On Separation Axioms With Respect To Gem Set

¹Luay A. Al-Swidi

²Maryam S. AL-Rubaye

Abstract: In this paper, we create a new definition of space namely" R^* _space, M^* _space and N^* _space in topological space " and we do a new definition of separation axioms by using the idea of "Gem set". Keyword- New separation axioms, R^* — space, M^* _space and N^* _space, Gem set and topological ideal .

1-INTRODUCTION AND PRELIMINARIES:

The epigram of ideal presented first by K. Kuratowski [1]. In general topological Hamlett and Jankovi'c [2, 3, 4,5] they introduced the application of topological ideal in generalization of most essential properties and the ideal as this form: An ideal I on a topological space (X,T) is a non-empty collection of subsets of X which satisfies the following properties: (1) $A \in I$ and $B \subseteq A$ implies $B \in I$. (2) $A \in I$ and B $\in I$ implies $A \cup B \in I$ and called the (X,T,I) ideal topological space in addition to K. Kuratowski [1] used the ideal to define space (X,T,I) and a subset $A \subseteq X$, $A^*(I) = \{x \in X : U \cap A \notin I\}$ for every $U \in T(x)$ is called the local function of A with respect to I. We simply write A*instead of $A^*(I)$, F.G. Arenas , J .Dontchev and M.L .Puertas [6] introduce some weak separation axioms under the concept ideal. In recent years Al-Swidi and AL-sadaa [7] they defined for each element had ideal by this form: let (X,T) be a topological space and $x \in X$,we denote by I_x to an ideal $\{G \subseteq X : x \in G^c\}$, Where X is nonempty set ,again Al-Swidi and AL-Nefee [8] they use the idea of ideal I_x to defined new set namely "Gem set" which means that A subset B of a topological space (X,T). Then they defined B^{*x} with respect to space (X,T) as follows : $B^{*x} = \{y \in X : G \cap B \notin I_x \text{ , for every } G \in T(y)\} \text{ where } T(y) = \{G \in T(y)\}$ $T: y \in G$. A set B^{*x} was called "Gem set" and define a new separation axioms by using Gem set namely it the"I*-T_ispace "and "I**-T_i- space ",i=0,1,2. Through out this paper we defined anew separation axioms by benefit of Gem set namely "S_i -space " i=0,1,2,3,4 and studied proprieties and the relationship between "I*-T_i-space "and T_i-space. I=0,1,2. Also we define anew space called R*_space, M*_space and N*_space and we study the proprieties and relation between

Definition1.1 [6]. A topological space (X,T) is called

 I* _T₀_space if and only if for each pair of distinct point x ,y of X there exist nonempty subset A ,B of X such that y∉A*xor x∉B*y.

- I*_T₁-space if and only if for each pair of distinct point x, y of X there exist nonempty subset A ,B of X such that v∉A*x and x∉B*y.
- I* _T2_space if and only if for each pair of distinct point x, y of X there exist nonempty subset A,B of X such that $y \notin A^{*x}$ and $x \notin B^{*y}$ with $B^{*y} \cap A^{*x} = \emptyset$.
- I** _T₀_space if and only if for each pair of distinct point x ,y of X there exist nonempty subset A of X such that y∉A*xor x∉A*y.
- I**_T₁_space if and only if for each pair of distinct point x
 ,y of X there exist nonempty subset A of X such that
 x∉ A*y and y∉A*x.
- I^{**} _T2_space if and only if for each pair of distinct point x ,y of X there exist nonempty subset A of X such that $x \notin A^{*y}$ and $y \notin A^{*x}$ with $A^{*y} \cap A^{*x} = \emptyset$.

Definition 1.2 [6] Let (X,T) be a topological space and $A \subseteq X$ We define $Pr^{*x}(A) = A^{*x} \cup A$, for each

Proposition 1.3 [6] Let (X,T) be topological $x \in A$ if and only if $x \in A^{*x}$, for each $A \subseteq X$, $x \in X$.

Definition 1.4 [6] A mapping $f: X \to Y$ is called I^* -map if and only if , for every subset A of X $,x \in X$ $f((A^{*x}) = f(A)^{*f(x)})$.

