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Abstract: 

The production of oil has great significance as a world energy source. Broadly 

speaking, factors affecting output of oilfield can be classified into two groups namely 

human factors and geological factors. Each group consists of number of factors 

affecting output in oilfield. Identifying a prediction model with relevant factors 

(predictors) is a difficult task in the absence of prior knowledge. This could be done 

by using subset selection techniques in regression. Mostly, such techniques are based 

on least squares method (LS). Regression model is fitted under certain assumptions 

like, independence of predictors; error variable follows normal distribution with 

constant variance etc. Oilfield output data may not satisfy some of these assumptions 

and model selection techniques based on LS fail to select parsimonious model. As an 

alternative we use support vector regression.  In this article, we study performance of 

different model selection techniques for oilfield data when predictors are linearly 

related. 
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1.0  Introduction: 

 Now-a-days petroleum products have become necessary commodities in the 

day to day works of life. Oilfield is mother of petroleum products. Production in the 

oilfield plays a significant role in the economy of a nation. An oilfield is an area under 

the sedimentary rock with abundance of petroleum or crude oil. Typically an oilfield 

extends over a large area encompassing hundreds of kilometers with a large number 

of oil wells. Therefore, prediction of oilfield output based on factors affecting it is 

essential for the oil industry. Moreover, identifying the relevant factors for the 

accurate prediction is a serious problem. Regression analysis is a widely used tool for 

this purpose. Usually, multiple linear regression is employed in such cases. A multiple 

linear regression model is defined as 

                      𝑌 =  𝑋 + 𝑒                                                                     (1.1)                                

where 𝑌 is known as response variable and is  a vector of 𝑛 observations,                       

  =   𝛽0,𝛽1, … , 𝛽𝑘−1  ′  is a vector of unknown regression coefficients, 𝑋 is a matrix 

of order (𝑛 ×  𝑘) of observations on  𝑘 − 1 predictors (regressors) X1, X2,…,Xk-1  

with 1’s in the first column and  e is a vector of errors with  following assumptions.  

 Assumptions: 

i. Observations on response variable are independently distributed. 

ii. E(e) = 0 and V(e) = 2 In, where,  In is an identity matrix of order n. 

iii. e ~ N( 0, 2 In ) 

In regression, the least squares estimation method is mostly used for parameter 

estimation. The least squares estimator (LS) of  (Montgomery et al 2006) is given by  

                             YXXX '1' )(ˆ  .                                                                      (1.2) 

This method performs well under above assumptions on errors. If these assumptions 

are violated, estimator in (1.2) may not perform well. Moreover, if the assumptions 

are satisfied but some of the predictors are linearly related, then data may exhibit 

problem of multicollinearity. In such situation, estimator given in (1.2) will have large 

standard error and inference based on it will be misleading. Generally oilfield output 

depends on previous and current information of some variables. Consequently these 

variables may be highly correlated to each other.  
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Oilfield Data : 

Let us consider the oilfield output data analyzed by Mustafar et al. (2011). The 

data contains oilfield output (Y) as response variable and eight different predictor 

variables as follows.            

X1 : the total number of wells,                 X5 : the oil moisture content of previous year,   

X2 : the startup number of wells,              X6 : the oil production rate of previous year, 

X3 : the number of new adding wells,       X7 : the recovery percent of previous year, 

X4 : the injected water volume last year,   X8 : the oil output of previous year. 

The multiple linear regression equation fitted to the above data by LS method is  

 Y  = 2019687 + 178 X1 + 218 X2 + 194 X3 + 0.0768 X4 – 54502 X5 –  983461 X6 

           + 271927 X7 + 0.026 X8                                                                               (1.3) 

      The predictor variable X8 : the oil output of previous year may have some 

linear relationship with the other predictors. Also, it seems that the predictors X1 and 

X2  may be related. To investigate these relationships, we obtained the correlation 

matrix for predictors.     

