

On Λ_{μ} -Generalized Closed Sets in Generalized Topological Spaces

¹M. Jeyaraman,

¹Assistant Professor, Department of Mathematics,
RDM Government Arts College,
Sivagangai.

²S. Chinthamani Vasthirani,

²Associate Professor, Department of Mathematics,
Sree Sevugan Annamalai College,
Devakottai.

Abstract – We introduce new classes of sets called $\Lambda_{\mu-g}$ -closed sets and $\Lambda_{\mu-g}$ -open sets in GTS. We also investigate several properties of such sets. It turns out that $\Lambda_{\mu-g}$ -closed sets and $\Lambda_{\mu-g}$ -open sets are weaker forms of closed sets and open sets, and stronger forms of g - μ -closed sets and g - μ -open sets, respectively.

2010 Mathematics Subject Classification: 57C10, 57C08, 57C05

Keywords and phrases: $\Lambda_{\mu-g}$ -closed set, locally closed sets, g - μ -closed sets.

1. INTRODUCTION

In 2010 E. Ekici and B. Roy introduced the notion of Λ_{μ} -sets in GTS. A Λ_{μ} -set is a set A which is equal to its kernel. In 2011 Bishwabhar and Ekici introduced and investigate (Λ, μ) -closed sets by involving Λ_{μ} -sets and μ -closed sets. The objective of this paper is to introduce new classes of sets called $\Lambda_{\mu-g}$ -closed sets and $\Lambda_{\mu-g}$ -open sets in GTS. It turns out that $\Lambda_{\mu-g}$ -closed sets and $\Lambda_{\mu-g}$ -open sets are weaker forms of closed sets and open sets, and stronger forms of g - μ -closed sets and g - μ -open sets, respectively.

We recall some notion defined in [1, 2]. Let X be a non-empty set and μ be a collection of subsets of X . Then μ is called a generalized topology(briefly GT) on X if $\phi \in \mu$ and $G_i \in \mu$ for $i \in I \neq \phi$ implies $G = \bigcup_{i \in I} G_i \in \mu$. We say μ is strong if $X \in \mu$, and we call the pair (X, μ) a generalized topological space (briefly GTS) on X . The elements of μ are called μ -open sets and their complements are called μ -closed sets. For $A \subseteq X$, we denote by $c_{\mu}(A)$ the intersection of all μ -closed sets containing A , i.e., the smallest μ -closed set containing A ; and by $i_{\mu}(A)$ the union of all μ -open sets contained in A , i.e., the largest μ -open set contained in A .

Definition: 1.1[3]

Let (X, μ) be a GTS and $A \subseteq X$. Then the subset $\Lambda_{\mu}(A)$ is defined by

$$\Lambda_{\mu}(A) = \begin{cases} \bigcap \{G : A \subseteq G, G \in \mu\}, & \text{if } \exists G \in \mu \text{ such that } A \subseteq G, \\ X, & \text{otherwise.} \end{cases}$$

Definition: 1.2[3]

In a GTS (X, μ) a subset A is called a Λ_{μ} -set if $A = \Lambda_{\mu}(A)$.

Definition: 1.3[3]

A subset A of a GTS (X, μ) is called (Λ, μ) -closed set if $A = L \cap D$, where L is a Λ_{μ} -sets and D is a μ -closed set.

The intersection of all (Λ, μ) -closed sets containing a subset A of X is called the (Λ, μ) -closure of A and is denoted by $c_{(\Lambda, \mu)}(A)$. The complement of (Λ, μ) -closed set is called (Λ, μ) -open set. We denote the collection of (Λ, μ) -open sets (resp. (Λ, μ) -closed sets) by $\Lambda_{\mu}O(X, \mu)$ (resp. $\Lambda_{\mu}C(X, \mu)$).

Lemma: 1.1 [4]

For subsets A_i ($i \in I$) of a GTS (X, μ) , the following properties hold:

- (i). If A_i is (Λ, μ) -closed for each $i \in I$, then $\bigcap_{i \in I} A_i$ is (Λ, μ) -closed.
- (ii). If A_i is (Λ, μ) -open for each $i \in I$, then $\bigcup_{i \in I} A_i$ is (Λ, μ) -open.

2. Λ_{μ} -GENERALIZED CLOSED SETS

Definition: 2.1

A subset A of a generalized topological space (X, μ) is called Λ_{μ} -generalized closed, briefly $\Lambda_{\mu-g}$ -closed, if $c_{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is (Λ, μ) -open.

Definition: 2.2

A subset A of a generalized topological space (X, μ) is called $\Lambda_{\mu-g}$ -closed, if $c_{(\Lambda, \mu)}(A) \subseteq U$ whenever $A \subseteq U$ and U is (Λ, μ) -open.

