On g-Closed Mappings in Topological Spaces

Manoj Garg, Shailendra Singh Rathore P.G. Department and Research Centre of Mathematics, Nehru P. G. College, Chhibramau, Kannauj, U.P., India

Abstract:- In this paper we introduce a new class of closed maps namely \overline{g} -closed maps which settled in between the class of closed maps and the class of g-closed maps and then we study many basic properties of \overline{g} -closed maps together with the relationships of some other maps.

2000 Mathematics Subject Classification: 54c10, 54c20. Key words and phrases: \overline{g} -closed maps, \overline{g} *-closed maps

1. INTRODUCTION

Malghan⁽²²⁾ and Devi et al⁽⁸⁾ introduced the concept of generalized closed maps and semi generalized closed maps respectively in topological spaces. Manoj et al⁽²³⁾ introduced the concept of \overline{g} -closed sets in topological spaces. In this paper we introduce a new class of closed maps namely \overline{g} -closed maps and \overline{g} *-closed maps.

2. PRELIMINARIES

Throughout this paper (X, τ) , (Y, σ) and (Z, η) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of space (X, τ) the cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A in X respectively.

We recall the following definitions:

Definition 2.01: A subset A of a topological space (X, τ) is called g-closed⁽²⁾ (resp. *g-closed⁽¹³⁾, g*-closed⁽¹³⁾, **g-closed⁽¹⁷⁾, \hat{g} -closed⁽¹²⁾) set if $cl(A) \subseteq U$ (resp. $cl(A) \subseteq U$, $cl(A) \subseteq U$, $cl(A) \subseteq U$) whenever $A \subseteq U$ and U is open (resp. \hat{g} -open, g-open, sg-open) set in (X, τ) .

Definition 2.02: A map $f: (X, \tau) \to (Y, \sigma)$ is called g-closed⁽²⁰⁾ (resp. *g-closed⁽¹³⁾, g*-closed⁽²⁴⁾, **gs-closed⁽⁸⁾, $\hat{\hat{g}}$ -closed⁽¹²⁾) map if the image of each closed set in (X, τ) is g-closed (resp. *g-closed, g*-closed, **gs-closed, $\hat{\hat{g}}$ -closed) in (Y, σ) .

3. \overline{g} -CLOSED MAPS

In this section we introduce the following definitions.

Definition 3.01: A map $f:(X,\tau)\to (Y,\sigma)$ is called \overline{g} -closed (resp. \overline{g} -open) map if f(A) is \overline{g} -closed (resp. \overline{g} -open) set in (Y,σ) for every closed (open) set A of (X,τ) .

Definition 3.02: Let (X, τ) be a topological space and $A \subseteq X$. We define the \overline{g} -interior of A (briefly \overline{g} -int(A)) to be the union of all \overline{g} -open sets contained in A.

Theorem 3.03: Every closed map, *g-closed map, g*-closed map and \hat{g} -closed map is \overline{g} -closed map.

Next examples show that the converse of the above theorem is not true in general.

Example 3.04: Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a and f(c) = c, then f is not closed map, *g-closed map and \hat{g} -closed map however f is \overline{g} -closed map.

Theorem 3.05: Every \overline{g} -closed map is g-closed map and **gs-closed map.

Example 3.06: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by identity mapping, then f is not g-closed map and **gs-closed map however f is \overline{g} -closed map.

Therefore the class of \overline{g} -closed maps properly contains the class of closed maps, the class of *g-closed maps, the class of \hat{g} -closed maps and the class of g*-closed maps and the class of state of the class of g*-closed maps and the class of state of th

Vol. 8 Issue 07, July-2019

Theorem 3.07: If $f:(X,\tau)\to (Y,\sigma)$ be a closed map and $g:(Y,\sigma)\to (Z,\eta)$ be a \overline{g} -closed map then their composition gof: $(X, \tau) \rightarrow (Z, \eta)$ is \overline{g} -closed map.

Remark 3.08: The following example shows that the composition of two \overline{g} -closed maps need not be \overline{g} -closed map.

Example 3.09: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}, \sigma = \{\phi, \{b\}, X\} \text{ and } \eta = \{\phi, \{a\}, \{b\}, X\}.$ Define $f : (X, \tau) \rightarrow (X, T) \rightarrow$ (X, σ) by f(a) = b, f(b) = c and f(c) = a. Define $g: (X, \sigma) \to (X, \eta)$ by identity mapping then f and g both are \overline{g} -closed maps but their composition gof: $(X, \tau) \rightarrow (X, \eta)$ is not a \overline{g} -closed map.

Theorem 3.10: If $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\eta)$ be two mappings such that their composition $gof:(X,\tau)\to (Z,\eta)$ be a \overline{g} -closed map then the following are true

- (i) If f is continuous and surjective, then g is \overline{g} -closed map.
- (ii) If g is \overline{g} -irresolute and injective, then f is \overline{g} -closed map.