Remark 1.5 [5] Let $f: (X,T) \to (Y,\rho)$ be I^* -map .then $f(pr^{*x}(A)) = pr^{*f(x)}(A)$) for every subset A of X and $x \in X$ **Proposition 1.6** Let (X,T) be topological space, and A subset of $X, x \in X$. If $x \notin A$, Then $A^{*x} = \emptyset$

Proof:- Let $A^{*x} \neq \emptyset$ Then there exist at least one element, say $y \in A^{*x}$ by definition of Gem set then $A \cap G_y \in I_x$. Hence $x \in A \cap G_y$ sox $\in A$ which Contradiction ,then $A^{*x} = \emptyset$

Definition 1.7 Let (X,T) be a topological space ,for each $x \in X$,anon empty subset A of X ,is called a strong set if and only if $(A^{*x}$ is open set and $x \in A$).

Definition 1.8 A topological space (X,T) is said strong space if every sub set of X is strong set .

2-"R*_space , $\,$ M*_space and N*_space $\,$ in $\,$ topological space " $\,$

In this section, we offer new definitions of the spaces through Gem set call them R^* _space, M^* _space and N^* _space with study some results and properties.

¹ Mathematics Department, College of Education For Pure sciences University of Babylon. Iraq.

² Mathematics Department, College of Education For Pure sciences University of Babylon. Iraq.

Remark 2.1. If a function $f:(X,T) \to (Y,\rho)$ is one to one ,then $f^{-1}(I_v) = I_{f^{-1}(v)}$ for each $y \in Y$.

Remark 2.2. If a function $f:(X,T) \to (Y,\rho)$ is bijection, then $f(I_{f^{-1}(y)}) = I_y$ for each $y \in Y$.

Theorem 2.3. If a function $f:(X,T) \to (Y,\rho)$ is continuous and one to one ,then $f^{-1}(B^{*y}) \subseteq (f^{-1}(B))^{*f^{-1}(y)}$ for each $y \in Y$.

Proof:- Let $a \in f^{-1}(B^{*y})$, then there exist $d \in B^{*y}$ with $a=f^{-1}(d)$. And $H_d \cap B \notin I_y$ for each $H_d \in T(d)$, then $f^{-1}(H_d) \cap f^{-1}(B) \notin I_{f^{-1}(y)}$ (by remark 2.1). Hence by continuity of f we get that $a \in ((f^{-1}(B))^{*f^{-1}(y)})$. Then $f^{-1}(B^{*y}) \subseteq ((f^{-1}(B))^{*f^{-1}(y)})$.

Theorem 2.4. If a function $f:(X,T) \to (Y,\rho)$ is continuous, open and bijection, then $(f^{-1}(B))^{*f^{-1}(y)} \subseteq f^{-1}(B^{*y})$ for each $y \in Y$.

Proof :- Let $a \in (f^{-1}(B))^{*f^{-1}(y)}$ then $U_a \cap f^{-1}(B) \notin I_{f^{-1}(y)}$ for each $U_a \in T(a)$ thus $f(U_a) \cap B \notin I_y$ (by Remark 2.2). Therefor by properties of open map, we get that $a \in (f^{-1}(B^{*y}))$ hence $(f^{-1}(B))^{*f^{-1}(y)} \subseteq f^{-1}(B^{*y})$.

Corollary 2.5 If a function $f:(X,T) \to (Y,\rho)$ is continuous, open and bijection. Then $(f^{-1}(B))^{*f^{-1}(y)} = f^{-1}(B^{*y})$ for each $y \in Y$.

Proof: By using the theorem 2.3 and 2.4, we get the prove. **Definition 2.6**. A topological space (X,T) is called R^* _space if and only if for each $x \in X$ and a nonempty subset A of X such that $x \notin Pr^{*x}(A)$ then there exist a nonempty subset B, C of X such that $x \in B^{*x}$, $Pr^{*x}(A) \subseteq C^{*x}$.

we noted that in definition of R^*_space that B^{*x} and C^{*x} are disjoint where if $x \not\in C$ $C^{*x} = \emptyset$ this contradiction with $Pr^{*x}(A) \subseteq C^{*x}$.

Example 2.7. Let $X = \{x, y, z\}$, $T = \{X,\emptyset\}I_x = \{\emptyset, \{z\}, \{y\}, \{z, y\}\}, I_y = \{\emptyset, \{z\}, \{x\}, \{z, x\}\} \text{ and } I_z = \{\emptyset, \{y\}, \{x\}, \{y, x\}\}$

set $A = \{y\}, B = \{x, y\}$ and $C = \{z, x\}$ then $pr^{*x}(A) = \{y\}, B^{*x} = \{x, y, z\}$ and $C^{*x} = \{x, z, y\}$ it follows $x \in B^{*x}$, $pr^{*x}(A) \subseteq C^{*x}$.

eroehTm 2.8. Every subspace of R*_space is R*_space.

