On δg^*-Closed Sets In Bitopological Spaces

R.Sudha
Assistant professor,
SNS College of Technology, Coimbatore

K.Sivakamasundari
Associate professor,
Avinashilingam Deemed University for Women

Abstract

The aim of this paper is to introduce the concept of (i, j)-δg^*-closed sets in bitopological spaces and study their properties. We prove that this class lies between the class of (i, j)-δ-closed sets and the class of (i, j)-δg^*-closed sets. Also we discuss some basic properties and applications of (i, j)-δg^*-closed sets, which defines a new class of spaces namely (i, j)-$\delta \tau T_{1/2}^2$-spaces, (i, j)-$\delta g^* T_{1/2}^2$-spaces, (i, j)-$\delta g^{*} T_{\delta g}^2$-spaces and (i, j)-$\delta g T_{\delta g}^2$-spaces.

Keywords: $(1, 2)$-δg-closed set, $(1, 2)$-δ-closed set, $(1, 2)$-δg^*-closed set.

1. Introduction

A triple (X, τ_1, τ_2) where X is a non-empty set and τ_1 and τ_2 are topologies on X is called a bitopological space and Kelly [8] initiated the study of such spaces. Njastad[12], Velicko [20] introduced the concept of α-open sets and δ-closed sets respectively. Dontchev and Ganster [4] studied δ-generalized closed set in topological spaces. Levine [10] introduced generalization of closed sets and discussed their properties. In 1985, Fukutake [5] introduced the concepts of g-closed sets in bitopological spaces and after that several authors turned their attention towards generalizations of various concepts of topology by considering bitopological spaces. Also M. E. Abd El-Monsef [1] et al investigated α-closed sets in topological spaces. Sheik John et al [14] introduced g^*-closed sets in bitopological spaces. Sudha et al. [16] introduced the concept of δg^*-closed sets in topological spaces and investigated its relationship with the other types of closed sets. The purpose of the present paper is to define a new class of closed sets called (i, j)-δg^*-closed sets and we discuss some basic properties of (i, j)-δg^*-closed sets in bitopological spaces. Applying these sets, we obtain the new spaces called (i, j)-$\delta gT\tau_{1/2}$-space, (i, j)-$\delta gT\tau_{1/2}$-space, (i, j)-$\delta g\tau_{\delta g}$-space and (i, j)-$\delta g\tau_{\delta g}$-space.

2. Preliminaries

If A is a subset of X with the topology τ, then the closure of A is denoted by τ-$\text{cl}(A)$ or $\text{cl}(A)$, the interior of A is denoted by τ-$\text{int}(A)$ or $\text{int}(A)$ and the complement of A in X is denoted by A^c.

2.1. Definition

A subset A of a topological space (X, τ) is called a

(i) semi-open set [9] if $A \subseteq \text{cl}(\text{int}(A))$,
(ii) α-open set [12] if $A \subseteq \text{int}(\text{cl}(A))$,
(iii) regular open set [16] if $A = \text{int}(\text{cl}(A))$,
(iv) Pre-open set [11] if $A \subseteq \text{int}(\text{cl}(A))$.

The complement of a semi open (resp. α-open, regular open, pre-open) set is called semi-closed (resp. α-closed, regular closed, pre-closed).

The semi-closure [3] (resp. α-closure [12], pre-closure [11]) of a subset A of (X, τ), denoted by $\text{scl}(A)$ (resp. $\text{cl}_\alpha(A)$, $\text{pcl}(A)$) is defined to be the intersection of all semi-closed (resp.α-closed, pre-closed) sets containing A. It is known that $\text{scl}(A)$ (resp. $\text{cl}_\alpha(A)$, $\text{pcl}(A)$) is a semi-closed (resp.α-closed, pre-closed) set.

2.2. Definition

The δ-interior [20] of a subset A of X is the union of all regular open sets of X contained in A and is denoted by $\text{int}_\delta(A)$.

The subset A is called
δ-open [20] if \(A = \text{int}_\delta(A) \). i.e., a set is δ-open if it is the union of regular open sets, the complement of a δ-open is called δ-closed. Alternatively, a set \(A \subseteq X \) is called δ-closed [20] if \(A = \text{cl}_\delta(A) \), where \(\text{cl}_\delta(A) = \{ x \in X; \text{int}(\text{cl}(\{x\})) \cap A \neq \emptyset, U \in \tau \text{ and } x \in U \} \). Every δ-closed set is closed [20].

