

On Domination and Energy of Zero Divisor Graphs

K. Ananthi

Department of Mathematics
VSA Group of Institutions
Salem, India – 636 010.

Dr. J. Ravi Sankar

School of Advanced Sciences
VIT University Vellore, India – 632 014.

Dr. N. Selvi

Department of Mathematics
ADM College for Women, Nagapattinam, India-611001

Abstract— The energy $E(G)$ of a graph G is the sum of the absolute values of the eigenvalues of G . In this paper, we study the characterization of eigenvalues and energy of adjacency matrix corresponding to zero-divisor graphs of finite commutative ring. Also, we study the eigenvalue and energy of $\Gamma(Z_n)$ where $n=2p, 3p, 5p, pq, p^2, 4p$ where p, q are distinct prime numbers. Finally, we give the relationship between the domination number, energy, rank and eigenvalues of complete zero-divisor graphs.

Keywords — Commutative ring, Zero-divisor graph, Energy graph.

I. INTRODUCTION

The energy $E(G)$, of a graph G is defined to be the sum of the absolute values of its eigenvalues. Hence, if $A(G)$ is the adjacency matrix of G , and $\{\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n\}$ are the eigenvalues of $A(G)$, then $E(G) = \sum_{i=1}^n |\lambda_i|$. The set

$\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ is the spectrum of G and denoted by $\text{Spec } G$.

The totally disconnected graph K_n^c has zero energy while the complete graph K_n with the maximum possible number of edges (among graphs on n vertices) has energy $2(n-1)$. Graphs for which the energy is greater than $2(n-1)$ are called hyperenergetic graphs. If $E(G) > 2(n-1)$, then G is called non-hyperenergetic.

The energy of G was first defined by I. Gutman in 1978 as the sum of the absolute values of the eigenvalues of $A(G)$ in [2]. Energy of graph originated from theoretical chemistry. Huckel molecular orbital theory is a field of theoretical chemistry where graph eigen values occur. The carbon atoms of a hydrocarbon system correspond to vertices of a graph associated with the molecule. From Huckel theory, the energy of a molecular graph is equal to the total - electron energy of a conjugated hydrocarbon [3].

The concept of energy has been generalized in two different directions. Let A be an $m \times n$ matrix and A^* denote its adjoint (conjugate transpose of A). The singular values $s_1(A) \geq s_2(A) \geq \dots \geq s_m(A)$ of a matrix A are the square roots of the eigenvalues of AA^* . Note that if A is an $n \times n$ Hermitian matrix (i.e., $A = A^*$), then the singular values of A are the absolute values of the eigenvalues of A . For any

$A \in M_{m,n}$ define the energy of A , $E(A) = \sum_{i=1}^m s_i(A)$. From

the above, we note that the usual energy of a graph G , $E(G) = E(A(G))$.

Another generalization of energy is defined as follows: Let M be a matrix associated with G . Suppose $\mu_1, \mu_2, \dots, \mu_n$ are the eigenvalues of M and $\bar{\mu}$ is the average of $\mu_1, \mu_2, \dots, \mu_n$. The M – energy of G is then defined as the absolute deviation $E_{M(G)} = \sum_{i=1}^n |\mu_i - \bar{\mu}|$. If M is the adjacency matrix

$A(G)$, then $\bar{\mu} = 0$. Hence, the usual energy $E(G) = E_A(G)$. For notation and zero-divisor graph terminology, we in general follow [4,5,6,7].

Let R be a commutative ring and let $Z(R)$ be its set of zero-divisors. The zero-divisor graph of a ring is the graph (simple) whose vertex set is the set of non-zero zero-divisors, and an edge is drawn between two distinct vertices if their product is zero. Throughout this paper, we consider the commutative ring by R and zero-divisor graph $\Gamma(R)$ by $\Gamma(Z_n)$. The idea of a zero-divisor graph of a commutative ring was introduced by I. Beck in [1], where he was mainly interested in colourings. The zero-divisor graph is very useful to find the algebraic structures and properties of rings.

