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1 INTRODUCTION
Let A denote the class of all functions f(2)
of the form:

f(z)=z+>a,z" (1.1)
n=2
which are analytic in the open unit disk

U={z:zeC and |Z| <1}.Let S be the subclass of

A consisting of univalent functions in U with Montal
normalization. The analytic criteria for the familiar class of
starlike and convex function are as follows.

Definition 1 Let f(z) be given by (1.1). Then

f €S” ifand only if
m( o (Z)) >0, (zeU). (12)

f(2)

Definition 2 Let f be given by (1.1). Then f € C ifand

only if SR(l+wJ >0, (zeV). (1.3)

f'(z)

It follows that f € C if and only if zf'eS".
Further, we recall the following definitions of the familiar
classes of K -uniformly convex functions and K -starlike
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functions as follows:
f:feS and R M >
f(2)
k-ST= , , (1.4)
kw— (zeU:k=0)
f(2)

f'(z)

k-UCV= . : (1.5)
D) cuks0)

t(z)
The function classes K—ST and kK—UCV were
introduced and investigated by Kanas and Wisniowska [17,
18] respectively (see the work [15] also). For a fixed K >0
, the class K—UCV is defined purely geometrically as a
subclass of univalent functions which map the intersection
of U with any disk centered at the point z = (| £ |< k)

onto a convex domain. In the case when K =0 inequality
(1.4) and (1.5) reduces to the well known class of starlike [6]
and convex functions respectively. When Kk =1 the
inequality (1.4) the class UCV introduced by Goodman
[5, 6] and studied extensively by Renning [33] and
independently by Ma and Minda [26, 27]. The class
k —ST isrelated to the class K—UCV by means of the
well-known Alexander transformation between the usual
classes of convex and starlike functions (see the works in
[16]-[18], [26, 33]). Some more interesting developments
involving the classes K—UCV and k—ST were
presented by Lecko and Wisniowska [23], Kanas [10]-[14]
and also other [1, 28, 29, 35] (one can also refer to [2], [37]
and [38] for some more related works). Very recently, a
system investigation of a class of functions with (
-differential operator involving conical domain was done by
Kanas and Raducanu [19].

By the familiar principle of differential subordination

between analytic functions f(z) and g(z) in U, we
say that f(z) is subordinate to g(z) in U if there

ffeSand sn[1+ i (Z)J>
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exists an analytic function w(z) satisfying the followin K’
" ! 2) fying J k = cosh (%) .which maps the unit disk U onto the
conditions: w(0) =0 and |w(z)|<1 (z<U), such K (x)
that  f(z) =g(W(z)) (zeU). We denote this conic domains are respectively for 0 <k <1,
subordination by f(z) <g(z) (z €U).In particular, if k2 O\ 2
g(z) isunivalentin U, then it is known that u-+ 1K v
f(2)<9(2) (zeV) = £(0)=9(0) Q= UtV — = |~ —— >1,
and f(U)cgU) 1—K? ﬂ
kanas[lO]-[18] introduced and studied the different for kK >1 ,
concepts using conical region. For 0 <k <oo defined N 2
over the domain €2, as follows: u +i(7 v
i - P k®-1
Q ={u+iv:u’>k*u-1)>+k»?}  (16) Q =qutvy ——= |+ —— | <1.
which maps U onto the conic domain €2,. The explicit k? -1 /kz 1
form of the extremal function that maps U onto the conic .
By virtue of
domain QkJ7 is given by We note that the explicit form of 7f'(2) 7f"(2)
function 2, (2). (D)= < P@)or PR =14 S5 < (o)

pO(z)=i+—z=1+22+222+223+224+... (zeU), k=0.
-z

and the properties of the domains, we have

p(z) =1+

2
T

2 2(1+\/E
log .

ﬁ] (zeU), k=1.