2.3. Definition

A subset \(A \) of \((X, \tau)\) is called

1) \(\delta \)-generalized closed (briefly \(\delta \)-g-closed) [4] if \(\text{cl}_\delta(A) \subseteq U \) whenever \(A \subseteq U \text{ and } U \) is open in \((X, \tau)\).
2) generalized closed (briefly g-closed) [10] if \(\text{cl}(A) \subseteq U \) whenever \(A \subseteq U \text{ and } U \) is open in \((X, \tau)\).
3) \(g' \)-closed [19] if \(\text{cl}(A) \subseteq U \) whenever \(A \subseteq U \text{ and } U \) is g-open in \((X, \tau)\).

Throughout this paper by the spaces \(X \) and \(Y \) represent non-empty bitopological spaces on which no separation axioms are assumed, unless otherwise mentioned and the integers \(i, j \in \{1, 2\} \).

For a subset \(A \) of \(X \), \(\tau_i - \text{cl}(A) \) (resp. \(\tau_i - \text{int}(A) \), \(\tau_i - \text{pcl}(A) \)) denote the closure (resp. interior, pre closure) of \(A \) with respect to the topology \(\tau_i \). We denote the family of all g-open subsets of \(X \) with respect to the topology \(\tau_i \) by \(\text{GO}(X, \tau_i) \) and the family of all \(\tau_i \)-closed sets is denoted by the symbol \(F_i \). By \((i, j) \) we mean the pair of topologies \((\tau_i, \tau_j)\).

2.4. Definition

A subset \(A \) of a bitopological space \((X, \tau_1, \tau_2)\) is called

1) \((i, j) \)-g-closed [5] if \(\tau_j - \text{cl}(A) \subseteq U \) whenever \(A \subseteq U \text{ and } U \) is open in \(\tau_i \).
2) \((i, j) \)-g*-closed [14] if \(\tau_j - \text{cl}(A) \subseteq U \) whenever \(A \subseteq U \text{ and } U \) is g-open in \(\tau_i \).
3) \((i, j) \)-rg-closed [2] if \(\tau_j - \text{cl}(A) \subseteq U \) whenever \(A \subseteq U \text{ and } U \) is regular open in \(\tau_i \).
4) \((i, j) \)-wg-closed [6] if \(\tau_j - \text{cl}(\tau_i - \text{int}(A)) \subseteq U \) whenever \(A \subseteq U \text{ and } U \) is open in \(\tau_i \).
5) \((i, j) \)-gpr-closed [6] if \(\tau_j - \text{pcl}(A) \subseteq U \) whenever \(A \subseteq U \text{ and } U \) is regular open in \(\tau_i \).
6) \((i, j) \)-ag*-closed [18] if \(\tau_j - \text{cl}(A) \subseteq U \) whenever \(A \subseteq U \text{ and } U \) is open in \(\tau_i \).
7) \((i, j) \)-g*p-closed [17] if \(\tau_j - \text{pcl}(A) \subseteq U \) whenever \(A \subseteq U \text{ and } U \) is g-open in \(\tau_i \).
8) \((i, j) \)-w-closed [7] if \(\tau_j - \text{cl}(A) \subseteq U \) whenever \(A \subseteq U \text{ and } U \) is semi-open in \(\tau_i \).
9) \((i, j) \)-ag*-closed [13] if \(\tau_j - \text{acl}(A) \subseteq U \) whenever \(A \subseteq U \text{ and } U \) is g*-open in \(\tau_i \).

2.5. Definition

A bitopological space \((X, \tau_1, \tau_2)\) is called

1) \((i, j) \)-\(T_{1/2} \)-space [5] if every \((i, j) \)-g-closed set is \(\tau_j \)-closed.
2) \((i, j) \)-\(T_{1/2} \)-space [14] if every \((i, j) \)-g*-closed set is \(\tau_j \)-closed.
3) \((i, j) \)-\(T_{1/2} \)-space [14] if every \((i, j) \)-g-closed set is \((i, j) \)-g*-closed.

3. \((i, j) \)-\(\delta \)-g*-closed sets in bitopological spaces

In this section we introduce the concept of \((i, j) \)-\(\delta \)-g*-closed sets in bitopological spaces and discuss the related properties.

3.1. Definition

A subset \(A \) of a bitopological space \((X, \tau_1, \tau_2)\) is said to be an \((i, j) \)-\(\delta \)-g*-closed set if \(\tau_j - \text{cl}_\delta(A) \subseteq U \), whenever \(A \subseteq U \text{ and } U \in \text{GO}(X, \tau_i) \).

We denote the family of all \((i, j) \)-\(\delta \)-g*-closed sets in \((X, \tau_1, \tau_2)\) by \(D_\delta(i, j) \).

