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Abstract—This paper emphasizes the superior elastic 

properties attained, and behavior of the Hyperelastic materials 

which are basically natural rubber composites with certain 

polymers. The most elegant aspect is the wide range of 

properties of these materials finding universal applications in 

critical and complex environments viz hydrophones and other 

under water warfare systems. All structural materials used in 

engineering components have linear elastic properties in the 

strain range of 10%, in contrast the elastomeric materials 

possessing high rate of strains even up to 300%. This special 

category of materials finds their application in shock mounts, 

Transducer assemblies (Hydrophones), Medical equipment and 

rubber seals etc. Analysis of these materials need special 

attention, as mechanical behavior exceeds linear elastic theory. 

FEA programs involve parameters with Mooney constants in 

the strain energy potential. In the present investigation two 

types of rubber material models are studied viz polyurethane 

(PU) and Neoprene for determining the Mooney constants which 

are needed for FEA Program.  

Keywords— Neoprene;Polyurethane(PU); Strain Energy; 

tensile testing;  

I. INTRODUCTION

Attention of researchers due to ever increasing demands 

and for modeling Elastomeric materials behavior under 

mechanical and geometrical boundary conditions gained 

popularity in recent times. It is common practice to 

characterize the mechanical behavior of these materials 

represent the constitutive equation through a strain energy 

density function. Hyperelastic materials are often considered 

for various industrial applications, due to their remarkable 

properties of flexibility, recovery after load release and 

resistance to high deformation levels. Many attempts have 

been made to develop more general hyperelastic models to 

include different aspects of materials behavior. Henky H [1] 

derived the elastic behavior of hyperelastic materials, large 

extensions up to 270 % analytically by a simple function. The 

deformed and unreformed stresses are the functions of two 

constants which are bulk modulus and logarithmic extension 

ratio. The deformed state of stress in tension is high when 

compared to unreformed state of stress, whereas in case of 

compression, the deformed state of stress is less when 

compared with unreformed state of stress. Ellen M. Arruda [2] 

states that, no existing model which accurately represents the 

behavior of hyperelastic materials in various deformation 

states and satisfies the criterion of requiring only a small 

number of physically based parameters or constants. The main 

condition is any constitutive model constants should be 

independent of deformation state to provide predictive 

capability.  

In Structural Analysis usually elastic material properties 

are expressed in terms of strain energy density function. This 

strain energy function into a separable form related to the 

principal directions is derived by the Mooney [3] and Rivlin 

[4]. This advance led to the Ogden model [5] which is largely 

used today. Strain energy density function is expressible in the 

form of even powered series of the principal stretches. A 

variety of strain energy density functions have been extracted 

from Rivlin’s model. Strain energy density is sum of 

independent functions of the principal stretches for 

incompressible materials. 

The strain invariants and coefficients are required for 

strain energy density function for rubber like materials as 

determined by D.W. Haines [6]. The strain-energy function is 

expressed as a power series of invariants. The material models 

formulated in invariants of the strain tensor are based on a 

series approach in different powers of the first and second 

basic invariant. Because of the incompressibility of the 

material, the third basic invariant is constant and, hence, does 

not contribute to the stored energy. Formulations of the strain 

energy function based on Eigen values were presented by 

Ogden [5]. These models show a good adaptability to the 

experimental data resulting from the high degree of non-

linearity. The examples of these strain energy density 

functions have been presented in the references [7–9]. The 

computations involved in the nonlinear equations of the 

problem must be set into an appropriate quadratic form for 

obtaining the optimal efficiency. This can be obtained in 

general by introducing additional variables and/or differential 

relations between the variables. In the context of hyperelastic 

models, strongly nonlinear terms are involved, such as 

logarithmic or fractional functions.  

Two nonlinear materials viz PU and Neoprene have been 

modeled by using uni-axial tension/compression test in the 

present investigation, and the material constants are 

determined through least-squares-fit procedures. In order to 

estimate the constants that best fits the curve-fit, a program 

was written in MATLAB optimization solver which inputs 

experimental stress-strain data and constraints. To minimize 

the errors of the program and also to know the closeness of the 

stress-strain curve with the expected constants an RMS 

function is created and applied for determining the 2-Mooney, 

5-Mooney and 9-Mooney constants.