R(p(2) > R(p, (2) > kiﬂ

The " Hankel determinant for q>1 and N>0 is
stated by Noonan and Thomas [30] as

8 16 184
:1+?z+y22+@23+.... a, a., Qg0
2 an+1
0. (2) :1+msinh2(A(k) arctanhyz) (zeU) ,0<k <1
—Lcos A(k)il0g1+\/E - K =
1-k? 1-vJz | 1-Kk?
&gt 8422
1 &[a (AY2n-1 !
=1+— 2! z"
s SV

where A= A(k) = Earccos k.
T
2A  AAT+2A% ,
+ S+ L
1-k 3(1-k*)
46A> 8A' A4A°
+ +
15 3 15

=1

3

7 +...
3(1-k?)
with U(z) :%

where K(x) dentes the Legendre's complete elliptic
integral of the first kind, and K'(K) is the complementary
integral of K(x). and x €(0,1) is chosen such that

This determinant has also been considered by several
authors, for example, Noor [31] determined the rate of

growth of H (n) as Nn—oo for functions f(z)

given by (1.1) with bounded boundary. Ehrenborg in [4]
studied the Hankel determinant of exponential polynomials.
The Hankel transform of an integer sequence and some of its
properties was discussed by Layman [22]. Easily, one can

observe that the Fekete and Szego functional | a, — z@. |
can be represented in terms of Hankel determinant as
H,(1) . Fekete and Szego the estimate |a, — @, |

where 4 isrealand f €S.
a2
H,(2) =a,

CH
a,|. Janteng et al.[9] had established on

the second Hankel determinant for functions f (z)
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belongs to S” and C . Inthis paper, we will follow the
same procedure or method used by them in finding

|a,a, —aZ | for the domains bounded by conic sections.

and define the symmetric Topelitz determinant T (n) as

follows:
an an+l an+q—1
a‘n-*—l :
T,(N=| .
an+q—1 an
That is, for example
a, a, a, a,
T,(2)=a; a), T,0Q)= a
a, a, a,
a a a
T@=> * |
a, a; a,

For f €S, the problem of finding the best possible

bounds for || a,.,|—|&, |l has a long history [3]. It is
known fact from [3], for a constant c, that
|l a,..]1—1a, |I<c . However, finding exact values of the
constant C for S and its subclasses has proved difficult.
It is very trivial from the definition that finding estimates for
T.(q) is related to finding bounds  for

n+1 |

A(n):=|a,,,—a,| and the best possible upper bound
obtainable for A(n) is 2n+1 which is for the function

k(z) = -

is different to finding bounds for || a

Therefore, obtaining bounds for A(n)

na | =@, [l Inavery

recent investigation, some sharp estimates for T _(q) for
low values of N and q involving symmetric Topelitz

(f*g)(2)=z+>abz"

n=1
Let neN,=0,1,2,.... The Ruscheweyh derivative
[34] of the N™ order of f(z), denoted by D"f(2), is
defined by

D"f(z) = — 2

g

- I'(n+k

= T(n+1)(k—-1)!
The Ruscheweyh derivative gave an impulse for various
generalisation of well known classes of functions. The class

R, was studied by Kanas and Yaguchi [20] and Singh and
Singh [36], which is given by the following definition

SR(MJ >0, zeU. (1.8)

1.7

D"f(2)

Wenotethat R, =S and R =C.
In this paper we derive the Hankel determinant and Topelitz
matrices for the class R, .

2 Preliminaries
The following lemmas will be required in our investigation.

Let P be the family of all functions p analyticin U for
which R(p(z)) >0 for zeU and

p(z) =1+cz+C,2° +.... (2.1)
Lemma 1 [21] Let the function W in the Schwarz function
is given by

W(z) =Wz +W,z°+..., zeU

Then for every complex number S,

2
|, —swf <1+ (|s|~1) | w |

and | W, —SW; [< max{%,| s —1|}.

Lemma2 [32] If peP then |C, |[<2 foreach K.

Lemma 3 [7] The power series for p(z) give (2.1)in U
to a function in p if and only if the Toeplitz determinants

determinants whose entries are the coefficients a, of 2.4 G Cr
starlike and close-to-convex functions are obtained by c, 2 G - .+ Gy
Thomas and Halim [8]. For f(z) given by (1.1) and
g(z) givenby D =
9(z)=z+>bz",
) n=1 c, ¢, C, 2
their convolution (or Hadamard product), denoted by
(f =Q), is defined as
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and C_, =C, , are all non-negative. They are strictly

n .
positive except for p(z) = Zok po(eItk z), p.>0,
k=1
t =t
and D, =0 for n>m.