Correlation Matrix:  

 

The correlation matrix reveals that there exists strong linear relationship 

between any two predictors used. This may not confirm the presence of 

multicollinearity.  So we obtained condition indices and variance inflation factor 

(VIF) for each predictor. The VIFs for X1, X2, …., X8 are 386.1, 112.0, 20.6, 245.0, 

114.6,  41.4,  85.7, 391.6 respectively. The condition indices are 1, 4.1321, 7230.6, 

6.6945x10
+05

, 1.9345x10
+06

, 3.3209x10
+07

, 4.2189x10
+012

, 8.9033x10
+015

 and 

condition number is 8.9033x10
+015

. 

 
X1 X2 X3 X4 X5 X6 X7 X8 

X1 1 
       

X2    0.9844 1 
      

X3    0.9286    0.9345 1 
     

X4    0.9887    0.9552    0.9204 1 
    

X5    0.8391    0.7578    0.7170    0.8831 1 
   

X6 – 0.8646 – 0.7995 – 0.7171 – 0.8989 – 0.9724 1 
  

X7   0.9014    0.8357    0.7674    0.9221    0.9613 – 0.9422 1 
 

X8   0.9946    0.9714    0.9253    0.9916    0.8481 – 0.8689 0.9169 1 
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We observe that severe multicollinearity is present in the data as indicated by 

high VIF’s (e.g. 391.6, 386.1, 245) and condition indices (e.g. 8.9033x10
+015

, 

4.2189x10
+012

). The performance of LS estimator is ‘poor’ in the presence of 

multicollinearity in the data. This is pointed out by many researchers. The effects of 

the presence of multicollinearity on LS estimator are discussed in the standard texts 

like Montgomery et al. (2006) and Draper and Smith (2003).   

          In the literature, many techniques are available for dealing with the problem 

caused by multicollinearity. Ridge regression (Hoerl and Kennard, 1970) and 

Principal component regression (Marquardt, 1970) are suggested for the estimation 

purpose. Among these Ridge estimator is widely used for estimating parameters in 

the presence of multicollinearity. Support vector regression method can also be 

independently used. 

 Rest of the paper is organized as; Section 2 gives meaning of subset selection 

and also describes some methods for subset selection. The performance evaluation of 

these methods using oilfield data is done in Section 3. Section 4 gives discussion. 

2.0   Variable selection in regression: 

One of the main objectives of regression analysis is to predict the future value 

of the response variable using the given values of X1, X2, …, Xk-1  regressors. In 

practice, the data contains large number of variables for instance, rainfall data, oilfield 

data, micro array data, socio economic data, etc. A model based on a smaller subset of 

variables gives more accurate prediction than a model based on a large set (Miller, 

2002). A large number of variables are introduced in the earlier stage of analysis and 

to enhance the predictive ability of the model, some variables are deleted by using 

some variable selection techniques. Hence, variable selection plays a vital role in 

regression analysis. 

The problem of subset selection is that of searching for the ‘best’ subset of 

size ‘p’ from the all possible subsets such that the selected subset gives an accurate 

prediction. The literature of variable selection techniques in regression is very rich. 

An appropriate technique should be used for better results. When the data satisfies all 

the assumptions mentioned in Section 1, it is said to be clean data. Mallows’ Cp 

(Mallows, 1973), R
2
, Adjusted R

2
, Sequential procedures (stepwise selection, forward 

selection and backward elimination), etc. are some of the methods used for variable 
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selection in clean data. These methods are based on LS estimation procedure. In the 

literature few methods are available for variable selection in presence of 

multicollinearity based on ridge estimator such as Rp (Dorugade and Kashid, 2010a) 

and RGp (Dorugade and Kashid, 2010b). 

In this study, we consider model (1.1) as full model. The fitted equation ( in 

vector notation) is  

                                     𝑌 𝑘 = 𝑋𝛽                                                                (2.1) 

and the residual sum of squares is defined as,  

                                       𝑅𝑆𝑆𝑘 =   𝑌𝑖 − 𝑌 𝑖𝑘 
2𝑛

𝑖=1                                                 (2. 2) 

We can write model (1.1) as  

𝑌 = 𝑋1𝛽1 + 𝑋2𝛽2 + 𝑒. 

where   X1   is an n × p matrix of the observations on p (≤ k) predictors and 1   is a   

p × 1 vector of the regression coefficients. 