Proof :- Let $Y \subseteq X$, $y \in Y$ and $A \subseteq Y$ such that $y \notin pr^{*y}(A)$, then there exist a subset H of X such that $pr^{*y}(A) = pr^{*y}(H) \cap Y$, so we get that $y \notin pr^{*y}(H) \cap Y$, but X is R^* _space then there exist a nonempty subsets B, C of X such that $pr^{*y}(H) \subseteq B^{*y}$ and $y \in C^{*y}$. Thus $pr^{*y}(H) \cap Y \subseteq B^{*y} \cap Y$ and $y \in C^{*y} \cap Y$. Put $D^{*y} = B^{*y} \cap Y$ and $S^{*y} = C^{*y} \cap Y$ it is follows that $pr^{*y}(A) \subseteq D^{*y}$ and $y \in S^{*y}$. Hence Y is R^* _subspace.

Theorem 2.9. Let f be bijection open and continuous map from (X,T) space onto R^* - space (Y,ρ) . Then (X,T) is R^* -space, if f is I^* -map.

proof:-Let $x \in X$ and $A \subseteq X$ such that $x \notin pr^{*x}(A)$. Since f is I^* -map. then $f(x) \notin pr^{*f(x)}(f(A))$, but Y is R^* - space so there exist a nonempty sub sets B, C of Y such that $pr^{*f(x)}(f(A)) \subseteq B^{*f(x)}$ and $f(x) \in C^{*f(x)}$. So $f^{-1}(B^{*f(x)})$ and $f^{-1}(C^{*f(x)})$ is a nonempty subset of X such that $f^{-1}(pr^{*f(x)}(f(A)) \subseteq G^{*f(x)}(f(A))$

 $f^{-1}(B^{*f(x)})$ and $x \in f^{-1}(C^{*f(x)}) = [f^{-1}(C)]^{*x}$, (by corollary 2.5) $pr^{*x}(A) \subseteq B^{*x}$ and $x \in [f^{-1}(C)]^{*x}$. Hence (X,T) is R*-space.

Theorem 2.10. Let f be bijection open and continuous map from (X,T) R^* -space onto (Y,ρ) . Then (Y,ρ) is R^* -space, if f is I^* -map.

Definition 2.11.:A topological space (X,T) is called M*_space if and only if for each $x \in X$ and a nonempty subset A of X such that $x \notin Pr^{*x}(A)$ then there exist a nonempty B,C of X , such that $x \in Pr^{*x}(C)$ and $Pr^{*x}(A) \subseteq Pr^{*x}(C)$,With $pr^{*x}(B) \cap Pr^{*x}(C) = \emptyset$.

Example 2.12. Let (X,T) be a topological space such that $X = \{x, y, z \}$, $T = \{X,\emptyset,\{y\},\{z\},\{y,z\}\},I_x = \{\emptyset,\{z\},\{y\},\{z,y\}\}$, $I_y = \{\emptyset,\{z\},\{x\},\{z,x\}\}$ and $I_z = \{\emptyset,\{x\},\{y\},\{x,y\}\}$. let $x \in X$ and a nonempty subset set $A = \{y\}$ of X such that $x \notin pr^{*x}(A) = \{y\}$ then there exist a nonempty subset $B = \{x\}$ and $C = \{z,y\}$ of X then, $pr^{*x}(B) = \{x\}$ and $pr^{*x}(C) = \{z,y\}$ it follows $x \in pr^{*x}(B)$, $pr^{*x}(A) \subseteq pr^{*x}(C)$ with $pr^{*x}(B) \cap pr^{*x}(C) = \{x\} \cap \{z,y\} = \emptyset$.

Theorem 2.13. Every subspace of M^* _space, is M^* _subspace.

Theorem 2.14. Let f be bijection open and continues map from M^* - space (X,T),onto (Y,ρ) space. Then (Y,ρ) is M^* -space if f is I^* -map.