, for k # j;in thiscase D, >0 for n<m-1

Lemma 4 [25] Let the function p € P be given by the
power series (2.1), then

2c, =c +x(4—-c?)
for some X, |x|<1,and

2.2)

z(D"f(z

a@ =" v,
D"f(z2)

Then, for f € R, we have the following subordination:
q(z) < p(2) (z€V). (3.1)
where
P (2) =1+Pz+P,z%+--
Using the subordination relation (3.1), we see that the
function h(z) given by

4cy = ¢ +2(4—c)ex—¢ (4—c))x* +2(4—c)(1-| x )z is analytic and has positive real part in the open unit disk U

(2.3)
forsome z, |z[<1.
3 Main Results

Theorem1 Let 0 <k <1 and if the function

f (z) givenby (1.1) beintheclass R, .then
2
Ii, n=0;
4
|a2a4 _a32 |S
[8N + P (A(n) ~B(M))I
2P’A(n)-P?B(n)-16(M —N) n=>1,
+B(n)P?,

where P, P, and P,
P (2)=1+Pz+Pz* +Pz°+....

3 4 2 2
v - am) 3 B3R PR 3PYP,
16 16 16 8 16

e B RR
16 16 8

N = A(n)(PP 3;] B(n)[:: P8P2+%1j

are the coefficients of

A(n) = 5 ! and
(n+1)°(n+2)(n+3)

B(n) = 21 5
(n+1D)°(n+2)

Proof. Let us consider a function q(z) given by

p(z) = —1t p,; 883 =1+cz+c,2° +.
. We also have

_ [ Pp(@)-1
a(z) = pk(mj (zel).

dwwa»=owa)p{£9tfj 62

p(z)+1

z+2(n+1)a,z’ +3—(n+1)(n +2) a,2° +
:1+mz+ E_Pl_clz_}_PZ_Clz ZZ
2 2 4 4

n P1_013_ Pcc, +E+ P, _ ch13 n Pacl3 b
8 2 2 2 4 8

(3.3)
Equating the like terms of (3.3), we get
Pc
, = ! ’ (3.4)
2(n+1)

a, = L PC2+ ﬂ+&+Iiz c;
(n+1)(n+2) 4 4 4 )07

(3.5)

_ A
Pc +[P P+3ij .C,
4
L
a = RS, 4 4
4
(n+1)(n+2)(n+3) N &_ﬁ R
2 4 |
3P, P
- 8 8 .
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a,a, _a§ = A( ) P ClCS

A(n) #_PLZ_F?)_PJ-?’ —
2 2 8

’ p2 opp, PR |

B(n)| —L 412 41
4 44

2
—B(n)%c§+

am 20
_Sh° SRR R
16 16 16
PLRR
B8 18 8 |
LA _RR_R'R
16 8 8
(3.6)
1
where A(n) = 5 and
(n+1)°(n+2)(n+3)
B)=——+
(n+1D)°(n+2)

Making use of Lemma 4 to express C, in terms of
C, and for simplicity, we have taken Y = 4—012 and
Z = (1-| x[*)z . without loss of generality, let us assume

that c=c;,, where 0<c<2 .
inequality, we get,

Applying triangle

| a,a, _a§ |

4 2
A(n) P PP3 +3P1 P,
8 16
2 4 2
_B(n) P P_+ﬂ C4
16 16 8
PP, 3P
A(n)| —=
4 16
+Y c’X

B(n)(ﬂ +%13J

—A(n) > 12 B(n) it Y

2

+ A(n)%cYZ

(3.7)
‘aza4 —asz‘ <|Mfc* +c?Y [ x|N

p P’ P,
+02Y|X|2A(n)é B(n)-LY*|x[ +A()4

m Y(A-[x[)=

where

M = A(n )(

3R’ R'_3R’_RR_3R'P,
16 16 16 8 16

B(o| = 2 BP
16 16 8

LIC AL 4

Trivially, @ (x)>0 on [0,1] , and so
D(| x]) <D(1) . Hence

la,a,-a3| <[M[c*+c*(4—c?)N
2

+cz(4—cz)A(n)%+

B(n)%@—cz)2 = G(C).

G(c) = {M -N —%ZA(n)+ B(n)i—i}c“

[4N +%2 A(n) —%2 B(n)}c2 +B(n)R’
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For optimum value of G(C), consider G'(C) =0 this
implies that ¢ =0 or

=4 P?(A(n) - B(n)) +8N
2P2A(n) - P?B(n)-16(M —N) |

Since each of these coefficients P, 's are positive, applying

the properties of P, (z), this show that the following
result.

