On Contra sbĝ – Continuous functions in Topological Spaces

K. Bala Deepa Arasi¹,

¹ Assistant Professor of Mathematics,
A.P.C.Mahalaxmi College for Women, Thoothukudi,

TN. India

Abstract - In this paper a new class of functions called contra sbĝ-continuous function is introduced and its properties are studied. Some characterization and several properties concerning Contra sbĝ-continuity are obtained. Also, Contra sbĝ-irresolute function and Perfectly Contra sbĝ-irresolute function are introduced.

Keywords: sbŷ-closed sets, sbŷ-continuous, Contra sbŷ-continuous, Contra sbŷ-irresolute.

AMS Mathematics Subject Classification: 54C08, 54C10.

1. INTRODUCTION

In 1996, Dontchev[7] introduced and investigated a new notion of continuity called contra — continuity. Follwing this, many authors introduced various types of new generalizations of contra continuity called as contra α-continuity, contra semi-continuity[3], contra b-continuity[12], contra sg-continuity[5], contra gs-continuity[5], contra g*b-continuity[16], contra bg*continuity[16], contra bg*continuity[16], we introduced sbg*closed sets[3] in Topological spaces.

In this paper, we introduce and investigate some of the properties of contra sbĝ-continuous, contra sbĝ-irresolute functions and we obtain some of its characterization.

2. PRELIMINARIES

Throughout this paper (X, τ) (or simply X) represents topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of (X,τ) , Cl(A), Int(A) and A^c denote the closure of A, interior of A and the complement of A respectively. We are giving some definitions.

Definition 2.1: A subset A of a topological space (X,τ) is called

- 1. a semi-open set[5] if $A \subseteq Cl(Int(A))$.
- 2. an α -open set[8] if $A \subseteq Int(Cl(Int(A)))$.
- 3. a b-open set[1] if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$.
- 4. a regular open[14] set if A = Int(Cl(A)).

The complement of a semi-open (resp. α -open, b-open, regular-open) set is called semi-closed (resp. α -closed, b-closed, regular-closed) set.

S. Navaneetha Krishnan² and S. Pious Missier³

^{2,3} Associate Professor of Mathematics,
V.O. Chidambaram College, Thoothukudi,
TN, India

The intersection of all semi-closed (resp. α -closed, b-closed, regular-closed) sets of X containing A is called the semi-closure (resp. α -closure, b-closure, regular closure) of A and is denoted by sCl(A) (resp. α Cl(A), bCl(A), rCl(A)). The family of all semi-open (resp. α -open, b-open, regular-open) subsets of a space X is denoted by SO(X) (resp. α O(X), bO(X), rO(X)).

Definition 2.2: A subset A of a topological space (X,τ) is called a

- 1) a sg-closed set[5] if $sCl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
- 2) a gs-closed set[5] if $sCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- a gb-closed set[16] if bCl(A) ⊆ U whenever A ⊆ U and U is open in X.
- 4) a g*b-closed set[16] if bCl(A) ⊆ U whenever A⊆ U and U is g-open in X.
- a bĝ-closed set[15] if bCl(A) ⊆ U whenever A ⊆ U and U is ĝ-open in X.
- 6) a sb \hat{g} -closed set[3] if sCl(A) \subseteq U whenever A \subseteq U and U is b \hat{g} -open in X.

The complement of a sg-closed (resp. gs-closed, gb-closed, g*b-closed and bĝ-closed) set is called sg-open (resp. gs-open, gb-open, g*b-open and bĝ-open) set.

Definition 2.3: A space (X,τ) is called a

- i. $T_{sb\hat{g}}$ space[3] if every sb \hat{g} -closed set in X is closed
- ii. $T_{sb\hat{g}}^{\alpha}$ space[3] if every sb \hat{g} -closed set in X is α -closed.

Definition 2.4: A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called a

- i. $sb\hat{g}$ continuous map[4] if $f^{-1}(V)$ is $sb\hat{g}$ -closed in (X,τ) for every closed set V in (Y,σ) .
- ii. sb \hat{g} irresolute map[4] if $f^{-1}(V)$ is sb \hat{g} -closed in (X,τ) for every closed set V in (Y,σ) .

Definition 2.5: A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called a

i. Contra continuous map[7] if $f^{-1}(V)$ is closed in (X,τ) for every open set V in (Y,σ) .

- ii. Contra semi-continuous map[6] if $f^{-1}(V)$ is semi-closed in (X,τ) for every open st V in (Y,σ) .
- iii. Contra α -continuous map[8] if $f^{-1}(V)$ is α -closed in (X,τ) for every open set V in (Y,σ) .
- iv. Contra b-continuous map[15] if $f^{-1}(V)$ is b-closed in (X,τ) for every open set V in (Y,σ) .
- v. Contra sg-continuous map[5] if $f^{-1}(V)$ is sgclosed in (X,τ) for every open set V in (Y,σ) .
- vi. Contra gs-continuous map[5] if $f^{-1}(V)$ is gs-closed in (X,τ) for every open set V in (Y,σ) .
- vii. Contra gb-continuous map[16] if $f^{-1}(V)$ is gb-closed in (X,τ) for every open set V in (Y,σ) .
- viii. Contra g*b-continuous map[16] if $f^{-1}(V)$ is g*b-closed in (X,τ) for every open set V in (Y,σ) .
- ix. Contra bĝ-continuous map[15] if $f^{-1}(V)$ is bĝ-closed in (X,τ) for every open set V in (Y,σ) .

Definition 2.6:[15] A space (X, τ) is said to be locally indiscrete if every open subset of X is closed in X.

Definition 2.7:[5] A topological space (X,τ) is said to be Urysohn space if for each pair of distinct points x and y in X, there exists two open sets U and V in X such that $x \in U$, $y \in V$ and $Cl(U) \cap Cl(V) = \phi$.