3.2. Remark

By setting \(\tau_1 = \tau_2 \) in Definition 3.1., a \((i, j) \)-\(\delta \)-g*-closed set is \(\delta \)-g*-closed.

3.3. Proposition

If \(A \) is \(\tau_j \)-\(\delta \)-closed subset of \((X, \tau_1, \tau_2)\), then \(A \) is \((i, j) \)-\(\delta \)-g*-closed.
Proof: Let A be a τ_j-δ-closed subset of (X, τ_1, τ_2). Then $\tau_j - \text{cl}_g(A) = A$. Let $U \in \text{GO}(X, \tau_1)$ such that $A \subseteq U$, then $\tau_j - \text{cl}_g(A) = A \subseteq U$ which implies A is (i, j) - δg^*-closed.

The converse of the above proposition is not true as seen from the following example.

3.4. Example

Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}\}$, $\tau_2 = \{X, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$. Then the subset $\{b, c\}$ is $(1, 2) - \delta g^*$-closed but not $\tau_2 - \delta$-closed set.

3.5. Proposition

If A is both τ_1-g-open and (i, j) - δg^*-closed, then A is $\tau_j - \delta$-closed.

Proof: Let A be both τ_1-g-open and (i, j) - δg^*-closed. Since A is (i, j)-δg^*-closed, we have $A \subseteq U$ and $U \in \text{GO}(X, \tau_1)$ which implies $\tau_j - \text{cl}_g(A) \subseteq U$ and since A is τ_1-g-open. Put $A = U$, then we have $\tau_j - \text{cl}_g(A) \subseteq A$, implies A is a $\tau_j - \delta$-closed set.

3.6. Proposition

If A is both τ_1-g-open and (i, j) - δg^*-closed, then A is τ_j-closed.

Proof: Since $\delta - \text{closedness} \Rightarrow \text{closedness}$, the result follows the above Proposition 3.5.

3.7. Proposition

If $A, B \in D_g^*(i, j)$, then $A \cup B \in D_g^*(i, j)$.

Proof: Let A and B be (i, j)-δg^*-closed. Let $A \cup B \subseteq U$ where $U \in \text{GO}(X, \tau_1)$. Now $A \cup B \subseteq U$ implies $A \subseteq U$ and $B \subseteq U$. Since $A, B \in D_g^*(i, j)$, implies $\tau_j - \text{cl}_g(A) \subseteq U$ and $\tau_j - \text{cl}_g(B) \subseteq U$. Then $(\tau_j - \text{cl}_g(A) \cup \tau_j - \text{cl}_g(B)) \subseteq U$. That is $\tau_j - \text{cl}_g(A \cup B) \subseteq U$. Hence $A \cup B \in D_g^*(i, j)$.

3.8. Remark

The intersection of two (i, j)-δg^*-closed need not be (i, j)-δg^*-closed as seen from the following example.

3.9. Example

Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}\}$, $\tau_2 = \{X, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$. Then $\{a, b\}$ & $\{b, c\}$ are $(1, 2) - \delta g^*$-closed sets but $\{a, b\} \cap \{b, c\} = \{b\}$ is not $(1, 2) - \delta g^*$-closed.

3.10. Proposition

For each element x of (X, τ_1, τ_2), $\{x\}$ is τ_j-g-closed or $\{x\}$ is (i, j)-δg^*-closed.

Proof: If $\{x\}$ is τ_j-g-closed, then the proof is over. Assume $\{x\}$ is not τ_j-g-closed. Then $\{x\}$ is not τ_j-g-open. So the only τ_j-g-open containing $\{x\}$ in X. Hence $\{x\}$ is (i, j)-δg^*-closed.

3.11. Proposition

If A is (i, j) - δg^*-closed, then $\tau_j - \text{cl}_g(A) / A$ contains no empty τ_j-g-closed set.

Proof: Let A be (i, j)-δg^*-closed and F be a non empty τ_j-g-closed subset of $\tau_j - \text{cl}_g(A) / A$. Now $F \subseteq \tau_j - \text{cl}_g(A) / A = \tau_j - \text{cl}_g(A) \cap A^c$ which implies $F \subseteq \tau_j - \text{cl}_g(A)$ and $F \subseteq A^c$. Therefore $A \subseteq F^c$. Since F^c is τ_j-g-open and A is (i, j)-δg^*-closed in X, we have $\tau_j - \text{cl}_g(A) \subseteq F^c$ which implies that $F^c \subseteq (\tau_j - \text{cl}_g(A)) \cap (\tau_j - \text{cl}_g(A))^c$. Therefore $F = \phi$. Hence $\tau_j - \text{cl}_g(A) / A$ contains no non-empty τ_j-g-closed set.