For N=0, G has a maximum attained at
€ =0 . The upperbound for (3.7) corresponds to | X |=1

and ¢ =0, in which case
2

2,8, ~a¢ [< BPY = -

For n>1, G has a maximum attained at
C:ZJ 8N +P'(AM-B(M)
2P*A(n)—P?B(n)-16(M — N)
upperbound for (3.7) corresponds to | X |=1
and

_5 | 8N+R(A(M-B(n)
"\ 2P2A(n)-R2B(n)—-16(M — N)

The

, In which

case
[BN +P*(A(n)—B())I
2P2A(n) - P?B(n) —16(M —N)

| a,a, _a:f |S

which completes the proof.

For the choices of K =0, and N =0, Theorem 1 reduces
to a result in [9] and [24]:

Remark 11f f €S, then |a,a, —a’ [<1.

If k=1, and N=0, then F’1=i2 P, =1—62 and
V4 T
184 :
P, = —— and then we get the following result:
457
, 16
Corollary 1 If f €SP, then |a,a, —a; |< —.
V4
2
If 0<k<1,and Nn=0,then P, = 21A SZ)
5 = 4A°(K)+2A%(K)
? 3(1-k?)
2 4 6
P = 46 A°(k)+40A (I§)+4A (k) and then we get
45(1-k?)

the following result:
Corollary 2 If f ek —ST, then

+B(n)P?.

A (k)

|a2a4 _a“.f |S (1—k2)2 :

If k=0,and N=1,then P, =P, =P, =2. Theorem
1 reduces to a result in [9]:

Theorem2 Let 0 <k <1 and if the function f (2)
given by (1.1) be inthe class R, . then

2
L n=0;

la; —a; I<

where P, P, and P, are the coefficients of
P(2)=1+Pz+Pz*+Pz%+....
2 2 3 4 2
“RP, LP_Z_P_1+1+@]

R =B(n)| —272 +
8 16 16 8 16 8

_p2 3 2
V)| L L L SR
2 2 2 4
1
d B(n)= .
and B(n) (n+1)(n+2)°

Proof. From the equations (3.4) and (3.5), we get

2 2.2
al-a’ :B(n)liczz— hG -
4 7 4n+1)
-P? PP, P’
+B(n)| —+-12+-L Ic’c
) =+ o
RRR RR) 69
+B(n) 164162 8 8 ¢!
P PP,
16 8
where B(n) = 21 5
(n+1)°(n+2)

Making use of Lemma 4 to express C, in terms of
c, and for simplicity, we have taken Y =4—c/ and
Z = (1-| x[*)z . without loss of generality, let us assume

that C=cC,, where 0<Cc<2 . Applying triangle
inequality, we get,
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P?P, P? P
a—a’| =|B(n 4241 ¢t
|a; —a; | (){ s 16 16}
AP, R
+B(n)Y Cc°X 39
(n) [ 8 8} (3.9)
2 2.2
+YZB(n)|ix2—Pl—C2
16 4n+1)
2 4 2.2
a2 a2 <[p] B, B Bl R
8 16 16| 4(n+l)
3
By 22 B ey
8 8
P2
+Y2B(n) | x|
()16| |
Trivially, @ (|x)>0 on [0,1] , and so

D(| x]) <D(1) . Hence

B(n) P P P_22+PL4 CA—i
16 16| 4(n+1)

3
+B(n)Y m+P—1 c?
8 8

la;—a, | <

2

+YZB(n)%::G(c)

LR PR R R
16 16 8 8 16

G(c) = B(n)[ iy

3 2
B(n)(P PR P

T —(n+1)?° R jc +B(n)P?

G(c) = Rc* +Sc* +B(n)P?.
G'(c) = 4Rc® + 2S¢

and € =0, in which case
PZ
|a; —a; [<B(n)R’ =+
4
For n>1, G has a maximum attained at

. The upperbound for (3.9) corresponds to

-S
|X|=1 and c* =——, inwhich case
2R

SZ

—al <K B(n)P? -
|a; —a; |<B(n) R

which completes the proof.
If K=0,and n=0, then we get the following result.

Corollary 31f f €S, then |2} —a [<1.