Proof:-Let $y \in Y$ and $B \subseteq Y$ such that $y \notin pr^{*y}(B)$ (By Remark 1.5) then $f^{-1}(y) \notin pr^{*f^{-1}(y)}(f^{-1}(B))$ since X is M*- space then there exist a nonempty sub sets D,C of X such that $pr^{*f^{-1}(y)}(f^{-1}(B)) \subseteq pr^{*f^{-1}(y)}(D)$ and $f^{-1}(y) \in$

 $pr^{*f^{-1(y)}}(C)$.with $pr^{*f^{-1}(y)}(D) \cap pr^{*f^{-1}(y)}(C) = \emptyset$. Now $f(pr^{*f^{-1}(y)}(f^{-1}(B)) \subseteq f(pr^{*f^{-1}(y)}(D)), f(f^{-1}(y)) \in f(pr^{*f^{-1}(y)}(C))$ since f is I^* -map ,then $pr^{*y}(B) \subseteq pr^{*y}(f(D)), y \in pr^{*y}(f(C))$ with $f(pr^{*x}(D) \cap pr^{*x}(C)) = pr^{*y}(f(D)) \cap pr^{*y}(f(C)) = f(\emptyset) = \emptyset$ then Y is M^* - space.

Theorem 2.15 Let f be bijection I^*_map and continues map from (X,T) space onto M^* - space (Y,ρ) space. Then (X,T) is M^* - space if f is open map.

proof:- The same of above theorem.

Definition 2 .16 A topological space (X,T) is said to be N^* – space if and only if for each $x \in X$ and every tow subsets M,L of X then there exist a nonempty subsets B,C of X such that $pr^{*x}(M) \subseteq B^{*x}$ and $pr^{*x}(L) \subseteq C^{*x}$.

Remark 2.17. We can not say $B^{*x} \cap C^{*x} = \emptyset$ is disjoint set if $B^{*x} \cap C^{*x} = \emptyset$ then $x \notin C$ then $C^{*x} = \emptyset$ this contradiction with $pr^{*x}(L) \subseteq C^{*x}$, similar $x \notin B$.

Theorem 2.18 Every subspace of N^* – space is N^* – space.

Theorem 2.19 Let f be is a bijection and continues function of space (X,T) onto N^* - space (Y,ρ) space. Then (X,T) is N^* -space if f is open map.

Proof:-Let L,M pair sub set of X. so f(L), f(M) is disjoint subset of Y since Y is N*- space then there exist a nonempty sub sets B,C of Y such that $\operatorname{pr}^{*y}(f(L)) \subseteq B^{*y}$ and $\operatorname{pr}^{*y}(f(M)) \in C^{*y}$. so $f^{-1}(B^{*y})$ and $f^{-1}(C^{*y})$ is a nonempty subset of X, thus $f^{-1}(\operatorname{pr}^{*X}(f(L)) \subseteq f^{-1}(B^{*y})$, $f^{-1}(\operatorname{pr}^{*X}(f(M)) \subseteq f^{-1}(C^{*y})$ (by corollary 2.5)

 $f^{-1}(pr^{*y}(f(L)) = pr^{*x}(L) \subseteq (f^{-1}(B))^{*x}$ and $pr^{*x}(M) \subseteq$ $(f^{-1}(C))^{*x}$. Hence (X,T) is N^* - space.

3 - "S_i separation axioms"

In this section, we introduce the concept of new definition separation axioms called S_i -spaces and investigate some of their properties and study the relationship between "I*-T_ispace "," I**-T_i-space and T_i-space.

Definition 3.1:-

- 1. A topological space (X,T) is said S_o_space if and only if for each pair of distinct point x ,y of X there exist nonempty subset A of X and A contain at least one of them such that $y \notin A^{*x}$ or $x \notin A^{*y}$.
- 2. A topological space (X,T) is said S₁ space if and only if for each pair of distinct point x, y of X there exist nonempty subset A of X and A contain at least one of them such that $x \notin A^{*y}$ and $y \notin A^{*x}$.
- 3. A topological space (X,T) is said S2 space if and only if for each pair of distinct point x, y of X there exist nonempty subset A of X and A contain at least one of them such that $x \notin A^{*y}$ and $y \notin A^{*x}$ with $A^{*y} \cap A^{*x} = \emptyset$.
- A topological space (X,T) is said S₃ space if it was M^* – space and S_1 space
- A topological space (X,T) is said S₄_space if it was N^* – space and S_1 space.