II. HYPERELASTIC MATERIALS ANALYSIS

Strain Energy Density functions requires a number of 

mathematical constitutive theories of nonlinear, large elastic 
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deformations. These theories, coupled with the numerical 

method, can be used very effectively by the user to analyze 

the elastomer products operating under highly deformed 

states. According to this theory in large deformation, rubber is 

assumed isotropic in elastic behavior and very nearly 

incompressible. The elastic properties of rubber can be 

explained in terms of a strain energy function based on the 

strain invariants I1, I2 and I3. These invariants are as the 

function of extension ratios λ1,λ2  and λ3 have following 

properties in equations 1,2 and 3. 

 
(1) 

 (2) 

 (3) 

The incompressible materials require the third invariant 

which is equal to one, and hence  eqs. 1,2 and 3 can further be 

reduced to eqs. 4 and 5. This is because when the material is 

compressible the third invariant becomes equal to one, and 

hence the third stretch ratio can be expressed as a function of 

the first two in equation 7. Next, when a load is only applied 

in one principal direction as in the case of uni-axial loading, 

the second stretch ratio (λ2) is equal and to the third stretch 

ratio (λ3). Thus invariants can be expressed as a function of 

only two stretch ratios and Equation 8 can be expressed as a 

direct relationship of the first and second stretch ratio [10].  

 
(4) 

 
(5) 

 =  (6) 

Which implies  (7) 

      implies   (8) 

A. Mooney-Rivlin Approach 

It is Shown that in the generalised Mooney's approach [3]  

most general strain energy function for a homogenous, 

isotropic, incompressible and elastic material is in eq. 9 

 

(9

) 

Where W is the strain energy density function, I1 and I2 are 

the measure of distortion in the material, Cij describes the 

shear behavior of the material, Di introduces the material 

incompressibility and  Jel is the elastic volume strain. 

The two constant mooney-Rivlin function in eq. 10 obtains 

if N=1 in Mooney generalized eq. 9 

 
(10) 

The five constant mooney-Rivlin function in eq. 11 can 

obtains if N=2 in Mooney generalized eq. 9 

 (11) 

To evaluate constants redefining the strain energy density 

function is needed. The equations 12 to 15 were obtained 

because   , where ‘i’ is the different axis [4] and of 3 

is equal to zero  

 

(12) 

 

(13) 

 

(14) 

 
(15) 

In case of uni-axial test and to get the stress function a 

derivation is necessary and a multiplication with  is 

required. The equations 16 and 17 for obtained for 5-Mooney 

equations by deriving equation 11 w.r.t to I1 and I2.  

 

(16) 

 
(17) 

The derivatives of the invariants w.r.t streatch ratios are 

given in equation number 18 and 19 

 

(18) 

 (19) 

III. EXPERIMENTAL STUDY 

 Experiments were conducted by using Uni-axial 

Tensile Test Machine as shown in Fig. 1 having 10KN load 

cell, it could be used to calculate the Tensile Strength, Shear 

strength and Adhesive Strength. 
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Fig 1: Polyurethane Dumbbell type Specimen & Fixing position in M/s 

INSTRON 

The polyurethane material specimen of 75 mm Gauge Length 

and Area 6.6 mm2 was considered basing on the guidelines 

given in ASTM standards (ATM D412). The specimen is 

fixed between the two grips. During the test, the upper grip 

moves up at a speed of 500mm/min velocity in the upward 

direction (axial direction). 

A. Uni-axial Tensile test Specimen dimensions. 

Plain rubber sheet is used for the specimens employing a 

cutting die, manufactured from the standard dimensions of a 

stock of length 115 mm width 25 mm and thickness 2.5 mm. 