The following example shows that the reverse implication of the above theorem is not true.

3.12. Example

Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}, \{a, c\}\}$, $\tau_2 = \{X, \phi, \{a, b\}\}$. If $A = \{a\}$, then $\tau_j - \text{cl}_g(A) / A = \{b, c\}$ does not contain any non-
empty τ_1-g-closed set. But A is not $(1, 2) - \delta g^*$-closed.

3.13. Corollary

If A is (i, j)-δg^*-closed in (X, τ_1, τ_2), then A is τ_j-\(\delta\)-closed if and only if $\tau_j - cl_{\delta}(A)$ is τ_j-g-closed.

Proof: (Necessity) Let $A \subseteq D^i_\delta(i, j)$ and let A be τ_j-δ-closed. Then $\tau_j - cl_{\delta}(A) = A$, i.e., $\tau_j - cl_{\delta}(A)/A = \phi$ and hence $\tau_j - cl_{\delta}(A)/A$ is τ_j-g-closed.

(Sufficiency) If $\tau_j - cl_{\delta}(A)/A$ is τ_j-g-closed, then by Proposition 3.11, $\tau_j - cl_{\delta}(A)/A = \phi$, since A is (i, j)-δg^*-closed. Hence $\tau_j - cl_{\delta}(A) = A$. Therefore A is τ_j-δ-closed.

3.14. Proposition

If A is an (i, j)-δg^*-closed set, then $\tau_i - cl_{\delta}(x) \cap A \neq \phi$ holds for each $x \in \tau_i - cl_{\delta}(A)$.

Proof: Let A be (i, j)-δg^*-closed and we know $\tau_i \subseteq GO(X, \tau_i)$. Suppose $\tau_i - cl_{\delta}(x) \cap A \neq \phi$, for some $x \in \tau_i - cl_{\delta}(A)$, then $A \subseteq X - \tau_i - cl_{\delta}(x) = B$, say. Then B is a τ_i-δ-open set. Since a δ-open set is an open set and a open set is g-open, B is g-open in X. Since A is (i, j)-δg^*-closed, we get $\tau_i - cl_{\delta}(A) \subseteq B = X - \tau_j - cl_{\delta}(x)$. Then $\tau_j - cl_{\delta}(A) \cap \tau_j - cl_{\delta}(x) = \phi$ which implies that $\tau_j - cl_{\delta}(A) \cap (x) = \phi$. Hence $x \neq \tau_j - cl_{\delta}(A)$, which is a contradiction.

The converse of the above proposition is not true as seen in the following example.

3.15. Example

Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}\}$, $\tau_2 = \{X, \phi, \{a\}, \{b, c\}\}$. The subset $A = \{b\}$ in (X, τ_1, τ_2) is not $(1, 2) - \delta g^*$-closed. However $\tau_1 - cl_{\delta}(x) \cap A \neq \phi$ holds for each $x \in \tau_2 - cl_{\delta}(a)$.

3.16. Proposition

If A is an (i, j)-δg^*-closed set of (X, τ_1, τ_j), such that $A \subseteq B \subseteq \tau_j - cl_{\delta}(A)$, then B is also an (i, j)-δg^*-closed set of (X, τ_1, τ_j).

Proof: Let U be a τ_j-g-open set in (X, τ_1, τ_j) such that $B \subseteq U$ and hence $A \subseteq U$. Since A is (i, j)-δg^*-closed, $\tau_j - cl_{\delta}(A) \subseteq U$. Hence $\tau_j - cl_{\delta}(B) \subseteq U$ which implies that B is a (i, j)-δg^*-closed set of (X, τ_1, τ_j).

3.17. Proposition

Let $A \subseteq Y \subseteq X$ and suppose that A is (i, j)-δg^*-closed in X. Then A is (i, j)-δg^*-closed relative to Y.

Proof: Let $A \in D^i_\delta(i, j) & A \subseteq Y \cap U$, U is g-open in X. A $\subseteq Y \cap U$ implies $A \subseteq U$ and since $A \in D^i_\delta(i, j)$, $\tau_j - cl_{\delta}(A) \subseteq U$. Then $\tau_j - cl_{\delta}(A) \cap Y \subseteq U \cap Y$. Hence $\tau_j - cl_{\delta}(A) \cap Y \subseteq U \cap Y$. Therefore A is (i, j)-δg^*-closed relative to Y.