Theorem 3.2 For topological space (X,T), then the following properties hold:

- Every T₀_space is S₀_space
- 2. Every T_1 space is S_{1-} space.
- Every T_2 space is S_2 space. 3.
- Every S_o_space is I**_T_o_space. 4.
- 5. Every S_1 space is $I^{**}_{-}T_{1-}$ space.
- 6. Every S₂ space is I** _T₂ space.
- Every S_o_space is I*_T_o_space.
- Every S_1 -space is I^*_1 -space.
- Every S_2 -space is $I^*_{T_2}$ -space.

Proof:- Straight forward.

Remark. 3.3. The converse of theorem need not be true as since from the following examples.

Example 3.4 Let(X,T) be a topological space such that $X = \{x,$ $T={}$ $X,\emptyset,\{z\},\{y,z\}\}$ and, y,z,h $I_x = \{\emptyset, \{y\}, \{z\}, \{h\}, \{y, z\}, \{y, h\}, \{z, h\}, \{y, z, h\}\}$ and $I_V = \{\emptyset, \{x\}, \{z\}, \{h\}, \{x, z\}, \{z, h\}, \{x, z, h\}\}$. Let x, y

 $\in X$ such that $x \neq y$ then there exist a nonempty subset $A = \{x\}$ of X contain at least one element of them we say that $x \in A$ such that $x \notin A^{*y} = \emptyset$. Then (X,T) is S_{\circ} -space but not T_{\circ} space.

Example 3.5 Let(X,T) be a topological space such that $X=\{x, y, z\}$ $T=\{X,\emptyset,\{x\},\{x,y\},\{y\}\}\$ and $I_x=\{x,y\},\{y\},\{y\}\}$ $\{X, \{y\}, \{z\}, \{y, z\}\}, I_y = \{X, \{x\}, \{z\}, \{x, z\}\}\$.Let $x, y \in X$ such that $x \neq y$ then there exist a nonempty subset $A = \{x\}$ of X contain at least one element of them we say that $x \in A$ such that $x \notin A^{*y} = \emptyset$ and $y \notin A^{*x} = \{x, z\}$. Hence (X,T) is $(S_1$ space and S_2 -space)but not (T_1 -space and T_2 -space)

Example 3.6 Let $X=\{x, y, z\}$ $T=\{X,\emptyset,\{z\}\}\}I_x=$ $\{\emptyset, \{y\}, \{z\}, \{y, z\}\}, I_y = \{\emptyset, \{x\}, \{z\}, \{x, z\}\}, . \text{ Let } x, y \in X \ni X \in X \}$ $x \neq y$ there exist A={z}. $A^{*x}=\emptyset$ and $A^{*y}=\emptyset$ so $y \notin A^{*x}$ and $x \notin A^{*y}$.hence (X,T) is (I^{**} _ T_1 _space and I^{**} _ T_2 _space)but not (S_1 _space and S_2 _space)since Let x ,y \in X such that $x \neq y$ there exist $A = \{x\}$. $A^{*x} = \{x, y\}$ so $y \in A^{*x}$ Then (X,T) is not $(S_1_space \text{ and } S_2_space)$.

Example 3.7 Let $X=\{x, y, z\}$ $T=\{X,\emptyset,\{x\},\{x, y\}\}$ and $I_v=\{x, y, z\}$ $\{\emptyset, \{x\}, \{z\}, \{x, z\}\}, I_x = \{\emptyset, \{z\}, \{y\}, \{z, y\}\}. \text{ Let } x, y \in X \ni x \neq y \in X \}$ y there exist A={z} and B={y}, $A^{*x} = \emptyset$ and $B^{*y} = {y, z}$, $x \notin B^{*y}$ and $y \notin A^{*x}$...Hence (X,T) is I^* _ T_1 _space but not S_1 _space since Let x, y $\in X \ni x \neq y$, $A = \{x\}$ then y $\in A^{*x} = \{x\}$ $\{x, y, z\}$ then (X,T) is (I^* _ T_1 _space and I^* _ T_2 _space) but not (S_1 -space and S_2 -space).

Preposition 3.8 Let (X,T) be topological space if X strong space then we have.