Definition 2.8:[5] For a map $f: X \to Y$, the subset $\{(x,f(x)): x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G(f).

3. CONTRA sbg-CONTINUOUS FUNCTIONS

We introduce the following definition.

Definition 3.1: A function f: $(X,\tau) \to (Y,\sigma)$ is called Contra sb \hat{g} -continuous if $f^{-1}(V)$ is sb \hat{g} -closed in (X,τ) for every open set V in (Y,σ) .

Example 3.2: Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X,\phi,\{a\},\{b\},\{a,b\} \text{ and } \sigma = \{Y,\phi,\{a\},\{a,b\}\}$ Define a function $f: (X,\tau) \to (Y,\sigma)$ by f(a) = a, f(b) = c, f(c) = b

 $sb\hat{g} - C(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a,c\}, \{b,c\}\} \\ \text{Here, the inverse image of open sets } \{a\} \text{ and } \{a,b\} \\ \text{in Y are } \{a\} \text{ and } \{a,c\} \text{ respectively which are } sb\hat{g}\text{-closed sets in X. Hence, f is contra sb}\hat{g}\text{-continuous.}$

Theorem 3.3:

- a) Every contra continuous function is contra sbgcontinuous function.
- b) Every contra α -continuous function is contra sb \hat{g} -continuous function.

Proof:

- a) Let V be any open set in (Y,σ) . Since f is contra continuous, $f^{-1}(V)$ is closed in (X,τ) . By Proposition 3.4 in [3], $f^{-1}(V)$ is sbŷ-closed in (X,τ) . Hence, f is contra sbŷ-continuous function.
- b) Let V be any open set in (Y,σ) . Since f is contra α continuous, $f^{-1}(V)$ is α -closed in (X,τ) . By

Proposition 3.7 in [3], $f^{-1}(V)$ is sbŷ-closed in (X,τ) . Hence, f is contra sbŷ-continuous function.

The following examples show that the converse of the above proposition need not be true.

Example 3.4:

a) Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b,c\}\}$ Define a function $f: (X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c.

$$sb\hat{g} - C(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a,c\}, \{b,c\}\}\}$$

$$C(X) = \{X, \phi, \{c\}, \{a,c\}, \{b,c\}\}$$

Here the inverse image of an open set $\{a\}$ in (Y,σ) is $\{a\}$ which is sb \hat{g} -closed but not closed in (X,τ) . Hence, f is contra sb \hat{g} -continuous but not contra continuous.

b) Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X, \phi, \{a\},\{c\},\{a,c\},\{b,c\}\} \text{ and } \sigma = \{Y, \phi, \{b\}\}$ Define a function $f: (X,\tau) \to (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c.

$$sb\hat{g} - C(X) = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}\}$$

$$\alpha - C(X) = \{X, \phi, \{a\}, \{a,b\}, \{b,c\}\}$$

Here the inverse image of an open set $\{b\}$ in (Y,σ) is $\{b\}$ which is sb \hat{g} -closed but not α -closed in (X,τ) . Hence, f is contra sb \hat{g} -continuous but not contra α -continuous.

Theorem 3.5:

- a) Every contra sbĝ-continuous function is contra b-continuous function
- Every contra sbĝ-continuous function is contra sgcontinuous function
- c) Every contra sbĝ-continuous function is contra gscontinuous function
- Every contra sbĝ-continuous function is contra gbcontinuous function
- e) Every contra sbĝ-continuous function is contra g*b-continuous function
- f) Every contra sbĝ-continuous function is contra bĝcontinuous function.

Proof:

- a) Let V be any open set in (Y,σ) . Since f is contra sb\hat{g}-continuous, $f^{-1}(V)$ is sb\hat{g}-closed in (X,τ) . By Proposition 3.11 in [3], $f^{-1}(V)$ is b-closed in (X,τ) . Hence, f is contra b-continuous function.
- b) Let V be any open set in (Y,σ) . Since f is contra sbĝ-continuous, $f^{-1}(V)$ is sbĝ-closed in (X,τ) . By Proposition 3.13 in [3], $f^{-1}(V)$ is sg-closed in (X,τ) . Hence, f is contra sg-continuous function.
- c) Let V be any open set in (Y,σ) . Since f is contra sbĝ-continuous, $f^{-1}(V)$ is sbĝ-closed in (X,τ) . By Proposition 3.15 in [3], $f^{-1}(V)$ is gs-closed in (X,τ) . Hence, f is contra gs-continuous function.
- d) Let V be any open set in (Y,σ) . Since f is contra sbĝ-continuous, $f^{-1}(V)$ is sbĝ-closed in (X,τ) . By

Proposition 3.17 in [3], $f^{-1}(V)$ is gb-closed in (X,τ) . Hence, f is contra gb-continuous function.

- e) Let V be any open set in (Y,σ) . Since f is contra sb \hat{g} -continuous, $f^{-1}(V)$ is sb \hat{g} -closed in (X,τ) . By Proposition 3.21in [3], $f^{-1}(V)$ is g*b-closed in (X,τ) . Hence, f is contra g*b-continuous function.
- f) Let V be any open set in (Y,σ) . Since f is contra sb \hat{g} -continuous, $f^{-1}(V)$ is sb \hat{g} -closed in (X,τ) . By Proposition 3.23 in [3], $f^{-1}(V)$ is b \hat{g} -closed in (X,τ) . Hence, f is contra b \hat{g} -continuous function.

The converse of the above theorem need not be true as shown in the following example.