3.18. Theorem

In a bitopological space (X, τ_1, τ_2), $GO(X, \tau_i) \subseteq F_{\delta}$ if and only if every subset of X is an (i, j)-δg^*-closed set, where F_{δ} is the collection of δ-closed sets with respect to τ_j.

Proof: Suppose that $GO(X, \tau_i) \subseteq F_{\delta}$. Let A be a subset of (X, τ_1, τ_2) such that $A \subseteq U$ where $U \in GO(X, \tau_i)$. Then $\tau_j - cl_{\delta}(A) \subseteq \tau_j - cl_{\delta}(U) = U$. Therefore A is (i, j)-δg^*-closed set.

Conversely, suppose that every subset of X is (i, j)-δg^*-closed. Let $U \in GO(X, \tau_i)$. Since U is (i, j)-δg^*-closed, we have $\tau_j - cl_{\delta}(U) \subseteq U$. Therefore $U \in F_{\delta}$ and hence $GO(X, \tau_i) \subseteq F_{\delta}$.

3.19. Proposition

Every (i, j)-δg^*-closed set is (i, j)-g-closed.

Proof: Let A be (i, j)-δg^*-closed. Let $A \subseteq U$ and U be a open set in τ_j. Since every open set is g-
open, U is a g-open set. Then \(\tau_j - cl_\delta(A) \subseteq U \), we know that \(\tau_j - cl(U) \subseteq \tau_j - cl_\delta(U) \subseteq U \). Hence A is (i, j)-g-closed.

3.20. Remark

A (i, j)-g-closed need not be (i, j)-\(\delta g^* \)-closed as shown in the following example.

3.21. Example

Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a\}\} \), \(\tau_2 = \{X, \phi, \{a, b\}\} \). Then the set {b} is (1, 2)-g-closed but not (1, 2)-\(\delta g^* \)-closed.

3.22. Proposition

Every (i, j)-\(\delta g^* \)-closed set is (i, j)-g*-closed.

Proof: Let A be (i, j)-\(\delta g^* \)-closed. Let \(A \subseteq U \) and U be a g-open set in \(\tau_i \). Then \(\tau_j - cl_\delta(A) \subseteq U \), we know that \(\tau_j - cl(U) \subseteq \tau_j - cl_\delta(U) \subseteq U \). Hence A is (i, j)-g*-closed.

3.23. Remark

A (i, j)-g*-closed need not be (i, j)-\(\delta g^* \)-closed as shown in the following example.

3.24. Example

Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a\}\} \), \(\tau_2 = \{X, \phi, \{b, c\}\} \). Then the set \(\{a\} \) is (1, 2)-g*-closed but not (1, 2)-\(\delta g^* \)-closed.

3.25. Proposition

Every (i, j)-\(\delta g^* \)-closed set is (i, j)-rg-closed.

Proof: The proof follows from every regular open set is g-open.

3.26. Remark

A (i, j)-rg-closed need not be (i, j)-\(\delta g^* \)-closed as shown in the following example.

3.27. Example

Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a\}, \{a, b\}\} \), \(\tau_2 = \{X, \phi, \{a, b\}\} \). Then the set \(\{a, b\} \) is (1, 2)-rg-closed but not (1, 2)-\(\delta g^* \)-closed.

3.28. Proposition

Every (i, j)-\(\delta g^* \)-closed set is (i, j)-wg-closed.

Proof: Let A be (i, j)-\(\delta g^* \)-closed. Let \(A \subseteq U \) and U be a open set in \(\tau_i \). Since every open set is g-open, U is g-open in \(\tau_i \) Now \(\tau_i - int(A) \subseteq \tau_i \), implies \(\tau_j - cl(\tau_i - int(A)) \subseteq \tau_j - cl_\delta(A) \subseteq \tau_j - cl_\delta(A) \). Since A is (i, j)-\(\delta g^* \)-closed, \(\tau_j - cl_\delta(A) \subseteq U \). Therefore \(\tau_j - cl(\tau_i - int(A)) \subseteq U \). Hence A is (i, j)-wg-closed.

3.29. Remark

A (i, j)-wg-closed need not be (i, j)-\(\delta g^* \)-closed as shown in the following example.

3.30. Example

Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a\}\} \), \(\tau_2 = \{X, \phi, \{b, c\}\} \). Then the set \(\{b\} \) is (1, 2)-wg-closed but not (1, 2)-\(\delta g^* \)-closed.

3.31. Proposition

Every (i,j)-\(\delta g^* \)-closed set is (i,j)-ag*-closed.