- 1. Every S_{\circ} -space is T_{\circ} -space.
- Every S_1 -space is T_1 -space.
- 3. Every S_2 -space is T_2 -space.
- 4. Every $I^{**}_{-}T_{\circ}_{-}$ space is S_{\circ}_{-} space
- Every $I^{**}_{-}T_{1}_{-}$ space is S_{1}_{-} space.
- Every $I^{**}_{-}T_{2}_{-}$ space is S_{2}_{-} space.
- Every I^* T_{\circ} _space is S_{\circ} _space.
- Every $I^*_T_{\circ}$ _space is T_{\circ} _space.
- 9. Every $I^*_{T_1}$ space is T_1 space.
- 10. Every $I^*_{-}T_{2}_{-}$ space is T_{2}_{-} space.
- 11. Every $I^{**}_{-}T_{\circ}_{-}$ space is T_{\circ}_{-} space.
- 12. Every $I^{**}_{-}T_{1}_{-}$ space is T_{1}_{-} space.
- 13. Every $I^{**}_{-}T_{2}_{-}$ space is T_{2}_{-} space.

Proof:- (1) Let $x, y \in X$ such that $x \neq y$. Since (X,T) is S_{\circ} _space then there exist a nonempty subset A of X contain at least one element of them we say that $x \in A$ such that x $\notin A^{*y}$ or $y \notin A^{*x}$. Assume $y \notin A^{*x}$ since X is strong space then A is strong set so A^{*x} is open set and then $x \in A^{*x}$. Hence (X ,T)is T_{\circ} _space.

Proof:- (2) Let $x, y \in X$ such that $x \neq y$. Since (X,T) is S₁ spacethen there exist a nonempty subset A of X contain at least one element of them we say that $x \in A$ such that x $y \notin A^{*x}$ since X is strong space then A^{*x} is open set with $x \in A$ and A^{*y} is open set with $y \in A$ (by proposition 1.6)) $x \in A^{*x}$ and $y \in A^{*y}$, hence (X,T) is T_1 _space.

Proof:- (3) The same way of proof (2)

Proof:-(4) Let $x, y \in X$ such that $x \neq y$. Since (X,T) is I^{**} -*T*_o_*space* thenThere exist a nonempty subset A of X such that $x \notin A^{*y}$ or $y \notin A^{*x}$. Since X is strong space then A is strong therefor $x \in A$ hence (X,T) is S_{\circ} _space.

Proof:-(5) Let $x, y \in X$ such that $x \neq y$. And let (X,T) is I^{**} - T_1 _space then There exist a nonempty subset A of X such that $x \notin A^{*y}$ and $y \notin A^{*x}$. Since X is strong space then A is strong therefor $x \in A$ hence (X,T) is S_{1} _space.

Proof:-(6) The same way of proof (5)

Proof:-(7) Let $x, y \in X$ such that $x \neq y$. And let (X,T) is $I^* - T_{\circ}$ _space then

There exist two a nonempty subset B, A of X such that $x \notin A^{*y}$ or $y \notin A^{*x}$ assume $x \notin A^{*y}$ since X is strong space then A is strong set .So Then $x \in A$.Hence (X,T) is S_a space.

Proof :-(8) Let $x, y \in X$ such that $x \neq y$ and let (X,T) is $I^* - T_{\circ}$ _space then

There exist two a nonempty subset B, A of X such that $x \notin B^{*y}$ or $y \notin A^{*x}$, since X is strong space then A, B are strong sets .So A^{*x} , B^{*y} are open sets and $x \in A$, $y \in B$.(by proposition 1.6) then $x \in A^{*x}$ and $y \in B^{*y}$ and we have $x \notin B^{*y}$ or $y \notin A^{*x}$. Hence (X,T) is S_{\circ} -space.

Proof :- (9) Let x ,y $\in X$ such that $x \neq y$. And let (X,T) is I^* - T_1 _space then

There exist two a nonempty subset B, A of X such that $x \notin B^{*y}$ and $y \notin A^{*x}$ since X is strong space then A, B are strong sets .so A^{*x} , B^{*y} are open sets and $x \in A$, $y \in B$.(by proposition 1.6) then $x \in A^{*x}$ and $y \in B^{*y}$ and we have $x \notin B^{*y}$ and $y \notin A^{*x}$. Hence (X,T) is S_{1} -space.