Example 3.6:

a) Let
$$X = Y = \{a,b,c\}$$
 with topologies $\tau = \{X, \phi, \{a,b\}, \{c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}\}$ Define a function $f: (X,\tau) \rightarrow (Y,\sigma)$ by $f(a) = a$, $f(b) = b$, $f(c) = c$.

$$\begin{split} sb\hat{g} - C(X) &= \{X, \phi, \{c\}, \{a, b\}\} \\ b - C(X) &= \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\} \end{split}$$

Here the inverse image of an open set $\{a\}$ in (Y,σ) is $\{a\}$ which is b-closed but not sb \hat{g} -closed in (X,τ) . Hence, f is contra b-continuous but not contra sb \hat{g} -continuous.

b) Let
$$X = Y = \{a,b,c\}$$
 with topologies $\tau = \{X, \phi, \{a\}, \{b,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}, \{a,c\}\}$ Define a function $f: (X,\tau) \rightarrow (Y,\sigma)$ by $f(a) = a$, $f(b) = b$, $f(c) = c$.

$$sb\hat{g} - C(X) = \{X, \phi, \{a\}, \{b, c\}\}\$$

$$sg - C(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\$$

Here the inverse image of the open sets $\{a,b\}$ and $\{a,c\}$ in (Y,σ) are $\{a,b\}$ and $\{a,c\}$ which are sg-closed but not sbĝ -closed in (X,τ) . Hence, f is contra sg-continuous but not contra sbĝ-continuous function.

c) Let
$$X = Y = \{a,b,c,d\}$$
 with topologies $\tau = \{X, \phi, \{a\},\{a,c\},\{a,b,d\}\}$ and $\sigma = \{Y, \phi, \{b\},\{a,b\},\{b,c,d\}\}$ Define a function $f: (X,\tau) \rightarrow (Y,\sigma)$ by $f(a) = d$, $f(b) = b$, $f(c) = c$, $f(d) = a$.

$$\begin{split} sb\hat{g}\text{-}C(X) &= \{X, \phi, \{b\}, \{c\}, \{d\}, \{b, c\}, \{c, d\}, \{b, d\}, \{b, c, d\}\} \\ gs\text{-}C(X) &= \{X, \phi, \{b\}, \{c\}, \{d\}, \{b, c\}, \{c, d\}, \{b, d\}, \{c, d\}, \{$$

 ${a,b,c},{a,c,d},{b,c,d}$

Here the inverse image of an open set $\{b,c,d\}$ in (Y,σ) is $\{a,b,c\}$ which is gs-closed set but not sb \hat{g} -closed set in (X,τ) . Hence, f is contra gs-continuous but not contra sb \hat{g} -continuous function.

```
d) Let X = Y = \{a,b,c,d\} with topologies \tau = \{X, \phi, \{a\}, \{a,c\}, \{a,b,d\}\} \text{ and } \sigma = \{Y, \phi, \{b\}, \{a,b\}, \{b,c,d\}\} Define a function f: (X,\tau) \to (Y,\sigma) by f(a) = c, f(b) = b, f(c) = a, f(d) = d. sb\hat{g}-C(X)=\{X,\phi,\{b\},\{c\},\{d\},\{b,c\},\{c,d\},\{b,d\}, \{b,c,d\}\} gb-C(X)=\{X,\phi,\{b\},\{c\},\{d\},\{b,c\},\{c,d\},\{b,d\}, \{a,b,c\},\{a,c,d\},\{b,c,d\},\{a,b,d\}\}
```

Here the inverse image of an open set $\{b,c,d\}$ in (Y,σ) is $\{a,b,d\}$ which is gb-closed but not sb \hat{g} -closed in (X,τ) . Hence, f is contra gb-continuous but not contra sb \hat{g} -continuous.

```
e) Let X = Y = \{a,b,c\} with topologies \tau = \{X, \phi, \{a,c\}\} and \sigma = \{Y, \phi, \{a\}, \{a,b\}, \{a,c\}\} Define a function f: (X,\tau) \to (Y,\sigma) by f(a) = b, f(b) = a, f(c) = c. sb\hat{g} - C(X) = \{X,\phi,\{b\}\} gb - C(X) = \{X,\phi,\{a\},\{b\},\{c\},\{a,b\},\{b,c\}\}
```

Here the inverse image of the open sets $\{a,b\}$ and $\{a,c\}$ in (Y,σ) are $\{a,b\}$ and $\{b,c\}$ which are g*b-closed but not sb \hat{g} -closed in (X,τ) . Hence, f is contra g*b-continuous but not contra sb \hat{g} -continuous.

f) Let
$$X = Y = \{a,b,c,d\}$$
 with topologies $\tau = \{X, \phi, \{b\}, \{a,b\}, \{b,c,d\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,c\}, \{a,b,d\}\}$ Define a function $f: (X,\tau) \rightarrow (Y,\sigma)$ by $f(a) = a, f(b) = b, f(c) = c, f(d) = d.$ sb \hat{g} -C(X)= $\{X,\phi,\{a\},\{c\},\{d\},\{a,c\},\{a,d\},\{c,d\}, \{a,c,d\}\}\}$ b \hat{g} -C(X)= $\{X,\phi,\{a\},\{c\},\{d\},\{c,d\},\{a,d\},\{a,c\}, \{a,b,c\},\{a,c,d\},\{a,b,d\}\}\}$

Here the inverse image of an open set $\{a,b,d\}$ in (Y,σ) is $\{a,b,d\}$ which is bg-closed but not sbg -closed in (X,τ) . Hence, f is contra bg-continuous but not contra sbg-continuous.

Theorem 3.7: If $f: (X,\tau) \to (Y,\sigma)$ is contra semi-continuous function if and only if f is contra sb \hat{g} -continuous function. Proof: Let V be any open set in (Y,σ) . Since f is contra semi-continuous, $f^{-1}(V)$ is semi-closed in (X,τ) . Since from Proposition 3.6 in [3], $f^{-1}(V)$ is sb \hat{g} -closed in (X,τ) . Hence, f is contra sb \hat{g} -continuous.

Conversely, Let V be any open set in (Y,σ) . Since f is contra sb \hat{g} -continuous, $f^{-1}(V)$ is sb \hat{g} -closed in (X,τ) . Since from Proposition3.6 in [3], $f^{-1}(V)$ is semi-closed in (X,τ) . Hence, f is contra semi-continuous.