Here, we consider the subset model as 

                                                   𝑌 = 𝑋1𝛽1 + 𝑒 .                                                  (2.3) 

The fitted equation (vector notation) for subset model is  

                                                   𝑌 𝑝 = 𝑋𝛽 1                                                           (2. 4) 

and the residual sum of squares for subset model is defined as  

                                    𝑅𝑆𝑆𝑝 =   𝑌𝑖 − 𝑌 𝑖𝑝 
2𝑛

𝑖=1                                                   (2.5) 

In this article, we consider following variable selection techniques which are 

used in different scenarios. First two methods are used for clean data and remaining 

methods are used in the presence of multicollinearity. Below we discuss these 

methods in brief. 

 

2.1 Mallows’ Cp criterion: 

Mallow’s  Cp  (1973) is one of the most popular variable selection methods, it 

is defined as 

                     Cp =  
RSS p

σ2 −  (n − 2p)                                          (2.6)           

where, RSSp is the residual sum of squares of subset model, σ2 is error variance 

replaced by its suitable estimate (RSSk / n–k), n is the number of observations and p 

is the number of parameters in subset model. This method is based on LS estimation 
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method and as stated earlier, its performance is poor in case of collinear data. 

However, for clean data its performance is good. 

2.2 Method based on  significance of regression coefficients: 

Another approach to variable selection is to select the variables to be included 

in the model on the basis of p-values of test for significance of individual 

coefficients. This approach is suitable in case of clean data. In presence of 

multicollinearity, p-values may signal in opposite direction.  

 

Variable selection with collinear data 

Presence of multicollinearity in the data introduces serious distortions in the 

analysis. Thus, the data with multicollinearity should be handled carefully. There are 

two approaches for variable selection in such case.  

2.3 Variable selection after removing multicollinearity: 

This method is explained in Chatterjee and Hadi (2006). In this method, we 

delete judiciously the set of variables responsible for multicollinearity in the data, so 

that the resultant set is free from multicollinearity. Based on the values of variance 

inflation factor (VIF), variables responsible for multicollinearity are decided and 

deleted. VIF for predictor 𝑋𝑗  is defined as reciprocal of (1 − 𝑅𝑗
2),  where, 𝑅𝑗

2 is the 

multiple correlation coefficient obtained by regressing 𝑋𝑗  on all the remaining 

predictors.  

 The other approach is to use ridge regression (Hoerl and Kennard, 1970) 

based method for variable selection in the presence of multicollinearity, which is 

discussed below. 

 

2.4 Rp criterion: 

The problem of multicollinearity has attracted several researchers. Some of 

them have developed alternative estimators when the multicollinearity is severe. 

Hoerl and Kennard (1970) proposed the ridge estimator which is widely used 

because of its optimality properties (see Vinod and Ullah, 1981). It is defined as, 

                           YXrIXXR

'1' )(ˆ  ,                                              (2.7) 

where, r  is the ridge constant or ridge parameter. Hoerl, Kennard and Baldwin 

(1975) have recommended,   
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                                      r  = 2 'ˆ ˆˆ( 1)k                                                         (2.8) 

where ̂  is the LS estimator of the  and  

 
2̂ ' ' 'ˆ( )Y Y X Y n k                                                  (2.9) 

Recently, Dorugade and Kashid (2010a) proposed 𝑅𝑝  statistic for subset 

selection based on ridge estimator of β in the presence of multicollinearity. It is 

defined as 

 𝑅𝑝 =  
  𝑌 𝑖𝑘−𝑌 𝑖𝑝  

2𝑛
𝑖=1

𝜎𝑅
2 −  𝑡𝑟  𝐻′𝐻 + 𝑡𝑟  𝐻1

′ 𝐻1 +  𝑝                   (2.10)                                 

where  𝑝 is the number of parameters in the subset model, 𝜎𝑅
2 is error variance and  is 

replaced by its suitable estimate ' ' 'ˆ[( ) ],RY Y X Y n k 
 

= 𝑋  𝑋′𝑋 + 𝑟𝐼 −1𝑋′ ,     

  𝐻1 = 𝑋𝐴 𝑋𝐴
′ 𝑋𝐴  + 𝑟𝐴𝐼 

−1
𝑋𝐴

′ , 𝑟𝐴 is ridge constant or ridge parameter for subset 

model. Note that the matrix 𝐻 and 𝐻1 are equivalent to hat matrix when LS estimator 

is used.  