Proof: (10) The same way of proof (9)

Proof :- (11) Let $x, y \in X$ such that $x \neq y$. Since (X,T) is I^{**} - T_{\circ} _space then There exist a nonempty subset A of X such that $x \notin A^{*y}$ or $y \notin A^{*x}$. Since X is strong space then A is strong therefor A^{*x} is open set and $x \in A$ (by proposition 1.6) $x \in A^{*x}$. Hence (X,T) is T_{\circ} _space.

Proof :- (12) Let x, $y \in X \ni x \neq y$ and let X is $I^{**} - T_1$ _space then there exist a subset A of such that $x \notin A^{*y}$ and $y \notin A^{*x}$.since $x \notin A^{*y}$ then $x \notin (A^{*y})^{*x}$ since $(A^{*y})^{*x} = \emptyset$.

Put $A^{*y} = B$ then $B^{*x} = \emptyset$ then $y \notin B^{*x}$ and we have $x \notin A^{*y}$. Since X is strong set then A^{*y} and B^{*x} . Hence (X,T) $I^{**}_T_1_$ space.

Proof: **(13)** The same way the proof (12).

Corollary 3.9 Let (X,T) be topological space if X is strong space and M^* - space then we have .

- 1. Every S_2 -space is S_3 -space.
- 2. Every I^{**} - T_2 -space is S_3 -space.

Theorem 3.10 Let (X,T) is S_3 -space then $I^{**}_T_2$ _space **Proof:**- By (Let (X,T) is S_3 -space then S_2 -space) then X is S_2 -space and by S_2 -space is $I^{**}_T_2$ _space then (X,T) is $I^{**}_T_2$ _space.

Remark 3.11 Every S_2 -space is a S_1 -space.

Remark 3.12 If X is door space then every T_3 –space is S_3 –space

Theorem 3.13 Let f be is bijection and I^* -map from S_{i} -space (X,T) onto (Y,ρ) space then (Y,ρ) is S_{i} -space if f is open and continuous for each i=0,1,2.

Proof :-Assume i=2,let $y_1, y_2 \in Y$ such that $y_1 \neq y_2$ since f is one to one then $f^{-1}(y_1) \neq f^{-1}(y_2)$ because of X is S_1 -space then there exist a nonempty subset A of X such that A contain at least one element we say that $f^{-1}(y_1) \in A$ and $f^{-1}(y_1) \notin A^{*f^{-1}(y_2)}$ and $f^{-1}(y_2) \notin A^{*f^{-1}(y_1)}$ with $A^{*f^{-1}(y_2)} \cap A^{*f^{-1}(y_1)} = \emptyset$ so $f(f^{-1}(y_1)) \in A = y_1 \in f(A)$ since f is I^* -map then we get that $y_1 \notin f(A)^{*y_2}$ and $y_2 \notin f(A)^{*y_1}$ with $f(A)^{*y_2} \cap f(A)^{*y_1} = f(\emptyset) = \emptyset$. Then Y is S_1 -space.

Theorem 3.14 Let f be is open and bijection from (X,T) onto S_{i} space (Y,ρ) then (X,T) is S_{i} space if f is I^{*} – map for each i=0,1,2

Proof:- Assume i=2 ,let $x_1, x_2 \in X$ such that $x_1 \neq x_2$ since f is one to one then $f(x_1) \neq f(x_2)$ but Y is S_1 -space then there exist a nonempty subset B of Y such that B contain at least one element we say that $f(x_1) \in B$ with $f(x_1) \notin B^{*f(x_2)}$ and $f(x_2) \notin B^{*f(x_1)}$ such that $B^{*f(x_2)} \cap B^{*f(x_1)} = \emptyset$ so $x_1 \in f^{-1}(B)$ and $f^{-1}(f(x_1)) \notin f^{-1}(B^{*f(x_2)}) = x_1 \notin f^{-1}(B)^{*x_2}, x_2 \notin f^{-1}(B)^{x_1} \quad \text{with } f^{-1}(B)^{f(x_1)}) \cap f^{-1}(B)^{*f(x_2)}) = f^{-1}(B)^{x_1} \cap f^{-1}(B)^{*x_2} = \emptyset$. Then X is S_2 -space.

Proposition 3.15 The product space of S_2 -space is S_2 -space.