Claude Berge introduced the theory of Domination in 1958. The inspiration for this concept was drawn from the classical problem of covering chessboard with minimum number of chess pieces.

The most common definition given of a dominating set is that it is a set of vertices $D \subset V$ in a graph $G = (V, E)$ having the property that every vertex $v \in V - D$ is adjacent to at least one vertex in D . The domination number $\gamma(G)$ is the cardinality of a smallest dominating set of G .

Throughout this paper G will denote a simple (no loops or multiple edges), undirected graph with n vertices and m edges. If $\{v_1, v_2, \dots, v_n\}$ is the set of vertices of G , then the adjacency matrix of G , $A(G) = A = [a_{ij}]$ is an $n \times n$ matrix, where $a_{ij} = 1$ if v_i and v_j are adjacent and $a_{ij} = 0$ otherwise. Thus, A is a symmetric $(0, 1)$ - matrix with real eigenvalues and zeros on the diagonal. If $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of A , then we have $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$ and $\lambda_1 + \lambda_2 + \dots + \lambda_n = 0$.

II EIGENVALUES & ENERGY OF ZERO DIVISOR GRAPHS

In this paper, we evaluate the eigenvalues of zero-divisor graph and find the energy of some generalized zero divisor graphs.

Theorem 1: For any graph $\Gamma(Z_{2p})$, where p is any prime number, then the eigenvalues are $\sqrt{p-1}, -\sqrt{p-1}$ and $E(\Gamma(Z_{2p})) = 2\sqrt{p-1}$.

Proof: The vertex set of $\Gamma(Z_{2p})$ is $\{2, 4, 6, \dots, 2(p-1), p\}$. Let $u=4$ and $v=p$ then $2p$ must divides uv . That is $2p$ divides $4p$. Clearly, u and v are adjacent vertices. Similarly, any vertices u in $V(\Gamma(Z_{2p}))$ and $v=p$ then $2p$ must divides uv . It seems that p is adjacent to all the vertices in $V(\Gamma(Z_{2p}))$. Let $u=4 \neq p$ and $w=6 \neq p$ in $V(\Gamma(Z_{2p}))$ such that $uw \neq 0$. It means that $2p$ does not divide $uv=24$. Clearly, no two vertices in $\Gamma(Z_{2p})$ are adjacent, except p .

Case(i): Let $p=3$. The eigenvalues of $\Gamma(Z_6)$ are $\sqrt{2}, -\sqrt{2}$. Then the energy of $\Gamma(Z_6)$ = Sum of the absolute values of the eigenvalues = $|\sqrt{2}| + |-\sqrt{2}| = 2\sqrt{2}$.

Case(ii): Let $p=5$. The eigenvalues of $\Gamma(Z_{10})$ are $\sqrt{4}, -\sqrt{4}$. Then the energy of $\Gamma(Z_{10})$ = Sum of the absolute values of the eigenvalues = $|\sqrt{4}| + |-\sqrt{4}| = 2\sqrt{4}$.

Case (iii): Let $p > 5$, is a prime number.

In general, the eigenvalues of $\Gamma(Z_{2p})$ are $\sqrt{p-1}, -\sqrt{p-1}$. Then the energy of $\Gamma(Z_{2p})$ = Sum of the absolute values of the eigenvalues = $|\sqrt{p-1}| + |-\sqrt{p-1}| = 2\sqrt{p-1}$.

Theorem 2: For any graph $\Gamma(Z_{3p})$, where p is any prime number, then the Eigenvalues are $\sqrt{2(p-1)}, -\sqrt{2(p-1)}$ and $E(\Gamma(Z_{3p})) = 2\sqrt{2(p-1)}$.