Proof: Let A be (i, j)-\(\delta g^* \)-closed. Let \(A \subseteq U \subseteq \text{GO}(X, \tau_i) \), since \(\tau_i \subseteq \text{GO}(X, \tau_i) \). Then \(\tau_j - cl_\delta(A) \subseteq U \). We know \(\tau_j - acl(A) \subseteq \tau_j - cl_\delta(A) \) which implies \(\tau_j - acl(A) \subseteq U \). Therefore A is (i, j)-ag*-closed.

3.32. Remark

A (i, j)-ag*-closed need not be (i, j)-\(\delta g^* \)-closed as shown in the following example.

3.33. Example

Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a, b\}\} \), \(\tau_2 = \{X, \phi, \{a\},\{b\}\} \). Then the set \(\{a\} \) is (1, 2)-ag*-closed but not (1, 2)-\(\delta g^* \)-closed.

3.34. Proposition

Every (i,j)-\(\delta g^* \)-closed set is(i,j)-gpr-closed.

Proof: Let A be (i, j)-\(\delta g^* \)-closed. Let \(A \subseteq U \subseteq \text{open} \) and U be a regular open set. Since every regular open set is g-open, U is g-open. Since A is (i, j)-\(\delta g^* \)-closed, \(\tau_j - cl_\delta(A) \subseteq U \). We
know that $\tau_j - pcl(A) \subseteq \tau_j - cl_\delta(A)$. That is, $\tau_j - pcl(A) \subseteq \tau_j - cl_\delta(A) \subseteq U$ Therefore A is (i, j)-gpr-closed.

3.35. Remark

A (i, j)-gpr-closed need not be (i, j)- δg^*-closed as shown in the following example.

3.36. Example

Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a, b\}\}, \tau_2 = \{X, \phi, \{a\}, \{b, c\}\}$. Then the set $\{b\}$ is $(1, 2)$-gpr-closed but not $(1, 2)$- δg^*-closed.

3.37. Proposition

Every (i, j)- δg^*-closed set is (i, j)-g*-p-closed.

Proof: Let A be (i, j)- δg^*-closed. Let $A \subseteq U$ and U is g-open in τ_i. Then $\tau_j - cl_\delta(A) \subseteq U$. We know $\tau_j - pcl(A) \subseteq \tau_j - cl_\delta(A)$. Therefore $\tau_j - pcl(A) \subseteq U$. Hence A is (i, j)-g*-p-closed.

3.38. Remark

A (i, j)-g*-p-closed need not be (i, j)- δg^*-closed as shown in the following example.

3.39. Example

Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a, b\}\}, \tau_2 = \{X, \phi, \{a\}, \{b, c\}\}$. Then the set $\{b\}$ is $(1, 2)$-g*-p-closed but not $(1, 2)$- δg^*-closed.

3.40. Proposition

Every (i, j)- δg^*-closed set is (i, j)-sag*-closed.

Proof: Let A be (i, j)- δg^*-closed. Let $A \subseteq U$ and U is g*-p-open in τ_i. Since every g*-p-open set is g-open, U is g-open. Then $\tau_j - acl(A) \subseteq U$. We know $\tau_j - acl(A) \subseteq \tau_j - cl_\delta(A)$, which implies $\tau_j - acl(A) \subseteq U$. Therefore A is (i, j)-sag*-closed.

3.41. Remark

A (i, j)-sag*-closed need not be (i, j)- δg^*-closed as shown in the following example.

3.42. Example

Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a, b\}\}, \tau_2 = \{X, \phi, \{a\}, \{b, a\}\}$. Then the set $\{b\}$ is $(1, 2)$-sag*-closed but not $(1, 2)$- δg^*-closed.

3.43. Proposition

Every (i, j)- δg^*-closed set is (i, j)-g-p* closed.

Proof: The proof follows from the fact that every open set is g-open.

3.44. Remark

A (i, j)- δg^*-closed need not be (i, j)-g*-p-closed as shown in the following example.

3.45. Example

Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\}, \tau_2 = \{X, \phi, \{a\}, \{b, a\}\}$. Then the set $\{b\}$ is $(1, 2)$- δg^*-closed but not $(1, 2)$-g*-p-closed.

3.46. Remark

The following examples show that (i, j)-w closed and (i, j)- δg^*-closed are independent to each other.

3.47. Example

Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\}, \tau_2 = \{X, \phi, \{a\}, \{b, a\}\}$. Then the set $\{a\}$ is $(1, 2)$-w-closed but not $(1, 2)$- δg^*-closed.

3.48. Example

Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}, \{a, b\}\}, \tau_2 = \{X, \phi, \{a\}\}$. Then the set $\{a\}$ is $(1, 2)$- δg^*-closed but not $(1, 2)$- w-closed.