Proof :- Let X and Y are S_2 -space to prove X× Y is S_2 -space .Let (x_1,y_1) , (x_2,y_2) be two distinct point of X× Y either $x_1 \neq x_2$ or $y_1 \neq y_2$ take $x_1 \neq x_2$.since X is S_2 -space then there exist a nonempty sub set A of X such that contain at least one element we say that $x_1 \in A$ and $x_1 \notin A^{*x_2}$ and $x_2 \notin A^{*x_1}$ with $A^{*x_2} \cap A^{*x_1} = \emptyset$. it follows $A^{*x_1} \times Y$ and $A^{*x_2} \times Y$ is a nonempty subset of X× Y then $(x_1,y_1) \notin A^{*x_2} \times Y$ and $(x_2,y_2) \notin A^{*x_1} \times Y$ with $(A^{*x_1} \times Y) \cap (A^{*x_2} \times Y) = (A^{*x_1} \cap A^{*x_2}) \times Y = \emptyset \times Y = \emptyset$. Hence X× Y is S_2 -space.

Corollary 3.16The product space $X = \times \{X_{\lambda} : \lambda \in \Lambda\}$ If X_{λ} is S_2 -space then X is S_2 -space.

Proof:- Let X_{λ} is S_2 -space to prove $X = \times \{X_{\lambda} : \lambda \in \Lambda\}$ is S_2 -space let $x = \{x_{\lambda} : : \lambda \in \Lambda\}$ and $y = \{y_{\lambda} : : \lambda \in \Lambda\}$ be two distinct point of X then $x_{\mu} \neq y_{\mu}$ for some $\mu \in \Lambda$ where $x_{\mu}, y_{\mu} \in X$.since X_{μ} is S_2 -space then there exist A_{μ} a nonempty sets in X_{μ} and contain at least one element we say that $x_{\mu} \in A_{\mu}$ such that $x_{\mu} \notin A_{\mu}^{*y_{\mu}}$ and $y_{\mu} \notin A_{\mu}^{*x_{\mu}}$ with $A_{\mu}^{*y_{\mu}} \cap A_{\mu}^{*x_{\mu}} = \emptyset$ since $\pi_{\mu}(x) = x_{\mu}$ and $\pi_{\mu}(y) = y_{\mu}$ it follows $\pi_{\mu}(x) = x_{\mu} \notin A_{\mu}^{*y_{\mu}}$ and $\pi_{\mu}(y) = y_{\mu} \notin A_{\mu}^{*y_{\mu}}$ then $x \notin \pi_{\mu}^{-1}(A_{\mu}^{*y_{\mu}})$ and $y \notin \pi_{\mu}^{-1}(A_{\mu}^{*x_{\mu}})$ with $\pi_{\mu}^{-1}(A_{\mu}^{*y_{\mu}} \cap A_{\mu}^{*x_{\mu}}) = \pi_{\mu}^{-1}(\emptyset) = \emptyset$, $\pi_{\mu}^{-1}(A_{\mu}^{*y_{\mu}})$ and $\pi_{\mu}^{-1}(A_{\mu}^{*y_{\mu}})$ are a nonempty sets in X. Hence X is S_2 -space.

REFERENCE:

[1] K. Kuratowski, Topologie I, Warszawa, 1933.

[2] T.R. Hamlett and D. Jankovi'c, Ideals in Topological Spaces and the Set Operator ,*Bollettino U.M.I.*, 7 (1990), 863–874.

[3] T.R. Hamlett and D. Jankovi'c, Ideals in General Topology, General Topology and Applications, (Middletown, CT, 1988),

115–125; SE: Lecture Notes in Pure & Appl. Math.,123 (1990), Dekker, New York.

[4] D. Jankovi'c and T.R. Hamlett, New topologies from old via ideals, *Amer. Math.*

Monthly, 97 (1990), 295-310.

[5] D. Jankovi'c and T.R. Hamlett, Compatible Extensions of Ideals, *Bollettino U.M.I.*,

[6] Arenas , F.G . Dontchev , j .and Puertas M.L ."idealization some weak separation axioms "Acts Math .Hunger ,Vol .89,No.2,pp 47-53. [7]- AL-Swidi ,L.Aand AL-sadaa , A.B (2013):"Turing Point of Proper Ideal "in Archive Des Science (Impact factor 0.474), volume 65, No.7, ISSN 1661-464X, pp (213-220).

[8]-AL-Swidi,L.Aand AL-Nafee, A.B (2013): New separation axioms using the ideal "Gem set" in topology space :Mathematical Theory and Modeling; Vol.3, No.3,2013.www.iiste.org.