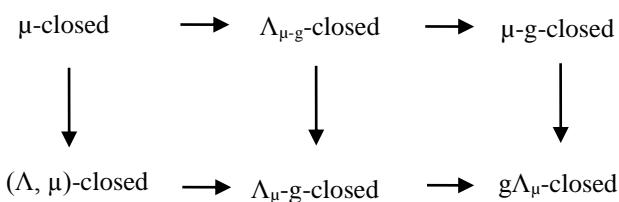
Definition: 2.3

A subset A of a generalized topological space (X, μ) is called $g\Lambda_{\mu}$ -closed, if $c_{(\Lambda, \mu)}(A) \subseteq U$ whenever $A \subseteq U$ and U is μ -open.

Remark: 2.4

From above definitions, we have the following diagram

- (i). $\Lambda_{\mu-g}$ -closed sets and (Λ, μ) -closed sets are independent concepts.
- (ii). $\Lambda_{\mu-g}$ -closed sets and μ - g -closed sets are independent concepts.
- (iii). (Λ, μ) -closed sets and μ - g -closed sets are also independent concepts



Example: 2.5;

Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, X\}$. Thus $\Lambda_\mu O(X, \mu) = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Take $A = \{a, c\}$. Then we obtained that A is a μ -g-closed set but it is not $\Lambda_{\mu-g}$ -closed.

Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, X\}$. Then $A = \{b\}$ is a (Λ, μ) -closed set but it is not μ -g-closed.

Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}, X\}$. Then $A = \{a, b\}$ is $\Lambda_{\mu-g}$ -closed set but it is not (Λ, μ) -closed

Remark 2.6

The union of two $\Lambda_{\mu-g}$ -closed sets need not be $\Lambda_{\mu-g}$ -closed as can be verified from the following example

Example: 2.7

Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, X\}$. Now put $A = \{a\}$ and $B = \{c\}$ are two $\Lambda_{\mu-g}$ -closed sets. But $A \cup B = \{a, c\}$ is not a $\Lambda_{\mu-g}$ -closed set.

Remark: 2.8

The intersection of two $\Lambda_{\mu-g}$ -closed sets need not be $\Lambda_{\mu-g}$ -closed as can be verified from the following lemma

Example: 2.9

Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}\}$. Now put $A = \{a\}$ and $B = \{b\}$ are two $\Lambda_{\mu-g}$ -closed. But $A \cap B = \emptyset$ is not a $\Lambda_{\mu-g}$ -closed set.

Theorem: 2.10

A subset A of GTS (X, μ) is $\Lambda_{\mu-g}$ -closed, then $c_\mu(A) \setminus A$ contains no non empty μ -closed subset of (X, μ) .

Proof.

Let F be a μ -closed subset contained in $c_\mu(A) \setminus A$. Clearly $A \subseteq F^c$ where A is $\Lambda_{\mu-g}$ -closed and F^c is an μ -open set of X . Thus $c_\mu(A) \subseteq F^c$ or $F \subseteq (c_\mu(A))^c$. Then $F \subseteq (c_\mu(A))^c \cap (c_\mu(A) \setminus A) \subseteq (c_\mu(A))^c \cap c_\mu(A) = \emptyset$. This shows that $F = \emptyset$.

The converse of the above theorem is not true in general as it is shown in the following example.

Example: 2.11

Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, X\}$. If $A = \{a, c\}$, then $c_\mu(A) \setminus A = \{b\}$ does not contain a non-empty μ -closed set. But A is not $\Lambda_{\mu-g}$ -closed in (X, μ) .

Corollary: 2.12

In a T_1 space, every $\Lambda_{\mu-g}$ -closed set is μ -closed.

Proof.

Let A be a $\Lambda_{\mu-g}$ -closed set in a T_1 space (X, μ) . Let $x \in c_\mu(A) \setminus A$. Since (X, μ) is T_1 , $\{x\}$ is a μ -closed set in (X, μ) . By theorem 2.10, there exists no non empty μ -closed set in $c_\mu(A) \setminus A = \emptyset$. Therefore $c_\mu(A) = A$. Hence A is μ -closed.

Theorem: 2.13

A set A is $\Lambda_{\mu-g}$ -closed if and only if $c_\mu(A) \setminus A$ contains no non empty (Λ, μ) -closed sets.

Proof.

Necessity: Suppose that A is $\Lambda_{\mu-g}$ -closed. Let S be a (Λ, μ) -closed subset of $c_\mu(A) \setminus A$. Then $A \subseteq S^c$. Since A is $\Lambda_{\mu-g}$ -closed, we have $c_\mu(A) \subseteq S^c$ consequently $S \subseteq (c_\mu(A))^c$. Hence $S \subseteq c_\mu(A) \cap (c_\mu(A))^c = \emptyset$. Therefore S is empty.