Proof: The vertex set of $\Gamma(Z_{3p})$ is $\{3, 6, 9, \dots, 3(p-1), p, 2p\}$. Let u and v be two vertices in $\Gamma(Z_{3p})$ with maximum degree. Let $u=p$ and $v=2p$ then there exist any other vertex $w \neq p \neq 2p$ in $\Gamma(Z_{3p})$ such that, is adjacent to both u and v . That is, $uw = vw = 0$. But $uv = 2p^2$ which is not divided by $3p$. Therefore u and v are non-adjacent vertices. Then the vertex set V can be partitioned into two parts V_1 and V_2 such that $V_1 = \{u, v\} = \{p, 2p\}$ and $V_2 = \{3, 6, 9, \dots, 3(p-1)\}$. Clearly $|V_1| = 2$ and $|V_2| = p-1$, then $|V| = |V_1| + |V_2| = p+1$.

Case(i): Let $p=5$. The eigenvalues of $\Gamma(Z_{15})$ are $\sqrt{8}, -\sqrt{8}$. Then the energy of $\Gamma(Z_{15})$ = Sum of the absolute values of the eigenvalues = $|\sqrt{8}| + |-\sqrt{8}| = 2\sqrt{8}$.

Case (ii): Let $p=7$. The Eigenvalues of $\Gamma(Z_{21})$ are $\sqrt{12}, -\sqrt{12}$. Then the energy of $\Gamma(Z_{21})$ = Sum of the absolute values of the eigenvalues = $|\sqrt{12}| + |-\sqrt{12}| = 2\sqrt{12}$.

Case(iii): Let $p > 7$, is a prime number.

In general, the eigenvalues of $\Gamma(Z_{3p})$ are $\sqrt{2(p-1)}, -\sqrt{2(p-1)}$. Then the energy of $\Gamma(Z_{3p})$ = Sum of the absolute values of the eigenvalues = $|\sqrt{2(p-1)}| + |-\sqrt{2(p-1)}| = 2\sqrt{2(p-1)}$.

Theorem 3: For any graph $\Gamma(Z_{5p})$, where p is any prime number, then the eigenvalues are $\sqrt{4(p-1)}, -\sqrt{4(p-1)}$ and $E(\Gamma(Z_{5p})) = 2\sqrt{4(p-1)}$.

Proof: The vertex set of $\Gamma(Z_{5p})$ is $\{5, 10, \dots, 5(p-1), p, 2p, 3p, 4p\}$. Clearly $|V(\Gamma(Z_{5p}))| = p+3$. Let u and v be any two vertices in $\Gamma(Z_{5p})$ with maximum and minimum degree, respectively. Let $u=p$ and $v=10$ then $5p$ must divide uv which implies that u and v are adjacent.

Let $u=p$ and $v=2p$ then $5p$ does not divide $uv=2p^2$, which implies that u and v are non adjacent vertices. Then the vertex set V can be partitioned into two parts V_1 and V_2 , where $V_1 = \{p, 2p, 3p, 4p\}$ and $V_2 = \{5, 10, \dots, 5(p-1)\}$. Clearly any vertices u and v in V_1 are non-adjacent as same as in V_2 . Let $u=p$ in V_1 and $v=10$ are in V_2 then $5p$ divides $uv=10p$. Finally, we note that, every vertex in V_1 is adjacent to all the vertices in V_2 . Moreover $V(\Gamma(Z_{5p})) = V_1 \cup V_2$ and $V_1 \cap V_2 = \emptyset$.

Case(i): Let $p=7$. The eigenvalues of $\Gamma(Z_{35})$ are $\sqrt{24}, -\sqrt{24}$. Then the energy of $\Gamma(Z_{35})$ = Sum of the absolute values of the eigenvalues = $|\sqrt{24}| + |-\sqrt{24}| = 2\sqrt{24}$.

Case(ii): Let $p=11$. The eigenvalues of $\Gamma(Z_{55})$ are $\sqrt{40}, -\sqrt{40}$. Then the energy of $\Gamma(Z_{55})$ = Sum of the absolute values of the eigenvalues = $|\sqrt{40}| + |-\sqrt{40}| = 2\sqrt{40}$.