3.49. Remark

The following diagram has shown the relationship of (i, j)- δg^*-closed sets with other known existing sets. $A \rightarrow B$ represents A implies B but not conversely and $A \leftrightarrow B$ represents A and B are independent to each other.
1. (i, j)- \(\delta g^* \)-closed set, 2. (i, j)- wg-closed set, 3. (i, j)- g*-closed set, 4. (i, j)- w-closed set, 5. (i, j)- g-closed set, 6. (i, j)- gog*-closed set, 7. (i, j)- rg-closed set, 8. (i, j)- gp-closed set, 9. (i, j)- gpr-closed set, 10. (i, j)- \(\delta g \)-closed set, 11. (i, j)- \(\alpha g^* \)-closed set.

4. Applications

In this section we introduce the new closed spaces namely (i, j)- \(\delta g_T^{1/2} \)-space, (i, j)- \(\delta g^*_T \)-space, (i, j)- \(\delta g_T^{3/2} \)-space, and (i, j)- \(\delta g_T^1 \)-space in bitopological spaces.

4.1. Definition

A bitopological space \((X, \tau_1, \tau_2)\) is said to be

1) (i, j)- \(\delta g_T^{1/2} \)-space if every (i, j)- g-closed set is (i, j)-\(\delta g \)-closed.

2) (i, j)- \(\delta g_T^{3/2} \)-space if every (i, j)-g-closed set is (i, j)- \(\delta g^* \)-closed.

3) (i, j)- \(\delta g_T^1 \)-space if every (i, j)-g*-closed set is (i, j)- \(\delta g^* \)-closed.

4) (i, j)- \(\delta g_T^{3/2} \)-space if every (i, j)- \(\delta g \)-closed set is (i, j)- \(\delta g^* \)-closed.

4.2. Proposition

Every (i, j)- \(\delta g_T^{1/2} \)-space is a (i, j)- \(\delta g^*_T \)-space.

Proof: Let X be a (i, j)- \(\delta g_T^{1/2} \)-space and A be (i, j)- g*-closed. Since every (i, j)- g*-closed set is (i, j)- g-closed.

Assumption, we get A is (i, j)- \(\delta g^* \)-closed. Hence X is a (i, j)- \(\delta g_T^{1/2} \)-space.

The converse of the above proposition is not true as seen by the following example.

4.3. Example

Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a, b\}\} \), \(\tau_2 = \{X, \phi, \{a\}\} \). Then \((X, \tau_1, \tau_2)\) is (i, j)- \(\delta g_T^{1/2} \)-space. But \(\{a, b\} \) is (i, j)- g-closed but not (i, j)- \(\delta g^* \)-closed. Hence \((X, \tau_1, \tau_2) \) is not \(\delta g_T^{1/2} \)-space.

4.4. Proposition

Every (i, j) - \(\delta g_T^{1/2} \)-space is a (i, j) - \(\delta g_T^{3/2} \)-space.

Proof: Let X be a (i, j) - \(\delta g_T^{1/2} \)-space and A be (i, j)- \(\delta g \)-closed. Since every (i, j)- \(\delta g \)-closed set is (i, j)- g-closed. Then A is (i, j)- g-closed. By assumption, we get A is (i, j)- \(\delta g^* \)-closed. Hence X is a (i, j)- \(\delta g_T^{3/2} \)-space.

The converse of the above proposition is not true as seen by the following example.

4.5. Example

Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}, \{a, b\}\} \), \(\tau_2 = \{X, \phi, \{a\}\} \). Then \((X, \tau_1, \tau_2)\) is (i, j)- \(\delta g_T^{3/2} \)-space not (i, j)- \(\delta g_T^{1/2} \)-space. Since \(\{b, c\} \) is (i, j)- g-closed but not (i, j)- \(\delta g^* \)-closed. Hence \((X, \tau_1, \tau_2) \) is not \(\delta g_T^{1/2} \)-space.

4.6. Proposition

Every (i, j) - \(\delta g_T^{1/2} \)-space is a (i, j) - \(\delta g_T^{3/2} \)-space.

Proof: Let X be a (i, j) - \(\delta g_T^{1/2} \)-space and A be (i, j)- g-closed. Then A is (i, j)- \(\delta g^* \)-closed. Since every (i, j)- \(\delta g^* \)-closed set is (i, j)- \(\delta g \)-closed. We get A is (i, j)- g-closed. Hence X is a (i, j)- \(\delta g_T^{3/2} \)-space.

