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1  INTRODUCTION 

 Let A  denote the class of all functions )(zf  

of the form:  
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 which are analytic in the open unit disk 

1}<:{= zandzz CU  . Let S  be the subclass of 

A  consisting of univalent functions in U  with Montal 

normalization. The analytic criteria for the familiar class of 

starlike and convex function are as follows.  

Definition 1  Let )(zf  be given by (1.1). Then 

*Sf  if and only if  
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Definition 2  Let f be given by (1.1). Then Cf  if and 
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 It follows that Cf  if and only if 
*Sfz . 

Further, we recall the following definitions of the familiar 

classes of k -uniformly convex functions and k -starlike 

functions as follows:  
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 The function classes STk  and UCVk  were 

introduced and investigated by Kanas and Wisniowska [17, 

18] respectively (see the work [15] also). For a fixed 0k

, the class UCVk  is defined purely geometrically as a 

subclass of univalent functions which map the intersection 

of U  with any disk centered at the point )|<(|= kz   

onto a convex domain. In the case when 0=k  inequality 

(1.4) and (1.5) reduces to the well known class of starlike [6] 

and convex functions respectively. When 1=k  the 

inequality (1.4) the class UCV  introduced by Goodman 

[5, 6] and studied extensively by Rønning [33] and 

independently by Ma and Minda [26, 27]. The class 

STk  is related to the class UCVk  by means of the 

well-known Alexander transformation between the usual 

classes of convex and starlike functions (see the works in 

[16]-[18], [26, 33]). Some more interesting developments 

involving the classes UCVk  and STk  were 

presented by Lecko and Wisniowska [23], Kanas [10]-[14] 

and also other [1, 28, 29, 35] (one can also refer to [2], [37] 

and [38] for some more related works). Very recently, a 

system investigation of a class of functions with q

-differential operator involving conical domain was done by 

Kanas and Raducanu [19].  

By the familiar principle of differential subordination 

between analytic functions )(zf  and )(zg  in U , we 

say that )(zf  is subordinate to )(zg  in U  if there 
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exists an analytic function )(zw  satisfying the following 

conditions: ),(1|<)(|0=(0) Uzzwandw such 

that ).())((=)( Uzzwgzf We denote this 

subordination by ).()()( Uzzgzf  In particular, if 

)(zg  is univalent in U , then it is known that  

)()(

(0)=(0))()()(

UgUfand

gfzzgzf



U
 

. 

Kanas[10]-[18] introduced and studied the different 

concepts using conical region. For  <0 k  defined 

over the domain k  as follows:  
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(1.6) 

 which maps U  onto the conic domain .k  The explicit 

form of the extremal function that maps U  onto the conic 

domain ,k  is given by We note that the explicit form of 

function ).(zk
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where )(K  dentes the Legendre's complete elliptic 

integral of the first kind, and )(kK   is the complementary 

integral of )(K . and (0,1)  is chosen such that 
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conic domains are respectively for 1<<0 k ,  
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The 
thq  Hankel determinant for 1q  and 0n  is 

stated by Noonan and Thomas [30] as  
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 This determinant has also been considered by several 

authors, for example, Noor [31] determined the rate of 

growth of )(nHq  as n  for functions )(zf  

given by (1.1) with bounded boundary. Ehrenborg in [4] 

studied the Hankel determinant of exponential polynomials. 

The Hankel transform of an integer sequence and some of its 

properties was discussed by Layman [22]. Easily, one can 

observe that the Fekete and Szegö functional || 2

23 aa   

can be represented in terms of Hankel determinant as 

(1)2H . Fekete and Szegö the estimate || 2

23 aa   

where   is real and Sf . 

.=(2) 43

32

2 aa

aa

H  Janteng et al.[9] had established on 

the second Hankel determinant for functions )(zf  
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belongs to 
*S  and C  . In this paper, we will follow the 

same procedure or method used by them in finding 

|| 2

342 aaa   for the domains bounded by conic sections. 

and define the symmetric Topelitz determinant )(nTq  as 

follows:  
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  For Sf  , the problem of finding the best possible 

bounds for |||||| 1 nn aa   has a long history [3]. It is 

known fact from [3], for a constant c, that 

caa nn  |||||| 1  . However, finding exact values of the 

constant c  for S  and its subclasses has proved difficult. 

It is very trivial from the definition that finding estimates for 

)(qTn  is related to finding bounds for 

|:=|)( 1 nn aanA   and the best possible upper bound 

obtainable for )(nA  is 12 n  which is for the function 

.
)(1

=)(
2z

z
zk


 Therefore, obtaining bounds for )(nA  

is different to finding bounds for |||||| 1 nn aa  . In a very 

recent investigation, some sharp estimates for )(qTn  for 

low values of n  and q  involving symmetric Topelitz 

determinants whose entries are the coefficients na  of 

starlike and close-to-convex functions are obtained by 

Thomas and Halim [8]. For )(zf  given by (1.1) and 

)(zg  given by  

,=)(
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 their convolution (or Hadamard product), denoted by 

)( gf  , is defined as  
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 Let 0,1,2,=0Nn . The Ruscheweyh derivative 

[34] of the 
thn  order of )(zf , denoted by )(zfDn

, is 

defined by  
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 The Ruscheweyh derivative gave an impulse for various 

generalisation of well known classes of functions. The class 

nR  was studied by Kanas and Yaguchi [20] and Singh and 

Singh [36], which is given by the following definition  
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 We note that 
*

0 = SR  and C=1R .  

In this paper we derive the Hankel determinant and Topelitz 

matrices for the class nR .  

2  Preliminaries 

 The following lemmas will be required in our investigation. 

Let P  be the family of all functions p  analytic in U  for 

which 0>))(( zp  for Uz  and  
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Lemma 2 [32] If Pp  then 2|| kc  for each k .  

  

Lemma 3 [7] The power series for )(zp  give (2.1) in U  
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 and kk cc = , are all non-negative. They are strictly 

positive except for )(=)( 0
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zepzp k
it
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 , 0>k , 

jk tt  , for jk  ; in this case 0>nD  for 1< mn  

and 0=nD  for mn  .  

  

Lemma 4 [25] Let the function Pp  be given by the 

power series (2.1), then  

)(4=2 2

1

2

12 cxcc 
                         

(2.2) 

 for some x , 1|| x , and  

zxcxccxcccc )||)(12(4)(4)2(4=4 22

1

22

111

2

1

3

13 

                                                      
(2.3) 

 for some z , 1|| z .  

 

3  Main Results 

  

Theorem 1  Let 10  k  and if the function 

)(zf  given by (1.1) be in the class nR . then  
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Proof. Let us consider a function )(zq  given by  
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that ,= 1cc  where 20  c . Applying triangle 

inequality, we get,  
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For optimum value of )(cG , consider 0=)(cG  this 

implies that 0=c  or  
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Since each of these coefficients kp 's are positive, applying 

the properties of ),(zpk  this show that the following 

result. 

For 0=n , G  has a maximum attained at 
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For the choices of 0=k , and 0=n , Theorem 1 reduces 

to a result in [9] and [24]:  
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