Remark 3.8: The following diagram shows the relationships of contra sbĝ-continuoous function with other known existing functions.

IJERTV5IS020169 137



1. Contra sbĝ-continuous 2. Contra continuous

3. Contra α-continuous

4. Contra b-continuous

5. Contra sg-continuous

6. Contra gs-continuous

7. Contra gb-continuous

8. Contra g*bcontinuous

9.Contra bĝ-continuous

Theorem 3.9: The following are equivalent for a function f: $(X,\tau) \rightarrow (Y,\sigma),$

- a. f is contra sbĝ-continuous function
- b. For every closed subset F of Y, $f^{-1}(F)$ is sb \hat{g} open in X
- For each $x \in X$ and each closed subset F of Y with $f(x) \in F$ there exists a sb \hat{g} -open set U of X with $x \in U$, $f(U) \subseteq F$.

Proof:

(a) \longrightarrow (b):

Let F be any closed set in Y. Then Fc is an open set in Y. Since f is contra sbĝ-continuous, $f^{-1}(F^c)$ is sbĝclosed set in X. Then $[f^{-1}(F)]^c$ is sb \hat{g} -closed set in X. Therefore $f^{-1}(F)$ is sbg-open in X.

Let F be an open set in Y. Then F^c is closed set in Y. By (b), $f^{-1}(F^c)$ is sbg-open set in X. Then $[f^{-1}(F)]^c$ is sbĝ-open set in X. So $f^{-1}(F)$ is sbĝ-closed set in X. Therefore, f is contra sbg-continuous function

(b) \longrightarrow (c):

Let F be any closed subset of Y and let $f(x) \in F$ where $x \in X$. Then by (b), $f^{-1}(F)$ is sbg-open in X. Also, x $\in f^{-1}(F)$. Take $U = f^{-1}(F)$. Then U is a sbg-open set containing x and $f(U) \subseteq F$.

(c) \longrightarrow (b):

Let F be any closed subset of Y. If $x \in f^{-1}(F)$ then $f(x) \in F$. By (c), there exists a sbg-open set U_x of X with $x \in U_x$ such that $f(U_x) \subseteq F$. Then $f^{-1}(F) = \bigcup \{ U_x : x \}$ $\in f^{-1}(F)$ }. Hence, $f^{-1}(F)$ is $sb\hat{g}$ – open in X.

Theorem 3.10: If X is $T_{sb\hat{g}}$ – space, then for the function f: $(X,\tau) \rightarrow (Y,\sigma)$, the following statements are equivalent.

- i. f is contra continuous function
- ii. f is contra sbĝ-continuous function.

Proof:

(i) (ii):

Let V be any open set in Y. Since f is contra continuous, $f^{-1}(V)$ is closed in X. From [3] proposition 3.4, $f^{-1}(V)$ is sbg-closed in X. Therefore, f is contra sbgcontinuous.

(ii)**→**(i):

Let V be any open set in Y. Since f is contra sbgcontinuous, $f^{-1}(V)$ is sbĝ-closed in X. Also, Since X is $T_{sb\hat{g}}$ – space, $f^{-1}(V)$ is closed in X. Therefore, f is contra continuous.

Theorem 3.11: If a function $f: (X,\tau) \to (Y,\sigma)$ is contra sbĝcontinuous and X is $T^{\alpha}_{sb\hat{g}}$ – space, then f is contra continuous.

Proof: Let V be any open set in Y. Since f is contra sbgcontinuous, $f^{-1}(V)$ is sbg-closed in X. Also, Since X is $T^{\alpha}_{sb\hat{g}}$ - space, $f^{-1}(V)$ is α -closed in X. Therefore, f is contra α-continuous.

Theorem 3.12: Let $f: (X,\tau) \to (Y,\sigma)$ be a function then the following statements are equivalent,

- i. f is sbg-continuous function
- For each point $x \in X$ and each open set of Y with ii. $f(x) \in V$, there exist a sbĝ-open set U of X such that $x \in U$, $f(U) \subseteq V$.

Proof:

(i) (ii):

Let $f(x) \in V$, then $x \in f^{-1}(V)$. Since f is sbĝcontinuous, $f^{-1}(V)$ is sbŷ-open in X. Let $U = f^{-1}(V)$, then $x \in U$ and $f(U) \subseteq V$.

Let V be any open set in Y and $x \in f^{-1}(V)$. Then $f(x) \in V$. From (ii), there exists a sb \hat{g} -open set U_x of X such that $x \in U_x \subseteq f^{-1}(V)$ and $f^{-1}(V) = \bigcup \{ U_x \}$. Then $f^{-1}(V)$ is sbĝ-open in X. Hence, f is sbĝ-continuous.

Theorem 3.13: If a function f: $(X,\tau) \to (Y,\sigma)$ is contra sbĝcontinuous and Y is regular, then f is sbĝcontinuous.

Proof: Let $x \in X$ and V be an open set in Y with $f(x) \in V$. Since Y is regular, there exists an open set W in Y such that $f(x) \in W$ and $Cl(W) \subseteq V$. Since f is contra sbĝcontinuous and Cl(W) is a closed subset of Y with $f(x) \in$ Cl(W). By theorem 3.9, there exist a sbg-open set U of X with $x \in U$ such that $f(U) \subseteq Cl(W)$. That is, $f(U) \subseteq V$. By theorem 3.12, f is sbg-continuous.

Definition 3.14: A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be strongly sbg-continuous if $f^{-1}(V)$ is closed in (X,τ) for every sb \hat{g} -closed set V in (Y,σ) .

