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ON FOX-H FUNCTION FRACTIONAL INTEGRAL OPERATORS AND M
SERIES
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In the present investigation, the fractional operators involving Fox-H function due to Saxsena-
Kumbhat, are applied to the M series which is further extension of both Mittag-Leffler function and
generalized hypergeometric function pFy. The H-function fractional operators have found essential

application in the solution of kinetic equation, fractional reaction and fractional diffusion. The results
are mostly derived in a closed form in the terms of the H-function suitable for numerical computation.
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1. Introduction and Preliminaries:

The Subject of fractional calculus deals with investigations of integrals and derivatives has
gained importance and popularity during the last four decades or so, mainly due to its vast
potential demonstrated applications in fields of science and engineering . Different extensions
of various fractional integrations operators are studied by Kalla [14] , Mc Bride [5], Kilbas
[1] Kiryakova [4A] , Purohit Kalla [13] etc.

In the present paper we introduce a fractional integral operator involving H- function for
Re(a) >0,a;,b; €C,a;,8;>0,i=1..p;j=1...q, peC,c>0as follows :

(797 1)) = 1 j (= )« H l(x—t)"l (“”“f)l"’]fa)dt (11)

(b}, Bj)1q
and
(Ig P f)(x) = ! jw(t —x)*THy " l(t —x)7 | (a5 )1y ]f(t)dt (1.2)
T(a) (b, B)1q
In (1.1), (1.2) H,y"(.) denotes Fox's H-function ( ):

The H-Function introduced & defined by Fox-H[ ** ] in 1961 , as

Hyy'(z) = f Hyy (s)z° ds, (1.3)
Where L is a suitable path in the complex plane C. and
mn A(s)B(s)
Hyg'(s) = 250, (14)
A@) =II7L.T(bj — Bjs),  B(s) = I[}oi T(A — a; + a;s), (15)
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C(s) ]_[] —mer L= b;+B;s),  D(s) = II- n+1F(a] a;s) (1.6)

With 0<sn <p,1<m<q,{a; b} € C{a;,f;} € R*. With all convergence conditions as

given by Braaksma [ *].

The Properties of these operators were studied by Saigo [ ] Mathai & Saxena [ ] following which we
can easily obtain sided and right — handed sided generalized integration of type

(1.1)and (1.2) for power function as follows :

mnp.q,a,o 1 (P) +a—1gymn+1 o (1_0',’0-)(61]"“]')11’
(IO+ P xP~ )( ) F( ) xP Hp+1 q+1 x |(1 —a _pvo-)(ij.[;j)l,q (17)

where Re(a) > 0,m,n,p,q € Nowith0 <n<p,l<m<gq,

ajf; € Ry,a;jb; ERorC,i=1...p,;j=1,....q,with all convergence condition as given by

AM.Mathai [ ].
Further Leta™ = X7, A; = X%, 4+ X7 Bj— X1 B> 0
and
1 (a2)(1 — a,0)
Im,n,p,q,aa, p_1 - £ a+p 1Hm+1n+1 ], ] 18
(=0 = rara=py ™ e [ a2 ey O

provided @ € C ,R(a) > 0 and further the constants a;,b; € C ,a;,. >0,i=1,...p;j=1,....q,
] 1 p.J q

p€Co>0 satisfy oiax, [R(a#] + R(p) + R(a) < Land 1 +yo > R(p) + R(a)
]

Sharma and Jain [7A] introduced the generalized M-series as the function defined by means of the

power series:
M8 (a1, ay,.... Oy} by by, . byiz) = SME(2) = $ME ((0)" 5 (b)) 2)

- (@ - (ap)n z"
B0 (by), Tan+ B)

z,a,f € C,R(a) >0 (1.9)

Where,(a]-)n, (bf)n are the known Pochammer symbols. The series (1.7) is defined when none

of the parameters b;'s, j = 1,2,... ,q, is a negative integer or zero; if any numerator parameter

a; is a negative integer or zero, then the series terminates to a polynomial in z. The series in
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(1.7) is convergent for all zif p < q, itis convergentfor|z] <6 ifp = g + 1and divergent,
ifp > q +1.Whenp = q +1and|z| = 8, the series can converge on conditions depending
on the parameters. Properties of M-series are further studied by Saxena [8A], Chouhan and
Sarswat [9A] etc.