Sufficiency: Suppose that $c_\mu(A) \setminus A$ contains no nonempty (Λ, μ) -closed sets. Let $A \subseteq G$ and G be (Λ, μ) -open. If $c_\mu(A) \not\subseteq G$, then $c_\mu(A) \cap G^c$ is a nonempty (Λ, μ) -closed subset of $c_\mu(A) \setminus A$. Therefore, A is $\Lambda_{\mu-g}$ -closed.

Theorem: 2.14

If A is a $\Lambda_{\mu-g}$ -closed set of (X, μ) and $A \subseteq B \subseteq c_\mu(A)$, then B is a $\Lambda_{\mu-g}$ -closed set in (X, μ) .

Proof.

Let $A \subseteq B$ and $c_\mu(A) \subseteq c_\mu(B)$. Hence $c_\mu(B) \setminus B \subseteq c_\mu(A) \setminus A$. But by the theorem 2.13, $c_\mu(A) \setminus A$ contains no non empty (Λ, μ) -closed subsets of X and hence neither $c_\mu(B) \setminus B$. Again by theorem 2.13, B is a $\Lambda_{\mu-g}$ -closed set.

Theorem: 2.15

If A is (Λ, μ) -open and $\Lambda_{\mu-g}$ -closed set in (X, μ) , then A is μ -closed in (X, μ) .

Proof.

Since A is (Λ, μ) -open and $\Lambda_{\mu-g}$ -closed, $c_\mu(A) \subseteq A$ and hence A is μ -closed.

Theorem: 2.16

For each $\{x\} \in X$, either $\{x\}$ is (Λ, μ) -closed or $\{x\}^c$ is $\Lambda_{\mu-g}$ -closed in (X, μ) .

Proof.

Suppose $\{x\}$ is not (Λ, μ) -closed in (X, μ) then $\{x\}^c$ is not (Λ, μ) -open and the only (Λ, μ) -open set containing $\{x\}^c$ is the space X itself. Therefore $c_\mu(\{x\}^c) \subseteq X$ and so $\{x\}^c$ is $\Lambda_{\mu-g}$ -closed in (X, μ) .

Definition: 2.17

A subset S of X is said to be locally- μ -closed if $S = U \cap F$, where U is μ -open F is μ -closed in (X, μ) .

Theorem: 2.18

Let A be locally- μ -closed subset of (X, μ) . For the set A the following properties are equivalent:

- (i). A is μ -closed;
- (ii). A is $\Lambda_{\mu-g}$ -closed;
- (iii). A is μ -g-closed.

Proof.

By Remark 2.4, it suffices to prove that (iii) implies (i). By $A \cup (c_\mu(A))^c$ is μ -open in (X, μ) since A is locally- μ -closed. Now $A \cup (c_\mu(A))^c$ is an μ -open set of (X, μ) such that $A \subseteq A \cup (c_\mu(A))^c$. Since A is μ -g-closed, then $c_\mu(A) \subseteq A \cup (c_\mu(A))^c$. But $c_\mu(A) \cap (c_\mu(A))^c = \emptyset$. Thus we have $c_\mu(A) \subseteq A$ and hence A is μ -closed.

Definition: 2.19

A subset A in (X, μ) is said to be $\Lambda_{\mu-g}$ -open in (X, μ) if and only if A^c is $\Lambda_{\mu-g}$ -closed.

Theorem: 2.20

A set A is said to be $\Lambda_{\mu-g}$ -open in (X, μ) if and only if $F \subseteq i_\mu(A)$ whenever F is (Λ, μ) -closed in (X, μ) and $F \subseteq A$.

Proof.

Suppose that $F \subseteq i_\mu(A)$ whenever F is (Λ, μ) -closed and $F \subseteq A$. Let $A^c \subseteq G$, where G is (Λ, μ) -open. Hence $G^c \subseteq A$. By assumption $G^c \subseteq i_\mu(A)$ which implies that $(i_\mu(A))^c \subseteq G$, so $c_\mu(A^c) \subseteq G$. Hence A^c is $\Lambda_{\mu-g}$ -closed. i.e., A is $\Lambda_{\mu-g}$ -open.

Conversely, let A be $\Lambda_{\mu-g}$ -open. Then A^c is $\Lambda_{\mu-g}$ -closed. Also let F be a (Λ, μ) -closed set contained in A . Then F^c is (Λ, μ) -open. Therefore whenever $A^c \subseteq F^c$, $c_\mu(A^c) \subseteq F^c$. This implies that $F \subseteq (c_\mu(A^c))^c = i_\mu(A)$. Thus $F \subseteq i_\mu(A)$.