Case (iii): Let $p > 11$, is a prime number. In general, the eigenvalues of $\Gamma(Z_{5p})$ are $\sqrt{4(p-1)}, -\sqrt{4(p-1)}$. Then the energy of $\Gamma(Z_{5p})$ = Sum of the absolute values of the eigenvalues = $|\sqrt{4(p-1)}| + |-\sqrt{4(p-1)}| = 2\sqrt{4(p-1)}$.

Theorem 4: For any graph $\Gamma(Z_{p^2})$, where $p > 2$ is any prime number, then the eigenvalues are $\underbrace{-1, -1, \dots, -1}_{(p-2)\text{times}}, (p-2)$ and

$$E\left(\Gamma\left(Z_{p^2}\right)\right) = 2(p-2).$$

Proof: If p is any prime, then $V(\Gamma(Z_{p^2})) = \{p, 2p, 3p, 4p, \dots, (p-1)p\}$. Clearly p is adjacent to all the vertices in $\Gamma(Z_{p^2})$. Also note that, any two vertices in $\Gamma(Z_{p^2})$ are adjacent and hence $\Gamma(Z_{p^2})$ is a complete graph, namely K_{p-1} .

Case(i): Let $p=3$. The eigenvalues of $\Gamma(Z_{3^2})$ are $-1, 1$. Then the energy of $\Gamma(Z_{3^2})$ = Sum of the absolute values of the eigenvalues = 2.

Case(ii): Let $p=5$. The eigenvalues of $\Gamma(Z_{5^2})$ are $-1, -1, -1, 3$. Then the energy of $\Gamma(Z_{5^2})$ = Sum of the absolute values of the eigenvalues = 6.

Case(iii): Let $p=7$. The eigenvalues of $\Gamma(Z_{7^2})$ are $-1, -1, -1, -1, 5$. Then the energy of $\Gamma(Z_{7^2})$ = Sum of the absolute values of the eigenvalues = 10.

Case(iv): Let $p > 7$, is a prime number. The eigenvalues of $\Gamma(Z_{p^2})$ are $\underbrace{-1, -1, \dots, -1}_{(p-2)\text{times}}, (p-2)$.

Then the energy of $\Gamma(Z_{p^2})$ = Sum of the absolute values of the eigenvalues = $|(-1, \dots, -1)(p-2)\text{times}| + |p-2| = 2(p-2)$.

Theorem 5: In $\Gamma(Z_{pq})$, if p and q are distinct prime numbers with $p < q$, then the eigenvalues are

$\sqrt{(p-1)(q-1)}, -\sqrt{(p-1)(q-1)}$ and

$$E\left(\Gamma\left(Z_{pq}\right)\right) = 2\sqrt{(p-1)(q-1)}.$$

Proof: The proof is by the method of induction on p and q . The vertex set of $\Gamma(Z_{pq})$ is $\{p, 2p, 3p, \dots, p(q-1), q, 2q, 3q, \dots, (p-1)q\}$.

Case(i): Let $p=2, q$ is any prime > 2 , Using theorem (2.1), for any graph $\Gamma(Z_{2q})$, where $q > 2$ is any prime number, then the eigenvalues are $\sqrt{q-1}, -\sqrt{q-1}$. Without loss of generality, the eigenvalues can be written as $\sqrt{(p-1)(q-1)}, -\sqrt{(p-1)(q-1)}$, where $p=2$.

Then, $E\left(\Gamma\left(Z_{2q}\right)\right) = 2\sqrt{(q-1)} = 2\sqrt{(2-1)(q-1)} = 2\sqrt{(p-1)(q-1)}$, where $p=2$.

Case(ii): Let $p=3, q$ is any prime > 3 , Using theorem (2.2), for any graph $\Gamma(Z_{3q})$, where $q > 3$ is any prime number, then the eigenvalues are $\sqrt{2(q-1)}, -\sqrt{2(q-1)}$. Without loss of generality, the eigenvalues can be written as $\sqrt{(p-1)(q-1)}, -\sqrt{(p-1)(q-1)}$, where $p=3$.

Then, $E\left(\Gamma\left(Z_{3q}\right)\right) = 2\sqrt{2(q-1)} = 2\sqrt{(3-1)(q-1)} = 2\sqrt{(p-1)(q-1)}$, where $p=3$.