The sample specimen is shown below fig 2. For each material 

namely PU and Neoprene four specimens are prepared as 

shown in Fig. 3 to Fig. 4 and the tests were carried out and 

Experimental results are given in table I. 

 

Fig 2: Dimensions of Dumbbell specimen 

 

Fig :3 PU Dumbbell specimen 

 

Fig: 4 NEOPRENE Dumbbell Specimens 

TABLE 1: EXPERIMENTAL RESULTS 

MODEL 
Width 

(mm) 

Thk 

(mm) 

Load Max 

(N) 

Stress Max 

(MPa) 

Strain 

Max 

PU 

5.81 1.26 178 24.39 4.743 

5.85 1.27 176 23.386 5.076 

5.80 1.32 175 22.92 4.99 

Neoprene 

5.68 2.36 168.6 12.57 4.6 

5.6 2.53 163 11.64 3.9 

5.6 2.33 174.6 13.2 4.73 

IV. RESULTS AND CONCLUSIONS 

A. Results 

From the practical data of two different test specimens the 

Mooney constants are extracted as given in table II an table 

III. In order to estimate the best constant that fits the curve-

fit, a program was written, to ensure that the results are as 

good as possible and the program is created as an 

optimization solver. The estimated Mooney constants are 

obtained at minimized RMS value from MATLAB OPTIM 

tool. The corresponding stress strain diagrams and curve fit 

for different Mooney constants like 2-Mooney, 5-Mooney 

and 9-Mooney fits are given for all tested specimens in 

graphs from Fig. 5 to Fig.12. 

TABLE II: EXTRACTED MOONEY CONSTANTS OF PU FROM 

MATLAB PROGRAM 

Model PU 

constants 2-Mooney 5-Mooney 9-Mooney 

C10(MPa) 1.636 -0.452 -0.452 

C01(MPa) 0.728 4.853 4.853 

C20(MPa) - 0 0 

C11(MPa) - 0.109 0.119 

C02(MPa) - 0 0 

C30(MPa) - - 0 

C21(MPa) - - -0.003 

C12(MPa) - - 0.003 

C03(MPa) - - 0 

Bulk Modulus 23640 44010 44010 

Error % 104.4 29.15 29.15 
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TABLE III: EXTRACTED MOONEY CONSTANTS OF NEOPRENE 

FROM MATLAB PROGRAM 

Model Neoprene 

constants 2-Mooney 5-Mooney 9-Mooney 

C10(MPa) 1.141 -0.141 1.073 

C01(MPa) -1.141 0.968 -0.494 

C20(MPa) - 0.037 0.008 

C11(MPa) - -0.03 0.68 

C02(MPa) - -0.007 -0.536 

C30(MPa) - - 0 

C21(MPa) - - -0.194 

C12(MPa) - - 0.198 

C03(MPa) - - -0.002 

Bulk Modulus 0 8270 5790 

Error % 122.9566 15.04 14.4 

 

B. PU Curve Fit 

 

Fig 5: Stress vs. Strain behavior of PU 

 

Fig 6: Curve fit for PU Material with 2-Mooney Constants 

 

Fig 7: Curve fit for PU Material with 5-Mooney Constants 

 

Fig 8: Curve fit for PU Material with 9-Mooney Constants 

C. Neoprene Curve Fit 

 

Fig 9: Stress vs. Strain behavior of Neoprene 
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Fig 10: Curve fit for Neoprene Material with 2-Mooney Constants 

 

Fig 11: Curve fit for Neoprene Material with 5-Mooney Constants 

 

Fig 12: Curve fit for Neoprene Material with 9-Mooney Constants 

V. CONCLUSIONS 

• PU material showed that they have high elongations up 

to 500% and has a 104% error for 2-Mooney fit.  

• The observed error in PU material reduced to 29% for 5-

Mooney and 9-Mooney curve fit.  

• Further it is seen that Neoprene material has high 

elongations up to 470% and has 123% error for 2-

Mooney fit.  

• Reduction in error for Neoprene is limited only to 15% 

for 5-Moomey and 9-Mooney curve fit.  
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