The generalized Mittag- Leffler function [10A], is obtained from (1.7) forp = q = 1;
a=y€ecC;b=1,as

Wn__2" N W __ 2" _ayse, 1.5 (110)

Fes = 2, fam+ pymt = La D Tam+ )

The generalized M-series (1.7) can be represented as a special case of the Wright

generalized hypergeometric function (1.6), as

(a3, 1), ..., (ap 1), (1,1);

%Mll; ((a])i’ , (b]')z;z) = k p+1¥q+1 (b, 1), ..., (bq, 1), (5.a); AR (1.11)
q
where k = %
J= J

1. Main Results:

In this section, the image formulas for the M-series involving Fox-H Function fractional integral
operators (1.1) and (1.2) are established:

Theorem 2.1 Letm,n,p,q€ NowithOsn<p,1<m<gq,q;p; € R, aj,bj ERorC,i=
1,.. .. p.j=1 ... q,Re(a) >0,a € C.

R (b))
Bj

a* =0,yu+R(6) <-1; o2, [ ] +R(p) >0and yo < R(p).

Then there holds the formula

(Iéfl;”vp'q'“'atp_l ~ M (ay t“)) (x)

[ (a‘l)nl (Cl‘pl)nl an1[‘(vn1 + p) cUni+pra-1 H"i’;"’il x0| (1 - a,a)(ajvaj)lyp
=, (b1),, - (bg,), Tny+8)(a) P A —a—-vn, —p.o)(b.6),,

e (2.0)

Proof: Using (1.1) and (1.9), and then changing the order of integration and summation, we get

www.ijert.org 67



International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
ETRASCT" 14 Conference Proceedings

© (@), (@), am
(

n{=0

m,n,p,q,a,atun1+p—1

®)),, - (By,), Tom, +6) 0

Interpreting the right hand side of above equation, in view of the definition (1.7), we arrive at result
(2.2).
On Setting p, =q; =1, a=n € C; b = 1in (2.1), we obtained the following result.

Corollary 2.1. With the conditions on parameters mentioned in theorem (2.1), there holds the
formula

(090181, 0,) 0

o

(), a,™ T(uvm; +p) ymtpra pmnt [ o (A -a,0)(@a)1p

S Fwm, +8)T(m; +1) T(a) pig+l ¥ Q—a—-vmy —p,0)(b;.B)1q (22)

my=

Theorem 22 Let @ € C ,Re(a) >0,a;b; €C,a;, B; >0,i=1,...p;j=1,...q,
6>0,p €C satisfy o]%, [M] +R(p) + R(a) < 1
]

a

and 1+yo > R(p) + R(a).

then there holds the formula
(7155 ) 0

N (ai)nl (a;’l)nl a,"x @ vhhid m+1n+1 [ 7| (405) ~a,0) (233)

A, (), Tom +OT@IGmy ++8) P T ony 4y + 5~ ,0) (1,)

Proof: Using (1.2) and (1.9), and then changing the order of integration and summation, we get
(127957975 2,01 7) 0

- (a%)nl (a;n)nl Cl1n1 (Im,n,p,qvavfft—vnl—ﬁr(?)
2 (by), o (bg,), Ty +8) 207

Interpreting the right hand side of above equation, in view of the definition (1.8), we arrive at result
(2.3).
On Setting p; =q; =1, a=n € C; b = 1in (2.3), we obtained the following result.
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Corollary 2.2. With the conditions on parameters given in theorem (2.3)
there holds the formula
(rmmpacoy-F-0E (a;t)) (x)

[oe]

(M, a,™ x@-vmy=B1-8 mins [ o (aja)(1— a,0)
X T(wumy + 8)T(my +1) T(a)Tumy + B, + 5 PHHa+t (vmy + B, + 6 — a,0)(b;, b))

mp=
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