Case(iii): Let $p=5, q$ is any prime > 5 , Using theorem (2.3), for any graph $\Gamma(Z_{5q})$, where $q > 5$ is any prime number, then the eigenvalues are $\sqrt{4(q-1)}, -\sqrt{4(q-1)}$. Without loss of generality, the eigenvalues can be written as $\sqrt{(p-1)(q-1)}, -\sqrt{(p-1)(q-1)}$, where $p=4$.

Then, $E\left(\Gamma\left(Z_{5q}\right)\right) = 2\sqrt{4(q-1)} = 2\sqrt{(5-1)(q-1)} = 2\sqrt{(p-1)(q-1)}$, where $p=5$.

Case(iv): Let $p < q$, The vertex set of $\Gamma(Z_{pq})$, is $\{p, 2p, 3p, \dots, p(q-1), q, 2q, 3q, \dots, (p-1)q\}$. Using the above cases, the eigenvalues of $\Gamma(Z_{pq})$ are $\sqrt{(p-1)(q-1)}, -\sqrt{(p-1)(q-1)}$ where p and q are distinct primes with $p < q$. Then the energy of $\Gamma(Z_{pq})$ is $E\left(\Gamma\left(Z_{pq}\right)\right) = |\sqrt{(p-1)(q-1)}| + |-\sqrt{(p-1)(q-1)}| = 2\sqrt{(p-1)(q-1)}$.

Theorem 6: If $p > 4$ is any prime, then the eigenvalues are in the form of $\pm x, \pm 2.4142x$, where x and $2.4142x$ are less than p and $E(\Gamma(z_{4p})) = 2(x + 2.4142x)$.

Proof: The vertex of $\Gamma(Z_{4p})$ is $\{2, 4, \dots, 2(2p-1), p, 2p, 3p\}$ with $|V(\Gamma(Z_{4p}))| = 2p+1$. Let $v = 2p$ be a vertex and let w be any vertex except p and $3p$ such that $4p$ divides vw .

Clearly, v is adjacent to all the vertices in $V(\Gamma(Z_{4p}))$ except p and $3p$. Let $P, S, N(S)$ be the pendant set, minimum degree set, neighborhood of S , respectively. Since v has maximum degree then $v \in N(S)$.

Case(i): Let $p = 5$. The vertex set of $\Gamma(Z_{20})$ is $\{2, 4, \dots, 2(10-1), 5, 10, 15\}$ with $|V(\Gamma(Z_{20}))| = 11$. Let $v = 2p = 10$ be a vertex and let w be any vertex except 5 and 15 such that 20 divides vw . Clearly, $v = 10$ is adjacent to all the vertices in $V(\Gamma(Z_{20}))$ except 5 and 15 then $10 \in N(S)$. Let $x = 2$ and $y = 14$ then 28 is not divisible by 20 which implies x and y are non adjacent vertices. But $xv = yv = 0$.

The eigenvalues of $\Gamma(Z_{20})$ are $-3.6955, -1.5307, 0, 1.5307, 3.6955$. Then the energy of $\Gamma(Z_{20})$ = Sum of the absolute values of the eigenvalues = $2(1.5307+3.6955) = 2(1.5307+2.4142(1.5307)) = 10.4524$.

Case(ii): Let $p = 7$. The vertex set of $\Gamma(Z_{28})$ is $\{2, 4, \dots, 2(14-1), 7, 14, 21\}$ with $|V(\Gamma(Z_{28}))| = 2p+1 = 15$. Let $v = 2p = 14$ be a vertex and let w be any vertex except 7 and 21 such that 28 divides vw . Clearly $v = 14$ is adjacent to all the vertices in $V(\Gamma(Z_{28}))$ except 7 and 21 then $14 \in N(S)$. The eigenvalues of $V(\Gamma(Z_{28}))$ are $-4.5261, -1.8748, 0, 1.8748, 4.5261$. Then the energy of $V(\Gamma(Z_{28}))$ = Sum of the absolute values of the eigenvalues = $2(1.8748+4.5261) = 2(1.8748+2.4142(1.8748)) = 12.8018$.