2.5 Support Vector Regression and Sp –criterion  : 

  An alternative to above methods is to use a data dependent method such as 

Support Vector Machine (SVM). The SVM methodology is fast growing area in 

machine learning.  SVM has been introduced by Boser et al. (1992) in COLT. The 

basic task of SVM is to explore data (input-output pairs) and provide optimally 

accurate predictions for unseen data. A version of SVM for regression has been 

proposed in 1997 by Vapnik, Golowich and Smola. This method is called Support 

Vector Regression (SVR).  

In SVR, the goal is to estimate an unknown function based on data ( xi, yi ),     

i = 1, 2, ….., n of input vectors xi ∈ Rk-1
 and associated targets yi ∈ R, of the form, 

                                   yi = f (xi) + ei,                                                                     (2.11) 

where,  f (xi)  is unknown regression function and ei is error term. 

In case of linear regression, the function f (xi) is described as follow, 

                     ƒ(xi) = b + xiw  ,                                                                   (2.12) 

where, w = ( w1, w2, …..,wk-1)' R
k-1

, b  R is bias and xi = ( x1, x2, …..,xk-1) .  

Therefore, Equation (2.11) becomes, 

               yi = b + xiw + ei  ,              i = 1, 2, ……., n.                              (2.13) 

In matrix notation, we write 

719

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90310

Vol. 2 Issue 9, September - 2013



               Y = Xβ + e  

where, β = ( b, w1, w2, …..,wk-1)', Y,  X and e are the same as defined in Section 1.  

This equation is equivalent to Equation (1.1).  

In SVR, for formulation of optimization problem we use the following             

‘ε -insensitive loss function’ proposed by Vapnik (1995) 

           Lε( yi, ƒ(xi)) = Max{ |ƒ(xi) – yi | – ε ,  0 }                                     (2.14) 

where, ε > 0 is a pre-defined constant which controls the noise tolerance. The goal of  

SVR is to find a function ƒ(x) that has at most ε deviations from the actually obtained 

targets yi for all training data at the same time as flat as possible.  

Using the ε -insensitive loss function, the regression problem can be written in 

the form of convex optimization problem (Smola and Schölkopf, 2004) as follows: 

          Minimize    
2

1
||w||

2
                                                                                 (2.15) 

          Subject to:    yi – (xi w + b ) ≤ ε ,  i = 1, 2,….,n.                                     (2.16) 

                                (xi w + b ) – yi ≤ ε ,  i = 1, 2,….,n                                     (2.17) 

The above optimization problem is feasible in case function f actually exists 

and approximates all pairs ( xi, yi ) without error with ε precision, 

To cope with infeasible constraints of above problem, we introduce non 

negative slack variables
i

ξ and 
*

i
ξ , which measure the deviations of training samples 

outside  ε - insensitive zone. The above optimization problem becomes (Vapnik, 

1995), 

       Minimize  
2

1
||w||

2
  + C 



n

1i

(
i

ξ + 
*

i
ξ  )                                                       (2.18)                                  

       Subject to :    yi – ( xi w + b ) ≤ ε + 
i

ξ    ,  i = 1, 2,….,n.     (2.19)  

                            ( xi w + b ) – yi  ≤ ε + 
*

i
ξ   ,  i = 1, 2,….,n                              (2.20)  

                        and  
i

ξ , 
*

i
ξ  ≥ 0  ,  i = 1, 2,….,n                                            

The constant  C  > 0 determines the trade-off  between the flatness of f and the 

amount up to which deviations larger than ε are tolerated.  

