The elastic 
modulus of wing is Es, shear modulus is Gs, Poisson ration is 
μs.  When the tapered plate twists, the torsion angle of cross 
section is assumed to be θ(z) as shown in Fig.1b. 
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2) Asssumptions:  

a) Ignore the shear strain caused by out-plane 

bending: This assumption is similar to that of the "plane 

section" of Euler beam.  

b) Ignore the deformation in the mid-plane caused by 

out-plane bending, namely, the mid-plane cannot be 

streched: By this assumption,  the bending and streching 

problem of a thin plate can be solved seprately.  This is the 

deformation decomposition hypothesis, which is the 

theoretical basis of the plate-beam theory[7-13]. 

c) normal stress and strain in the normal direction can 

ommited.  

d) Rigid section assumption: This assumption is similar 

to that of Vlasov[6], which is widely used in the therotical 

derivation of  thin-walled structures.  

 
Fig.1 Calculation diagram and its deformation of narrow tapered thin-plate, 

B. Mechanical Models of Trapezoidal Thin Wing 

1) Energy variational model:  

     To facilitate the description of the deformation, the plate - 

beam theory introduced two sets of coordinates, i.e. the 

global coordinate system xyz and  the local coordinate system 

nsz, as shown in Fig.1b.  The centroid coordinates of the 

cross section in the global coordinate system are assumed to 

be (0,0). In the local coordinate system,  the coordinates of 

arbitrary point in the cross section are denoted as (n,s). While 

in the global coordinate system, the coordinates of arbitrary 

point on the cross section are denoted as (-n,-s). 

      According to the assumption (d), the displacements of 

arbitrary point are[6] 
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Accordingly we can see that, when considering only the 
torsion problem, the displacements of the centroid of cross 
section are 

        0 0 0 00; 0; 0;     w w w wu v w z         (4) 

Based on deformation decomposition hypothesis (b), then 
the tapered plate only occur out-plane bending. At this point 
the lateral displacement of arbitrary point caused by out-plane 
bending deformation  are 

 ,wu s z s  ；  ,wv n z n         (5) 

While the longitudinal displacement of the cross section 
should be determined  based on assumptions (a) [7-13], that 
is 
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Geometric equations (i.e. linear strain) [6-12] 
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Physical equations (i.e. constitutive equations) [7-13] 

Based on the assumption (3) and (4), for the classical 
Kirchhoff 's plate model, there are 
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Using the above derived relationship, the torsional strain 
energy of a trapezoidal thin wing can be obtained easily.  

Firstly, with the following expression of strain energy 
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and substituting Eq. (7) - Eq. (10) into Eq.(11), we can get 
the torsional strain energy of the trapezoidal thin wing as 
follows[7-13] 
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as the non-uniform torsional rigidity or warping torsion 

rigidity of the trapezoidal thin wing, and 
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as the uniform torsional rigidity of the trapezoidal thin 

wing,  now the  torsional strain energy of can be simplified 

as[7-13] 
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In the case of a concentrated torque is applied at the free 

end and a distributed torque is applied along the length of a 

cantilevered, trapezoidal thin wing , the corresponding load 

potential energy is 
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Now the total potential energy of the torsion problem of 

the trapezoidal thin wing can be expressed as[7-13] 
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This is the total potential energy for the non-uniform 

torsion problem of the trapezoidal thin wing. It is consistent 

with the result of traditional torsion theory in the form. 

However, the derivation of this paper is more natural, and 

only the Kirchhoff’s thin plate theory and Vlasov's rigid 

section assumption are used.  

Using expression of the total potential energy (16), the 

non-uniform torsion problem of the trapezoidal thin wing 

subjected to torsion loads can be translated into such an 

energy variational model: Within the range, 0≤z≤L, looking 

for a function θ(z) to make it satisfy the specified geometric 

boundary conditions, i.e. the endpoint constraints, and the 

energy functional defined by the following formula is 

minimum. 
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2) Differential equation model: 

     The differential equation, along with boundary conditions,  

can be readily obtained by the principle of energy variational, 
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Due to the arbitrariness of  in the above formula,  we 

could get the following  differential equation 
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and the corresponding boundary conditions 

 Fixed end (cross section cannot freely rotate, nor 

freely warp) 
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 Free end (with tip toque, cross section can freely 

warp) 
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Thus, the non-uniform torsion issue of the trapezoidal thin 

wing can also be expressed as follows: Within the range, 0≤z

≤L, looking for a function θ (z), it satisfies the differential 

equation (i.e. the equilibrium equation) (22), and at the same 

time meets the boundary conditions (25) and (26). 

It should be noted that in the equilibrium equation (22) 
given herein, the first term is the internal twisting moment 
caused by the non-uniform torsion, and the second term is the 
internal twisting moment caused by the uniform torsion, i.e. 
the free torsion (St. Venant torsion).  It can be seen that, 
according to the proposed plate-beam theory, two types of 
torsion, i.e.  non-uniform torsion  and uniform torsion, could 
be integrated in one mixed torsion equation naturally, namely, 
the "separated" traditional torsion theory is included in one  
theoretical framework, Therefore, the new mixed torsion 
theory has important theoretical and practical value. 