The converse of the above proposition is not true as seen by the following example.
4.7. Example

Let \(X = \{a, b, c\} \). \(\tau_1 = \{X, \phi, \{a\}\}, \tau_2 = \{X, \phi, \{a, b\}\} \). Then \((X, \tau_1, \tau_2) \) is (i, j)-\(\delta_g T_{\frac{1}{2}} \)-space not (i, j)-\(\delta_g T_{\frac{1}{2}} \)-space. Since \(\{b\} \) is (i, j)-\(g \)-closed but not (i, j)-\(g^* \)-closed.

4.8. Proposition

\((X, \tau_1, \tau_2) \) is both (i, j)-\(\delta_g T_{\frac{1}{2}} \)-space and (i, j)-\(\delta_g T_{\frac{1}{2}} \)-space.

Proof: (Necessity): Let \((X, \tau_1, \tau_2) \) be (i, j)-\(\delta_g T_{\frac{1}{2}} \)-space and (i, j)-\(\delta_g T_{\frac{1}{2}} \)-space. Consider \(A \) is (i, j)-\(g^* \)-closed. Then \(A \) is (i, j)-\(g \)-closed. Since \((X, \tau_1, \tau_2) \) be (i, j)-\(\delta_g T_{\frac{1}{2}} \)-space, \(A \) is (i, j)-\(g \)-closed. Therefore \((X, \tau_1, \tau_2) \) is a (i, j)-\(\delta_g T_{\frac{1}{2}} \)-space. (Sufficiency): It satisfies by Proposition 4.4 and Proposition 4.6.

4.9. Remark

The following examples show that (i, j)-\(\delta_g T_{\frac{1}{2}} \) and (i, j)-\(\delta_g T_{\frac{1}{2}} \) are independent to each other.

4.10. Example

Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{b\}\}, \{c\}, \{b, c\}, \{a, b\}\} \). \(\tau_2 = \{X, \phi, \{a\}\} \). Then \((X, \tau_1, \tau_2) \) is (i, j)-\(\delta_g T_{\frac{1}{2}} \)-space. But \(\{b, c\} \) is (i, j)-\(g \)-closed but not (i, j)-\(g^* \)-closed.

4.11. Example

Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a\}\}, \{b, c\}\), \(\tau_2 = \{X, \phi\} \). Then \((X, \tau_1, \tau_2) \) is (i, j)-\(\delta_g T_{\frac{1}{2}} \)-space. But \(\{b\} \) is (i, j)-\(\delta_g \)-closed but not (i, j)-\(\delta g^* \)-closed.

4.12. Remark

The following examples show that (i, j)-\(\delta_g T_{\frac{1}{2}} \) and (i, j)-\(\delta g T_{\frac{1}{2}} \) are independent to each other.

4.13. Example

Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a\}\}, \tau_2 = \{X, \phi, \{a, b\}\} \). Then \((X, \tau_1, \tau_2) \) is (i, j)-\(\delta_g T_{\frac{1}{2}} \)-space. But \(\{b\} \) is (i, j)-\(\delta g \)-closed but not (i, j)-\(\delta g^* \)-closed.

4.14. Example

Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a\}\}, \tau_2 = \{X, \phi, \{a, b\}\} \). Then \((X, \tau_1, \tau_2) \) is (i, j)-\(\delta_g T_{\frac{1}{2}} \)-space. But \(\{a, b\} \) is (i, j)-\(g \)-closed but not (i, j)-\(\delta g^* \)-closed.

4.15. Remark

The following examples shows that (i, j)-\(\delta_g T_{\frac{1}{2}} \) and (i, j)-\(\delta g T_{\frac{1}{2}} \) are independent to each other.

4.16. Example

Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a\}\}, \tau_2 = \{X, \phi, \{a, b\}\} \). Then \((X, \tau_1, \tau_2) \) is (i, j)-\(\delta g T_{\frac{1}{2}} \)-space. But \(\{c\} \) is (i, j)-\(g^* \)-closed but not (i, j)-\(\delta g^* \)-closed.

4.17. Example

Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a\}\}, \tau_2 = \{X, \phi, \{a, b\}\} \). Then \((X, \tau_1, \tau_2) \) is (i, j)-\(\delta g T_{\frac{1}{2}} \)-space. But \(\{a, b\} \) is (i, j)-\(g \)-closed but not (i, j)-\(\delta g \)-closed.

4.18. Remark

The following diagram has shown the relationship of (i, j)-\(g^* \)-closed spaces with other known existing space. \(A \longrightarrow B \) represents A implies B but not conversely and \(A \Longleftrightarrow B \) represents A and B are independent to each other.
5. References