Theorem 3.11: For any bijective $f:(X, \tau) \to (Y, \sigma)$ the following statements are equivalent.

- $f^{-1}: (Y, \sigma) \to (X, \tau)$ is \overline{g} -continuous.
- (ii) f is \overline{g} -open map and
- f is \overline{g} -closed map.

Definition 3.12: A map $f:(X,\tau)\to (Y,\sigma)$ is said to be a \overline{g} *-closed (resp. \overline{g} *-open) if the image f(A) is \overline{g} -closed (resp. \overline{g} open) set in (Y, σ) for every \overline{g} -closed (resp. \overline{g} -open) set A in (X, τ) .

Theorem 3.13: Every \overline{g} *-closed map is \overline{g} -closed map.

The converse is not true in general as it can be seen from the following example.

Example 3.14: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{b\}, Y\}$. Define $f: (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = cand f(c) = a then f is \overline{g} -closed map but not \overline{g} *-closed map.

Theorem 3.15: For any bijection $f: (X, \tau) \to (Y, \sigma)$ the following are equivalent

- $f^{-1}: (Y, \sigma) \to (X, \tau)$ is \overline{g} -irresolute,
- f is a \overline{g} *-open map and (ii)
- f is a \overline{g} *-closed map. (iii)

REFERENCES

- (1) Levine N.: Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- Levine N: Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (1970), 89-96.
- Andrijevic D.: Semi-preopen sets Mat. Vesnik, 38(1) (1986) 24-32.
- Bhattacharya P. and Lahiri B.K.: Semi generalized closed sets in a topology, Indian J. Math. 29 (3), (1987) 375-382.
- Arya S.P. and Tour N.: Characterizations of s-normal spaces, Indian J. Pure Applied Math., 21(8) (1990), 717-719.
- Balachandran K., Sundaram P. and Maki H.: On generalized continuous maps in topological space, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 12(1991),
- Sundaram P., Maki H. and Balachandran K.: Semi-generalized continuous maps and semi-T_{1/2} spaces Bull. Fukukoa Univ. Ed. Part-III, 40(1991), 33-
- Devi R., Maki H and Balachandran K.: Semi generalized closed maps and generalized semi closed maps Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 14, (1993), 41-54.
- Dontchev. J.: On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 16(1995), 35-38.
- (10) Devi R., Maki H and Balachandran K.: Semi generalized homeomorphism and generalized semi homeomorphism in topological spaces, Indian J. Pure Applied. Mat. 26, (3) (1995), 271-284.
- (11) Veera Kumar M.K.R.S.: Between semi closed sets and semi pre-closed sets, Rend. Instint. Math. Univ. Trieste (Italy), XXXII(2000), 25-41.
- (12) Garg M., Agarwal S. and Goel C.K.: On $\hat{\mathbf{g}}$ -closed sets in topological spaces, *Acta Ciencia Indica*, XXXIII(M) (4) (2007), 1643-1652.
- (13) Veera Kumar M.K.R.S.: Between g*-closed sets and g-closed sets, Ant.j.Math.(Reprints).
- (14) Garg M., Agarwal S., Goel C.K. and Goel S., On \hat{g} -homeomorphism in topological spaces, *Ultra Sci.Phy.Sci.* 19(3)M(2007), 697-706.
- (15) Biswas N.: Bull. Cal. Math. Soci., 61 (1969), 127-350.
- (16) Garg M., Khare S. K. and S. Agarwal: On **g-closed sets in topological spaces, Ultra Sci. Phy. Sci. 20(2)M(2008), 403-416.
- (17) Agarwal S., Garg M. and Goel C.K.: Between semi-closed sets and generalized semi closed sets in topological spaces, Ultra Sci. Phy. Sci. 22(2)M(2010), 539-550.
- (18) Agarwal S., Garg M. and Goel C.K.: On *gs-homeomorphisms in topological spaces, Jourl. Int. Acd. Phy. Sci., 11(2007), 63-70.
- (19) Garg M., Agarwal S. and Goel C.K.: On ψ-homeomorphisms in topological spaces, Reflection De Era, JPS, 4(2010), 9-24.
- (20) Noiri T.: Atti. Accad. Zaz. Lincei. Rend. Cl. Sci. Fis. Mat. Nature, 54(8)(1973), 412-415.
- (21) Goel C.K., Garg M. and Poonam Agarwal.: On **gs-closed sets in topological spaces, Ultra Sci. Phy. Sci., 27(2)B(2015), 95-104.
- (22) Malghan S.R.: Generalized closed maps. J. Karnataka Univ. Sci. 27(1982), 82-88.
- (23) Rathore S.S., Garg M.: A generalized closed sets in topological spaces, Jour. Current Adv. Res., 6(12)(2017), 8449-8453.
- (24) Veera Kumar M.K.R.S.: Between closed sets and g-closed sets, Mam. Fac. Sci. Kochi Uni., Japan Sar. Math. 20(2000), 1-19.