III. ANALYTICAL SOLUTION OF TRAPEZOIDAL 

THIN WING SUBJECTED TO TIP TORQUE 

A. Approximate Analytical Solution Based on Energy 

Variation Model 

In this section, we will base on the energy variation model 
to examine the non-uniform torsion issue of the trapezoidal 
thin wing. For the purposes of simplifying this discussion, we 
consider here the case where only concentrated torque is 
applied in the free end torque.  In this case the total potential 
energy simplifies to 
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In order to obtain an approximate analytic solution, we 
can choose the trail function for the rotation of cross section 
as follows 
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After arrangement, we get 
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Then the solution can be obtained 
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where 
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B. Exact Analytical Solution Based on differential equation 

model 

In this section, we will base on the differential equation 
model to examine the non-uniform torsion issue of the 
trapezoidal thin wing. For the purposes of simplifying this 
discussion, we consider here the case where only 
concentrated torque is applied in the free end torque. In this 
case the simplified differential equation is  
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Using the first condition of the boundary condition (24) , 
we can obtain 
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This is a more complex, third-order differential equations 
with variable coefficients. In this paper, based on its unique 
mathematical structure constituted, along with the remaining 
three boundary conditions, its exact analytical solution is 
derived. 

Firstly, Eq.(37) is rewritten in dimensionless form.  

Setting 
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z
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After arrangement, we get 
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Then, using the theory of differential equations, the exact 
analytical solution can be derived as follows 
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where,
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; 0A , 1hA and 2hA  are three 

constants of integration, whose expression are as follows, 
which can be obtained according to the ends of the boundary 
conditions 
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Finally, the maximum rotation (tip rotation in the free end) 
of the cantilevered, tapered plate can be obtained 
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IV. FEM  SIMULATION AND VERIFICATION 

A. FEM  Model 
In order to verify the correctness of the above analytical 

solutions, the finite element software ANSYS is used to 
establish the model for the analysis of the non-uniform 
torsion of the cantilevered, tapered plate subjected to a tip 
torque. The elastic shell element SHELL63 with 4 nodes is 
chosen to simulate the trapezoidal thin wings. The elastic 
modulus Es=2.06×105MPa, Poisson ratio μs=0.3. 

When the model is built, the key points of the left and 
right ends are established, and the tapered plate is formed 
through these key points, using the “ESIZE” command to 

control the length of element, which is 50mm. Then, the 
freedoms of all nodes at the fixed end are restrained to 
simulate the fixed constraint conditions, a unit of torque is 
applied at the centroid of the cross section at the free end. In 
addition, the “CERIG” command is used in the finite element 
simulation in order to define rigid region for each cross 
section. Last, the torsion angle at the free end is extracted 
after the analysis. The corresponding modeling, meshing, 
load and constraint and torsion deformation are shown in 
Fig.2. 

B. Comparison of theoretical and FEM solutions 

There are 3 different sizes of the trapezoidal thin wings, 
using the above theoretical method and finite element method 
(FEM) to calculate the torsion angles for all wings. The 
comparison results are shown in Table I and Table II. 

From the analysis of data of Table I and Table II, it  can 
be seen that: (1) The results given by the exact analytical 
solutions are almost the same as those obtained from FEM 
simulations. This proves the correctness of the theory of non-
uniform torsion presented herein. (2) The results given by the 
approximate analytical solution and those given by the finite 
element analysis are basically consistent, and the error is 
within the range of -6.45% and -2.76%. However, the 
expression of the approximate analytical solution is more 
simple than the exact one. Therefore, the approximate 
analytical solution is suitable for the engineering design 
personnel in the approximate calculation or estimation. 

 

   
 

Fig.2 FEM model and its deformation 

TABLE I.  COMPARISON OF TORSION ANGLES BETWEEN EXACT SOLUTIONS AND FEM SOLUTIONS 

Number L(m) hw (m) 
FEM solutions 

(10-3rad) 
 

Exact 
solutions 

(10-3rad) 

Error1 (%) 

1 8.6 1.2 1.7003  1.6983 -0.12 

2 4.3 1.2 0.82828  0.827094 -0.14 

3 2.2 1.2 0.40093  0.401075 -0.04 

TABLE II.  COMPARISON OF TORSION ANGLES BETWEEN APPROXIMATE SOLUTIONS AND FEM SOLUTIONS 

Number L(m) hw (m) 
FEM solutions 

(10-3rad) 
 

Approximate 

solutions 
(10-3rad) 

Error2 a 

(%) 

1 8.6 1.2 1.7003  1.59042 -6.45 

2 4.3 1.2 0.82828  0.787992 -4.86 

3 2.2 1.2 0.40093  0.389851 -2.76 

a. Erro2=(Approximate solution- FEM solution)/ FEM solution×100% 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080263

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 393



V.  CONCLUTION 
Theoretical studies and numerical simulation practice 

prove that: 

 (1) The plate-beam theory proposed by Prof. W.F. Zhang 
[7-13] is universal, and can be easily used to solve the non-
uniform torsion problem of the trapezoidal thin wing with 
double symmetrical airfoil; 

(2) Deriving the differential equation model from the 
energy variation model has a clear concept of mechanics. 

(3) Approximate analytical solution presented here is 
simple and practical, and is basically agree with the FEM 
analysis results. While the exact analytical solution is almost 
the same as the results obtained from the FEM analysis. This  
proves  the correctness of the solution of differential equation 
model. 
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