Using Lagrange’s multipliers method and exploiting the optimum constraints, 

the weight vector is given by (Vapnik, 1997, Gunn, 1998 ), 

720

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90310

Vol. 2 Issue 9, September - 2013



                            

nsvn
*

i i i

i 1

' (α α )


 w x                                                              (2.21)  

and the regression function is given by 

                   
n

*

i i i

i 1

( ) (α α ) b
nsv

f


  x x x                                                             (2.22)      

   where, 
i

α  , 
*α i  for i = 1, 2,….,n are Lagrange’s multipliers and  nnsv – number of 

support vectors. The value of  bias b is given by (Gunn, 1998), 

                   
wxx ) (

2

1
b

sr
                                                               (2.23)  

where, xr and xs are the support vectors (i.e. any input vector which has nonzero value 

of either 
i

α or 
*α
i
 respectively).  

The role of meta parameters C and ε: 

 The performance of SVR (estimation accuracy) strongly depends on proper 

setting of regularization parameter (C) and width of insensitive zone (ε). Such 

parameters are called as meta parameters. Parameter ε controls the width of the ε -

insensitive zone  used to fit the training data. The ε decides the level of accuracy of 

the regression function through number of support vectors. To achieve certain 

accuracy, we need to choose a smaller value of ε to have maximum number of support 

vectors.  Parameter C determines the tradeoff between the model complexity 

(flatness) and the degree to which deviations larger than ε are tolerated in 

optimization formulation.  Existing methods for selection of meta parameter C are  

 A priori knowledge   and/or user expertise,   

 C = Range (Mattera and Haykin,1999), 

 C = ( 3 , 3 )y yMax y y   (Cherkassky and Ma,2004), 

 C = PR (Percentile Range) = (P(100+γ)/2 – P(100-γ)/2 ) (Desai and Kashid, 2013)  

and       C= Max (|Me – 3Q.D.|, |Me + 3Q.D.|) (Desai and Kashid, 2013) 

Sp –criterion:   

    Kashid and Kulkarni (2002) proposed the more general Sp - criterion based 

on M-estimator (Montgomery et al., 2006, chap. 11) for outlier data. It is defined as, 

  Sp =   ( y ik
𝐧
𝐢=𝟏 − y ip )𝟐 𝜎 2 − (k − 2p)                                    (2.24) 
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  Where, y ik  and y ip  are predicted values based on full model and subset model 

respectively. Also k and p are the parameters of the full and subset model 

respectively.  Further, note that σ
2
 is usually unknown and so it has to be replaced by 

its suitable estimate.  

3.0  Comparison of  subset selection methods:  

To compare the performance of various subset selection methods, we obtain 

the mean absolute percentage error (MAPE) defined as, 

               MAPE =   [(  𝑦𝑖– 𝑦𝑖  𝑦𝑖) ∗ 100] 𝑛  𝑛
𝑖=1                                        (3.1) 

In this section, we demonstrate numerically how variable selection methods 

give misleading results if they are applied without considering the nature of data. We 

reconsider the oilfield data discussed in section 1 and analyze it by using the methods 

mentioned in above section.  

3.1 Variable selection using Mallows’ Cp: 

We obtain the values of Cp statistic for all possible (2
k
 –1= 255) subsets. In 

the following table, we list two values of Cp statistic which are minimum in same 

size of subsets.   

                             Table 1: Values of Cp statistic. 

Predictors in the Model Cp p 

X1 60.4 
2 

X8 65.3 

X1X7 27.7 
3 

X1X8 33.4 

X2X7X8 8.3 
4 

X1X5X7 18.8 

X2X4X5X7 5.7 
5 

X1X2X7X8 8.1 

X2X4X5X6X7 5.7 
6 

X1X2X4X5X7 6.3 

X1X2X4X5X6X7 6.1 
7 

X2X4X5X6X7X8 7.0 

X1X2X3X4X5X6X7 7.0 
8 

X1X2X4X5X6X7X8 7.8 

X1X2X3X4X5X6X7X8 9.0 9 
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Fig. 1  Plot of Cp vs p 

 

Value of Cp corresponding to predictors {X2, X4, X5, X7} is 5.7 which is close 

to 5. Hence, according to this method {X2, X4, X5, X7} is proper subset. This fact is 

also demonstrated through graphically.  In Fig. 1, the dotted line represents Cp = p  

and  point denotes value of Cp. Naturally, if Cp is close to p, the corresponding points 

will be close to the line Cp = p. From Fig. 1, it is clear that the subsets for which Cp is 

close to p are proper subsets.  Among these, {X2, X4, X5, X7} is of the smallest size. 