8 16
If k=1,and N=0, then P, =—, P,=—— and
Vd 3
184 .
P, = —— and then we get the following result:
457

16
Corollary 41f f €SP, then |af —a; |< = .
7

Theorem3 Let 0 <k <1 and if the function
f(z) givenby (1.1) beintheclass R, . then
P2
1+, n=0;
4
|1+2a’(a,—1)-al |<
WZ

1+B(n)P’ - n>1,
'

where P, P, and P, are the coefficients of

where P(2)=1+Pz+Pz*+Pz° +....
2 2 4 3 2
rR=Bm) L2, B KRR KK P2 P* PZP,
8 16 16 8 8 16 P2p, P! 6 16 8
) V =C(n)| =2 +—|-B(n)
= 8 P> PRP, P’
PP, P P? , P? Tt Tt
S=B(n)| 2+ -1 —-(n+2)* 1| 16 8 8
2 2 2 4 3
: P;
_g -(n+ 2)
Now G'(c) =0 implies =0 or ¢* = —
R PR, P3 P P
Since each of these coefficients P, 's are positive, W= B(n)[ +(n+ 2) —(n+2)? é}
applying the properties of P, (z), this show that the
following result. 1
For N=0, G has a maximum attained at Cin)=——g——
€ =0 . The upperbound for (3.9) corresponds to | X |=1 (n+1)"(n+2)
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1
(n+1)*(n+2)?

B(n) =

Proof. From the equations (3.4) and (3.5), we get

3 2 4
1+2a?_(a3 1)- a3—1+C(n)H :: +%+%

_(H_HJP_ZPZE_@_&ZPZ_HZ o
n+2)\16 16 16 8 8 8 .

3 _p2 3
+C(n) R _(n+ly =R AR R clc,
4 n+2 4 4 4

2 2 P12C12
-8 4 _2(n+1)2’
where C(n)=+.

(n+1)°(n+2)

Making use of Lemma 4 to express C, in terms of
C, and for simplicity, we have taken Y =4-c’
Without loss of generality, let us assume that C=C,
where 0<c<2. Applying triangle inequality, we get,
|1+2a;(a, -1)-a; =

4 2 4 2
1+C(n)| 22 PP JRE_(n+1YR R PR
8 \n+2)16 16 8

3 3
+C (n){P— - (n_gj( F; PSP HYC X
n+
P:

—1 ¢
2(n+1)?

2 4
1+C(n) ﬂ+|i
8 8

TEE A . P

n+2)\16 16 8 2(n+1)*
PZ

+B(n)L|X|ZY2+

3 3
C(n)Y P n+1 m_}_i C2|X|
8 n+2)\ 8 8

Trivially, ® (|x)>0 on [0,1] , and so
D(| x]) <D(1) . Hence

—B(n LXZYZ_
( )16
(3.10)

|1+2a’(a,-1)-a’ |-

|1+2a2(a3 1)- a3 |=

4
1+C(n)(P i %

_(n+l)P_f+Fj+PlF’z R T
n+2)\16 16 8 2(n+1)?

2
+ B(n)IiY2 +

3 3
cmy| = (”+1j AR B
8 n+2 )\ 8 8

GE)= 1+B(M)P+ {C(n)(PP Psﬂ’i]
8 8
PRLRR R
_(n_+1j 16 16 8 8 ||a
n+2) pp, B’
8 16

3 3 2
+C(n) P__ n_+1 @+P_1+P_l C2
n+2 ) 2 2 2

G(c) =1+Vc* +Wc? + B(n)P?

G'(c) = 4vc® + 2Wc
where

3 4
o[B8

(n+1)[P2 JRPP _E_@_Pj]

n+2)\16 16 8 8 8 8

3 3 2
wecef & ()RR, B8
n+2 2 2 2

Now G’(c) =0 implies =0 or ¢° :ﬂ
2V

Since each of these coefficients P, 's are positive, applying

the properties of P, (z), this show that the following
result.

For N=0, G has a maximum attained at C=0. The
upperbound for (3.10) corresponds to | X|=1 and C =0,

in which case
2

|1+ 282 (a, ~1)—a’ [< 1+ B(n)P? :1+%.

-W
For N>1, G has a maximum attained at ¢* = W

The upperbound for (3.10) corresponds to |X|=1 and
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cl=—= , in which case
2R

2
|1+2a(a, —1)—al |<1+B(n)P? _\ZLV
which completes the proof.

If k=0,and n=0, then we get the following result.
Corollary 5 If f €S™, then |1+2a’(a,—1)—aZ|<2.

8 16
If k=1, and N=0, then P,=—, P,=—— and
V4 3z
184
P, = —— and then we get the following result:
457
Corollary 6 If f € SP, then
|[1+2aZ(a, —1)—al |< 1+1—(?1 :
T
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