Theorem: 2.21

A set A is said to be $\Lambda_{\mu-g}$ -open in (X, μ) if and only if $G = X$ whenever G is (Λ, μ) -open and $i_\mu(A) \cup A^c \subseteq G$.

Proof.

Let A be $\Lambda_{\mu-g}$ -open, G be (Λ, μ) -open and $i_\mu(A) \cup A^c \subseteq G$. This gives $G^c \subseteq (i_\mu(A))^c \cap (A^c)^c = (i_\mu(A))^c \setminus A^c = c_\mu(A^c) \setminus A^c$. Since A^c is $\Lambda_{\mu-g}$ -closed and G^c is (Λ, μ) -closed, by theorem 2.13, it follows that $G^c = \emptyset$. Therefore $X = G$. Conversely, suppose that F is (Λ, μ) -closed and $F \subseteq A$. Then $i_\mu(A) \cup A^c \subseteq i_\mu(A) \cup F^c$. It follows that $i_\mu(A) \cup F^c = X$ and hence $F \subseteq i_\mu(A)$. Therefore A is $\Lambda_{\mu-g}$ -open.

Theorem: 2.22

If $i_\mu(A) \subseteq B \subseteq A$ and A is $\Lambda_{\mu-g}$ -open in (X, μ) , then B is $\Lambda_{\mu-g}$ -open in (X, μ) .

Proof.

Suppose $i_\mu(A) \subseteq B \subseteq A$ and A is $\Lambda_{\mu-g}$ -open in (X, μ) . Then $A^c \subseteq B^c \subseteq c_\mu(A^c)$ and A^c is $\Lambda_{\mu-g}$ -closed.

Theorem: 2.23

A set A is $\Lambda_{\mu-g}$ -closed in (X, μ) if and only if $c_\mu(A) \setminus A$ is $\Lambda_{\mu-g}$ -open in (X, μ) .

Proof.

Necessity: Suppose that A is $\Lambda_{\mu-g}$ -closed in (X, μ) . Let $F \subseteq c_\mu(A) \setminus A$, where F is (Λ, μ) -closed. By theorem 2.10, $F = \emptyset$. Therefore $F \subseteq i_\mu(c_\mu(A) \setminus A)$ and by theorem 2.20, $c_\mu(A) \setminus A$ is $\Lambda_{\mu-g}$ -open in (X, μ) .

Sufficiency: Let $A \subseteq G$, where G is (Λ, μ) -open set. Then $c_\mu(A) \cap G^c \subseteq c_\mu(A) \cap A^c = c_\mu(A) \setminus A$. Since $c_\mu(A) \cap G^c$ is (Λ, μ) -closed and $c_\mu(A) \setminus A$ is $\Lambda_{\mu-g}$ -open in G by theorem 2.20, we have $c_\mu(A) \cap G^c \subseteq i_\mu(c_\mu(A) \setminus A) = \emptyset$. Hence A is $\Lambda_{\mu-g}$ -closed in (X, μ) .

Theorem: 2.24

For the subset $A \subseteq X$ the following properties are equivalent:

- (i). A is $\Lambda_{\mu-g}$ -closed;
- (ii). $c_\mu(A) \setminus A$ contains no nonempty (Λ, μ) -closed set;
- (iii). $c_\mu(A) \setminus A$ is $\Lambda_{\mu-g}$ -open

Proof.

This follows from the theorem 2.10 and 2.23

REFERENCES

- [1] A.Császár, *Generalized open sets*, Acta Math. Hungar., 75(1-2)(1997), 65-87.
- [2] A.Császár, *Generalized open sets in generalized topologies*, Acta Math. Hungar., 106 (2005), 53-66.
- [3] B. Roy and Erdal Ekici, On (Λ, μ) -closed sets in generalized topological spaces, Method of Functional Analysis and Topology, 17(2) (2011), 174-179.
- [4] E. Ekici and B. Roy, New generalized topologies on generalized topological spaces due to Császár, Acta Math. Hungar., 132(1-2) (2011), 117-124.
- [5] B. Roy, On a type of generalized open sets, Applied General topology, 12 (2) (2011), 163-173.
- [6] B. Roy, On generalized of R0 and R1 spaces, Acta Math. Hungar., 127(2010), 291-300.
- [7] M. Caldas, S. Jafari and T. Noiri, On Λ - generalized closed sets in topological spaces, Acta. Math. Hungar., 118(4) (2008), 337 – 343.