Example 3.15: Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}, \{a,c\}\}$

Define a function $f: (X,\tau) \to (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c.

$$sb\hat{g} - C(Y) = \{Y, \phi, \{b\}, \{c\}, \{b,c\}\}\$$

Here the inverse image of sb \hat{g} -closed sets $\{b\},\{c\}$ and $\{b,c\}$ in (Y,σ) are $\{b\},\{c\}$ and $\{b,c\}$ respectively which are closed in (X,τ) . Hence, f is strongly sb \hat{g} -continuous.

Definition 3.16: A function $f: (X,\tau) \to (Y,\sigma)$ is said to be perfectly sbĝ-continuous if $f^{-1}(V)$ is clopen in (X,τ) for every sbĝ-closed set V in (Y,σ) .

Example 3.17 : Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ and $\sigma = \{Y, \phi, \{a,c\}\}$ Define a function $f: (X,\tau) \to (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c.

$$sb\hat{g} - C(Y) = \{Y, \phi, \{b\}\}$$

Here the inverse image of sb \hat{g} -closed set $\{b\}$ in (Y,σ) is $\{b\}$ which is both open and closed in (X,τ) . Hence, f is perfectly sb \hat{g} -continuous.

Definition 3.18: A topological space (X,τ) is said to be sb \hat{g} -Hausdorff (or sb \hat{g} -T₂ space) if for each pair of distinct points x and y in X, there exists sb \hat{g} -open subsets U and V of X containing x and y respectively such that $U \cap V = \phi$.

Example 3.19: Let $X = \{a,b,c\}$ with a topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$

 $sb\hat{g} - O(X) = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\}\}\}$

Clearly (X,τ) is sb \hat{g} -Hausdorff space.

Theorem 3.20: Let $f: (X,\tau) \to (Y,\sigma)$ be surjective, closed and contra sbg-continuous. If X is $T_{sbg} - space$, then Y is locally indiscrete.

Proof: Let V be any open set in (Y,σ) . Since f is contra sbg-continuous, $f^{-1}(V)$ is sbg-closed in (X,τ) . Also, Since X is T_{sbg} – space, $f^{-1}(V)$ is closed in (X,τ) . By hypothesis, f is closed and surjective, $f(f^{-1}(V)) = V$ is closed in (Y,σ) . Hence, Y is locally indiscrete.

Theorem 3.21: If a function $f: (X,\tau) \to (Y,\sigma)$ is continuous and (X,τ) is locally indiscrete space, then f is contra sb \hat{g} -continuous.

Proof: Let V be any open set in (Y,σ) . Since f is continuous, $f^{-1}(V)$ is open in (X,τ) . Since X is locally indiscrete, $f^{-1}(V)$ is closed in (X,τ) . By Proposition 3.4 in [3], $f^{-1}(V)$ is sbĝ-closed in (X,τ) . Hence, f is contra sbĝ-continuous.

Theorem 3.22: If a function $f: (X,\tau) \to (Y,\sigma)$ is contra sbg-continuous, injective and Y is Urysohn space, then the topological space X is sbg-Hausdorff.

Proof: Let x_1 and x_2 be two distinct points of X. Suppose $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is injective, $x_1 \neq x_2$ then $y_1 \neq y_2$. Since Y is Urysohn, there exist open sets V_1 and V_2 containing y_1 and y_2 respectively in Y such that $Cl(V_1) \cap Cl(V_2) = \emptyset$. Since f is contra sbĝ-continuous. By theorem 3.12, there exists sbĝ-open sets U_1 and U_2 containing x_1 and x_2 respectively in X such that $f(U_1) \subseteq Cl(V_1)$ and $f(U_2) \subseteq Cl(V_2)$. Since $Cl(V_1) \cap Cl(V_2) = \emptyset$, $U_1 \cap U_2 = \emptyset$. Hence, X is sbĝ-Hausdorff space.

Theorem 3.23: Let $f: (X,\tau) \to (Y,\sigma)$ be a function and $g: X \to X \times Y$ be a graph function of f defined by g(x) = (x,f(x)) for every $x \in X$. If g is contra sb \hat{g} -continuous, then f is contra sb \hat{g} -continuous.

Proof: Let V be closed subset of Y. Then $X \times V$ is a closed subset of $X \times Y$. Since g is contra sbĝ-continuous, $g^{-1}(X \times V)$ is sbĝ-open subset of X. Also, $g^{-1}(X \times V) = f^{-1}(V)$ which is sbĝ-open subset of X. Hence, f is contra sbĝ-continuous.

Definition 3.24: A space X is said to be locally sbg-indiscrete if every sbg-open set of X is closed in X.

Example 3.25: Let $X = \{a,b,c\}$ with topology $\tau = \{X, \phi, \{c\}, \{a,b\}\}$

 $sb\hat{g} - O(X) = \{X, \phi, \{c\}, \{a,b\}\}\$

Here every sbĝ-open set in X is closed in X. Hence, X is locally sbĝ-indiscrete space.

Theorem 3.26: If $f: (X,\tau) \to (Y,\sigma)$ is contra sbg-continuous with X as locally sbg-indiscrete, then f is continuous.

Proof: Let V be any open set in (Y,σ) . Then $f^{-1}(V)$ is sb \hat{g} -closed in X. Since X is locally sb \hat{g} -indiscrete space, $f^{-1}(V)$ is open in X. Thus, f is continuous.

4. CONTRA sbĝ-IRRESOLUTE FUNCTIONS

Definition 4.1: A function $f: (X,\tau) \to (Y,\sigma)$ is called contra sbĝ-irresolute, if $f^{-1}(V)$ is sbĝ-closed in (X,τ) for every sbĝ-open set V in (Y,σ) .

Example 4.2: Let $X = Y = \{a,b,c\}$ with topologies

 $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}\$ and $\sigma = \{Y, \phi, \{b\}\}\$

Define a function f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = a, f(b) = c, f(c) = b.