3.2    Variable selection using method based on p-value: 

In this method, we remove predictors one by one corresponding to larger p 

value (of test for significance of individual predictor). The same method is used by 

Mustafar et al. (2011). Here we fix the significance indicator 0.05 and apply this 

method to oilfield data. The largest p-value is 0.901, which corresponds to X8, so we 

remove X8 from the model and regress Y on remaining predictors. In the same way, 

X3 (p value = 0.307), X1 (p value = 0.210), X6 (p value = 0.613) are removed in 

subsequent stages.  Finally, the predictors X2, X4, X5 and X7 remain in the regression 

model whose p values are significant.  So, this method selects the set {X2, X4, X5, X7} 

as proper subset. The same subset is selected for significance indicator 0.1 and 0.01. 

The regression coefficients, p – values and VIF values for the subset model are 

computed and presented in the following table. 

Table 2 : p and VIF values for significant predictors. 

Predictor Coeff. p VIF 

Constant –259910 0.313 -- 

X2 352.21 0 19.5 

X4 0.12302 0 35.7 

X5 –36606 0.001 19 

X7 277024 0 20.5 

0
2
4
6
8

10
12
14
16
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20
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Cp vs p
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It is clear that p values in the above table indicate the significance of individual 

predictors, but VIF values indicate that still the multicollinearity is present in the 

predictors selected by this method.  Mallows’ Cp and the p – value based method 

agree on the importance of same subset because both are based on LS estimator. 

3.3    Variable selection after removing multicollinearity:  

We obtained VIF values corresponding to all predictors. The VIF value 

corresponding to predictor X8 is 319.6, which is larger; we remove X8 from the 

model. We obtained VIF values corresponding to remaining predictors Xi, i= 1,2, 3, 

…, 7 and maximum VIF is 337.2 which corresponds to X1. So, we remove X1 in 

second stage. On the same way we remove X5 (VIF = 57.7 ) in third stage,   X4 (VIF = 

47.6 ) in fourth stage and regressed Y on remaining variables X2, X3, X6, X7. The 

fitted regression equation is 

Y  = – 1430935 + 535 X2 + 398 X3 – 206908 X6 + 259257 X7                  (3.2)    

The VIF values for remaining variables X2, X3, X6, X7 are 11.1, 8.1, 9.1, 10.8 

respectively. This indicates that the data doesn’t contain severe multicollinearity. 

Here, we consider model in (3.2) as fitted full model and apply Mallows Cp for 

variable selection. Following table presents values of Cp statistic for all possible 

subset models when full model contains the predictors X2, X3, X6, X7. 

Table 3 : The values of  Cp for non collinear data. 

Predictors in the Model Cp p 

X2 115.5 

2 
X3 471.4 

X6 703.8 

X7 453.9 

X2X3 116.9 

3 

X2X6 37 

X2X7 3.4 

X3X6 161.4 

X3X7 112.3 

X6X7 453.4 

X2X3X6 35 

4 
X2X3X7 3.2 

X2X6X7 5.3 

X3X6X7 109.9 

X2X3X6X7 5 5 
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From above table it is clear that Cp statistic selects the set of predictors {X2, X7} 

as proper subset. This method selects the subset model with smaller size as compared 

to the methods given in  3.1 and 3.2. 

3.4    Variable selection using Rp criterion: 

We apply method based on Rp statistic to oilfield data and obtain the values of 

Rp statistics for all possible (2
k 

–1= 255) subsets. Two values of  Rp statistic, which 

are minimum in each size of subsets are presented in Table 4.  