Case(iii): Let $p > 7$ is a prime number. The vertex set of $V(\Gamma(Z_{4p}))$ is $\{2, 4, \dots, 2(2p-1), p, 2p, 3p\}$ with

$|V(\Gamma(Z_{4p}))| = 2p+1$. Let $v = 2p$ be a vertex and let w be any other vertex except p and $3p$ such that $4p$ divides vw . Clearly, v is adjacent to all the vertices $V(\Gamma(Z_{4p}))$ except p and $3p$ and $v = 2p \in N(S)$.

The eigenvalues of $V(\Gamma(Z_{4p}))$ are $-x, -2.4142x, 0, 2.4142x, x$. Then the energy of $V(\Gamma(Z_{28}))$ = Sum of the absolute values of the eigenvalues = $2(x+2.4142x) = 6.8284x$.

III Relationship between domination, energy, rank and eigenvalues of $\Gamma(Z_n)$ In this section, we find the bounds which relate the domination number of $\Gamma(Z_n)$, energy of $\Gamma(Z_n)$, rank of $\Gamma(Z_n)$ and eigenvalues of $\Gamma(Z_n)$, for $n = p^2$, where $p > 2$ is any prime number.

G	$\gamma(\Gamma(Z_n))$	$E(\Gamma(Z_n))$	$\rho(\Gamma(Z_n))$	Eigenvalues
$\Gamma(Z_6)$	1	2	2	-1,1
$\Gamma(Z_{25})$	1	6	4	-1,-1,1,3
$\Gamma(Z_{49})$	1	10	6	-1,-1,-1,-1,-1,5
$\Gamma(Z_{121})$	1	18	10	-1,-1,-1,1,-1-1,-1,-1,9,
...
...
$\Gamma(Z_{p^2})$	1	$2p-4$	$p-1$	$\underbrace{-1,-1, \dots, -1}_{(p-2)-\text{times}}(p-2)$

III CONCLUSION

In this paper, we study the eigenvalues and energy of zero divisor graph over finite commutative rings. Graphs are the most ubiquitous models of both natural and human made structures. In computer science, zero divisor graphs are used to represent networks of communication, network flow, clique problems. For any graph $\Gamma(Z_{4p})$, where $p > 3$ is any prime number and $4 < x < 4+x$, then the eigenvalues are $x, 2.4142x$, approximately, where x is a position of consecutive prime number from 5 to so on.

If an Eigen value of a zero divisor graph is a rational number, then it is an integer. Also we note that the energy of a zero divisor graph cannot be an odd integer. The energy of a zero divisor graph cannot be the square root of an odd integer. The energy of a zero divisor graph cannot be the square root of the double of an odd integer.

REFERENCES

- [1] I.Beck, Colouring of Commutative Rings, *J. Algebra*, 116,(1988),208-226
- [2] I.Gutman,The Energy of a Graph, *Ber.Math – Statist.Sekt.Forschungsz.Graz*,103,(1978), 1-22.
- [3] I.Gutman,O.Polanski, Mathematical Concepts in Organic Chemistry, Springer, Berlin(1986). [4] J. Ravi Sankar and S.Meena, Changing and Unchanging the Domination Number of a Commutative ring, *International Journal of Algebra*,6 ,(2012), No -27,1343 – 1352.
- [4] J.Ravi Sankar and S.Meena, Connected Domination number of a commutative ring, *International Journal of Mathematical Research*,5,(2012), No -1, 5-11.
- [5] J. Ravi Sankar,S.Sangeetha, R.Vasantha Kumari and S.Meena, Crossing Number of a Zero Divisor Graph, *International Journal of Algebra*,6 ,(2012), No -32,1499 – 1505.
- [6] J.RaviSankar and S.Meena,On Weak Domination in a Zero Divisor Graph, *International Journal of Applied Mathematics*, 26,(2013),No – 1, 83 – 91.