 $sb\hat{g} - C(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a,c\}, \{b,c\}\}\}$

 $sb\hat{g} - O(Y) = \{Y, \phi, \{b\}, \{b,c\}, \{a,b\}\}$

Here the inverse image of sb \hat{g} -open set $\{b\}, \{b,c\}$ and $\{a,b\}$ in (Y,σ) are $\{c\}, \{b,c\}$ and $\{a,c\}$ respectively which are sb \hat{g} -closed set in (X,τ) . Hence, f is contra sb \hat{g} -irresolute function.

Remark 4.3: The following example shows that the concepts of sbĝ-irresolute function and contra sbĝ-irresolute are independent of each other.

Example 4.4:

1. Let
$$X = Y = \{a,b,c,d\}$$
 with topologies $\tau = \{X, \phi, \{a\}, \{a,c\}, \{a,b,d\}\} \text{ and } \sigma = \{Y, \phi, \{b\}, \{a,b\}, \{b,c,d\}\}$ Define a function $f: (X,\tau) \to (Y,\sigma)$ by $f(a) = b$, $f(b) = a$, $f(c) = c$, $f(d) = d$.
$$sb\hat{g}-C(X)=\{X,\phi,\{b\},\{c\},\{d\},\{b,c\},\{c,d\},\{b,d\},\{b,c,d\}\}$$

$$sb\hat{g}-O(Y)=\{Y,\phi,\{a\},\{c\},\{d\},\{a,c\},\{a,d\},\{c,d\},\{a,c,d\}\}$$

$$sb\hat{g}-C(Y)=\{Y,\phi,\{b\},\{a,b\},\{b,c\},\{b,d\},\{a,b,c\},\{a,b,d\},\{b,c,d\}\}$$

Clearly f is contra sb \hat{g} -irresolute but not sb \hat{g} -closed set {b}, {a,b}, {b,c}, {b,d}, {a,b,c}, {a,b,d} and {b,c,d} in Y are {a}, {a,b}, {a,c}, {a,d}, {a,b,c}, {a,b,d} and {a,c,d} respectively which are not sb \hat{g} -closed in (X,τ) .

2. Let
$$X = Y = \{a,b,c\}$$
 with topologies $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}\}$ Define a function $f: (X,\tau) \rightarrow (Y,\sigma)$ by $f(a) = b$, $f(b) = a$, $f(c) = c$.

$$\begin{split} sb\hat{g} - C(X) &= \{X, \phi, \{b\}, \{c\}, \{a,c\}, \{b,c\}\} \\ sb\hat{g} - O(Y) &= \{Y, \phi, \{a\}, \{a,b\}, \{a,c\}\} \\ sb\hat{g} - C(Y) &= \{Y, \phi, \{b\}, \{c\}, \{b,c\}\} \end{split}$$

Here, the inverse image of sb \hat{g} -open sets $\{a\},\{a,b\}$ in (Y,σ) are $\{a\},\{a,b\}$ which are not sb \hat{g} -closed set in (X,τ) . Hence, the f is sb \hat{g} -irresolute but not contra sb \hat{g} -irresolute.

Theorem 4.5: Every contra sbĝ-irresolute function is contra sbĝ-continuous.

Proof: Let V be any open set in (Y,σ) . By proposition 3.4 in [3], V is sb \hat{g} -open in Y, Since f is contra sb \hat{g} -irresolute, V is sb \hat{g} -closed in (X,τ) . Hence, f is contra sb \hat{g} -continuous.

The converse of the above theorem need not be true as shown in the following example.

Example 4.6: Let
$$X = Y = \{a,b,c\}$$
 with topologies $\tau = \{X, \phi, \{a\}, \{c\}, \{a,c\}, \{b,c\}\} \text{ and } \sigma = \{Y, \phi, \{a\}\} \}$ Define a function $f: (X,\tau) \to (Y,\sigma)$ by $f(a) = a$, $f(b) = b$, $f(c) = c$.
$$sb\hat{g} - C(X) = \{X,\phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}\} \}$$

$$sb\hat{g} - O(Y) = \{Y,\phi, \{a\}, \{a,b\}, \{a,c\}\} \}$$

Here, the inverse image of sb \hat{g} -open set $\{a,c\}$ in (Y,σ) are $\{a,c\}$ which is not sb \hat{g} -closed set in (X,τ) . Hence, the f is contra sb \hat{g} -continuous but not contra sb \hat{g} -irresolute.

Remark 4.7: The following example shows that the concepts of sbĝ-continuous and contra sbĝ-continuous are independent of each other.

Example 4.8:

1. Let $X = Y = \{a,b,c,d\}$ with topologies

$$\begin{array}{lll} \tau &=& \{X, & \varphi, & \{a\}, \{a,c\}, \{a,b,d\}\} & \text{and} & \sigma &=& \{Y, & \varphi, \{b\}, \{a,b\}, \{b,c,d\}\} \\ \text{Define a function f: } (X,\tau) &\to& (Y,\sigma) \text{ by } f(a) = b, \text{ } f(b) = a, \text{ } f(c) \\ &=& d, f(d) = c. \\ \text{sb$\hat{g}-C(X)=} \{X,\varphi, \{b\}, \{c\}, \{d\}, \{b,c\}, \{c,d\}, \{b,d\}, \{b,c,d\}\} \end{array}$$

Since the inverse image of open sets $\{b\},\{a,b\}$ and $\{b,c,d\}$ in (Y,σ) are $\{a\},\{a,b\}$ and $\{a,c,d\}$ respectively which are not sbĝ-closed in (X,τ) , f is not contra sbĝ-continuous. Since the inverse image of closed sets $\{a\},\{c,d\}$ and $\{a,c,d\}$ in (Y,σ) are $\{b\},\{c,d\}$ and $\{b,c,d\}$ respectively which are sbĝ-closed in (X,τ) , f is sbĝ-continuous. Hence, f is sbĝ-continuous but not contra sbĝ-continuous.