                             Table 4 :The values of  Rp statistic 

Predictors in the Model Rp p 

X1 56.23302 
2 

X8 58.52541 

X1X7 25.60112 
3 

X1X8 28.60801 

X2X7X8 6.491387 
4 

X2X5X8 16.46874 

X1X2X7X8 5.62053 
5 

X2X4X7X8 6.702801 

X2X4X5X7X8 6.58359 
6 

X1X2X5X7X8 7.125915 

X1X2X4X5X7X8 6.848504 
7 

X1X2X3X4X6X7 7.227894 

X1X2X4X5X6X7X8 7.388682 
8 

X1X2X3X4X5X6X7 8.458443 

X1X2X3X4X5X6X7X8 9.0 9 

Fig. 2  Plot of Rp vs p
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 The Value of Rp corresponding to predictors {X1, X2, X7, X8} is 5.62053, 

which is close to 5. Hence {X1, X2, X7, X8} is proper subset. Fig. 2 demonstrates this 

fact. The VIF values for the selected subset of variables are 229.9, 62.0, 10.6 and 

120.5. This indicates that multicollinearity is present in the selected subset. Since, 

ridge regression is used, it does not affects the prediction ability of the model.  

 

 

3.5    Variable selection Using Support Vector Regression and Sp-Statistic: 

 In this method, we use support vector regression to estimate regression 

coefficients for oilfield data.  To perform SVR, we have used meta parameter  

C = Max (|Me – 3Q.D.|, |Me + 3Q.D.|) suggested by Desai and Kashid (2013) and  

 ε = C×10
-6 

(see Gunn,1998).  For subset selection we have used more general Sp 

criterion ( Kashid  and Kulkarni, 2002). Obtained the values of Sp statistics for all 

possible subsets using SVR.  Two values of Sp statistic which are minimum in each 

group of equal number of predictors are presented in Table No.5.  

Table 5: Values of Sp statistic. 

Predictors in the Model Sp p 

X1 58.72623939 
2 

X8 61.10392123 

X2X8 26.50206833 
3 

X1X8 46.70830141 

X2X4X8 22.19079591 
4 

X1X2X8 22.43180781 

X2X5X6X8 11.54141709 
5 

X2X3X5X8 11.76939773 

X2X3X4X5X7 7.886057118 
6 

X2X4X5X6X8 13.65096426 

X2X3X4X5X6X7 7.485941498 
7 

X2X3X4X5X7X8 9.534545572 

X2X3X4X5X6X7X8 7.077579478 
8 

X1X2X3X4X5X6X7 9.950798094 

X1X2X3X4X5X6X7X8 9 9 
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Value of Sp corresponding to predictors {X2, X3, X4, X5, X6, X7} is 

7.485941498, which is closer to 7 in small subsets. Hence {X2, X3, X4, X5, X6, X7} is 

proper subset. 

Interestingly, different methods selected different subsets. In order to compare 

these subsets and consequently the methods which select them, we assess the mean 

absolute percentage error. We generated 10000 bootstrap samples each for sample 

size 5, 10, 15, 20 and 24 from the oilfield data. The MAPE’s corresponding to each 

selected subset are reported in the Table No. 6.  

Table 6 : Mean Absolute Percentage Error. 

Method Proper Subset 
Bootstrap Sample Size 

n = 5 n = 10 n = 15 n = 20 n = 24 

P-value  { X2, X4, X5, X7} 33.08442 33.07843 33.10258 33.09600 33.12569 

Cp { X2, X4, X5, X7} 33.08442 33.07843 33.10258 33.09600 33.12569 

Rp { X1, X2, X7, X8} 3.493844 3.484232 3.476870 3.484011 3.465856 

Chat. { X2, X7} 4.815408 4.793653 4.764784 4.774153 4.757813 

SVR { X2, X3, X4, X5, X6, X7} 2.777376 2.762925 2.770807 2.775243 2.750963 

  

 The subsets { X1, X2, X7, X8} and { X2, X3, X4, X5, X6, X7} give least MAPE among 

those considered. Rp criterion and Sp criterion selected the corresponding subsets. 

Thus, Rp criterion and Sp criterion using SVR estimates perform better than other 

criteria in the presence of multicollinearity. 

 

4.0 Discussion: 

In this article, we discussed the use of subset selection methods for the 

purpose of building a model less complex in nature but giving higher prediction 

accuracy in the contest of oilfield data. As discussed earlier, there are many subset 

selection methods available in the literature. The user of statistics may find difficult to 

choose one of them. Naturally, if one uses a subset selection method without knowing 

the nature of the data, then the results may be misleading. It is important to 

understand the nature of the data and problems associated with it. Based on the 

problems in the data, an appropriate method of subset selection should be used. 
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