2. Let
$$X = Y = \{a,b,c\}$$
 with topologies $\tau = \{X, \phi, \{b\}\}$ and $\sigma = \{Y, \phi, \{a,c\}\}$
Define a function $f: (X,\tau) \rightarrow (Y,\sigma)$ by $f(a) = a$, $f(b) = b$, $f(c) = c$. sb $\hat{g} - C(X) = \{X,\phi,\{a\},\{c\},\{a,c\}\}$

Since the inverse image of an open set {a,c} in Y is {a,c} which is sbĝ-closed in X, f is contra sbĝ-continuous. Also, since the inverse image of a closed set {b} in Y is {b} which is not sbĝ-closed in X, f is not sbĝ-continuous. Hence, f is contra sbĝ-continuous but not sbĝ-continuous.

5. PERFECTLY CONTRA sbg-IRRESOLUTE FUNCTION

Definition 5.1: A function $f: (X,\tau) \to (Y,\sigma)$ is called perfectly contra sb \hat{g} -irresolute function if $f^{-1}(V)$ is sb \hat{g} -clopen in (X,τ) for every sb \hat{g} -open set V in (Y,σ) .

Example 5.2: Let
$$X = Y = \{a,b,c\}$$
 with topologies $\tau = \{X, \phi, \{a\}, \{b,c\}\}$ and $\sigma = \{Y, \phi, \{a,b\}, \{c\}\}$
Define a function $f: (X,\tau) \to (Y,\sigma)$ by $f(a) = c$, $f(b) = a$, $f(c) = b$.

$$sb\hat{g} - O(X) = \{X, \phi, \{a\}, \{b, c\}\}\$$

 $sb\hat{g} - O(Y) = \{Y, \phi, \{c\}, \{a, b\}\}\$

Since the inverse images of all sb \hat{g} -open sets in (Y,σ) are sb \hat{g} -clopen set in (X,τ) , f is perfectly contra sb \hat{g} -irresolute function.

Theroem 5.3:

- Every perfectly contra sbĝ-irresolute map is contra sbĝ-irresolute map.
- 2) Every perfectly contra sbĝ-irresolute map is sbĝ-irresolute map.

Proof:

(1) and (2) directly follows from the definitions 2.4, 4.1 and 5.1.

The converse of the above theorem need not be true as shown in the following example.

Example 5.4:

1) Let
$$X = Y = \{a,b,c\}$$
 with topologies $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{b\}\}$ Define a function $f: (X,\tau) \rightarrow (Y,\sigma)$ by $f(a) = a$, $f(b) = c$, $f(c) = b$.

$$sb\hat{g} - O(X) = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\}\} \}$$

$$sb\hat{g} - O(Y) = \{Y, \phi, \{b\}, \{a,b\}, \{b,c\}\} \}$$

Since the inverse image of sb \hat{g} -open set $\{b\}$ in (Y,σ) is $\{c\}$ which is sb \hat{g} -closed set in (X,τ) but not sb \hat{g} -open set in X, f is contra sb \hat{g} -irresoulute but not perfectly contra sb \hat{g} -irresolute function.

2) Let
$$X = Y = \{a,b,c\}$$
 with topologies $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}, \{a,c\}\}$

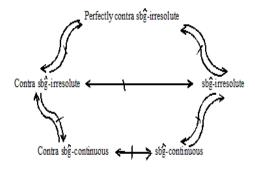
Define a function f: $(X,\tau) \to (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c

$$sb\hat{g} - O(X) = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$$

$$sb\hat{g} - O(Y) = \{Y, \phi, \{a\}, \{a,b\}, \{a,c\}\}$$

Since the inverse image of sb \hat{g} -open sets {a} and {a,b} in (Y,σ) are {a} and {a,b} respectively which are sb \hat{g} -open set in (X,τ) but not sb \hat{g} -closed set in (X,τ) , f is sb \hat{g} -irresolute but not perfectly contra sb \hat{g} -irresolute function.

Remark 5.5: From the above discussions and known results, we have the following diagram.



In this diagram, $A \rightarrow B$ means A implies B but not conversely. A $\leftarrow \searrow$ each other.

6. COMPOSITION OF TWO MAPS

The following example shows that the composition of two contra sbĝ-continuous function need not be contra sbĝ-continuous.

Example 6.1: Let
$$X = Y = Z = \{a,b,c\}$$
 with topologies $\tau = \{X, \phi, \{a\}, \{c\}, \{a,c\}, \{b,c\}\}, \sigma = \{Y, \phi, \{b\}\} \text{ and } \eta = \{Z, \phi, \{a,c\}\}$
Define a function f: $(X,\tau) \to (Y,\sigma)$ by $f(a) = a$, $f(b) = b$, $f(c) = c$ and g: $(Y,\sigma) \to (Z,\eta)$ by $g(a) = a$, $g(b) = b$, $g(c) = c$.

$$sb\hat{g} - C(X) = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}\}\}$$

$$sb\hat{g} - C(Y) = \{Y, \phi, \{a\}, \{c\}, \{a,c\}\}\$$

Clearly f and g are contra sb \hat{g} -continuous. But their composition is not contra sb \hat{g} -continuous, since $(g \circ f)^{-1}$ of an open set $\{a,c\}$ in (Z,η) is $\{a,c\}$ which is not sb \hat{g} -closed in (X,τ) . Hence, $g \circ f$ is not contra sb \hat{g} -continuous.

Theorem 6.2: The composition of two strongly sbg-continuous function is strongly sbg-continuous function. Proof: Let $f: (X,\tau) \to (Y,\sigma)$ and $g: (Y,\sigma) \to (Z,\eta)$ be strongly sbg-continuous functions. Let V be sbg-closed set in (Z,η) . Since g is strongly sbg-continuous, $g^{-1}(V)$ is closed in (Y,σ) . By Propositon 3.4 in [3], $g^{-1}(V)$ is sbg-closed in (Y,σ) . Since f is strongly sbg-continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is closed in (X,τ) . Therefore, $g \circ f$ is strongly sbg-continuous.

Theorem 6.3: The composition of two perfectly sbg-continuous function is perfectly sbg-continuous function. Proof: Let $f: (X,\tau) \to (Y,\sigma)$ and $g: (Y,\sigma) \to (Z,\eta)$ be perfectly sbg-continuous functions. Let V be sbg-closed set in (Z,η) . Since g is perfectly sbg-continuous, $g^{-1}(V)$ is clopen in (Y,σ) . By Propositon 3.4 in [3], $g^{-1}(V)$ is sbg-clopen in (Y,σ) . Since f is perfectly sbg-continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is clopen in (X,τ) . Therefore, $g \circ f$ is perfectly sbg-continuous.

The following example shows that the composition of two contra sbĝ-irresolute function need not be contra sbĝ-irresolute.

Example 6.4: Let
$$X = Y = \{a,b,c\}$$
 with topologies $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}, \sigma = \{Y, \phi, \{b\}\} \text{ and } \eta = \{Z, \phi, \{a,c\}\}$
Define a function $f: (X,\tau) \to (Y,\sigma)$ by $f(a) = a$, $f(b) = c$, $f(c) = b$ and $g: (Y,\sigma) \to (Z,\eta)$ by $g(a) = a$, $g(b) = b$, $g(c) = c$. $sb\hat{g} - C(X) = \{X,\phi,\{a\},\{b\},\{c\},\{a,c\},\{b,c\}\}$

$$sb\hat{g} - O(Y) = \{Y, \phi, \{b\}, \{b,c\}, \{a,b\}\}\$$

$$sb\hat{g}- O(Z) = \{Z, \phi, \{a,c\}.$$

Clearly f and g are contra sbĝ-irresolute function. But their composition is not contra sbĝ-irresolute, since $(g \circ f)^{-1}$ of an open set $\{a,c\}$ in (Z,η) is $\{a,c\}$ which is not sbĝ-closed in (X,τ) . Hence, $g \circ f$ is not contra sbĝ-continuous

Theorem 6.5: The composition of two perfectly contra sbg-irresolute function is perfectly contra sbg-irresolute function.

Proof: Let $f: (X,\tau) \to (Y,\sigma)$ and $g: (Y,\sigma) \to (Z,\eta)$ be perfectly contra sbĝ-irresolute functions. Let V be any sbĝ-open set in (Z,η) . Since g is perfectly contra sbĝ-irresolute, $g^{-1}(V)$ is sbĝ-clopen in (Y,σ) . Since f is perfectly contra sbĝ-irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is sbĝ-clopen in (X,τ) . Therefore, $g \circ f$ is perfectly contra sbĝ-irresolute.

Theorem 6.6: If a function $f: (X,\tau) \to (Y,\sigma)$ is strongly sbg-continuous function and $g: (Y,\sigma) \to (Z,\eta)$ is contra sbg-continuous function then $g \circ f: (X,\tau) \to (Z,\eta)$ is contra continuous.

Proof: Let V be any open set in (Z,η) . Since g is contra sbg-continuous, $g^{-1}(V)$ is sbg-closed in (Y,σ) . Since f is strongly sbg-continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is closed in (X,τ) . Hence, $g \circ f$ is contra continuous.

Theorem 6.7: If a function $f: (X,\tau) \to (Y,\sigma)$ is contra sb \hat{g} -irresolute function and $g: (Y,\sigma) \to (Z,\eta)$ is sb \hat{g} -irresolute function then $g \circ f: (X,\tau) \to (Z,\eta)$ is contra sb \hat{g} -irresolute.

Proof: Let V be any sbĝ-open set in (Z,η) . Since g is sbĝ-irresolute, $g^{-1}(V)$ is sbĝ-open in (Y,σ) . Since f is contra sbĝ-irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is sbĝ-closed in (X,τ) . Hence, $g \circ f$ is contra sbĝ-irresolute.

Theorem 6.8: If a function $f: (X,\tau) \to (Y,\sigma)$ is contra sbĝ-irresolute function and $g: (Y,\sigma) \to (Z,\eta)$ is sbĝ-continuous function then $g \circ f: (X,\tau) \to (Z,\eta)$ is contra sbĝ-continuous. Proof: Let V be any open set in (Z,η) . Since g is sbĝ-continuous, $g^{-1}(V)$ is sbĝ-open in (Y,σ) . Since f is contra sbĝ-irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is sbĝ-closed in (X,τ) . Hence, $g \circ f$ is contra sbĝ-continuous.

Theorem 6.9: If a function $f: (X,\tau) \to (Y,\sigma)$ is sb \hat{g} -irresolute function with Y as locally indiscrete space and $g: (Y,\sigma) \to (Z,\eta)$ is contra sb \hat{g} -continuous function then $g \circ f: (X,\tau) \to (Z,\eta)$ is sb \hat{g} -continuous.

Proof: Let V be any open set in (Z,η) . Since g is contra sbg-continuous, $g^{-1}(V)$ is sbg-open in (Y,σ) . But Y is locally sbg-indiscrete, $g^{-1}(V)$ is closed in (Y,σ) . By Proposition 3.4 in [3], $g^{-1}(V)$ is sbg-closed in (Y,σ) . Since f is sbg-irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is sbg-closed in (X,τ) . Hence, $g \circ f$ is contra sbg-continuous.

Theorem 6.10: If a function $f: (X,\tau) \to (Y,\sigma)$ is $sb\hat{g}$ -irresolute function and $g: (Y,\sigma) \to (Z,\eta)$ is contra $sb\hat{g}$ -continuous function then $g \circ f: (X,\tau) \to (Z,\eta)$ is contra $sb\hat{g}$ -continuous.

Proof: Let V be any open set in (Z,η) . Since g is contra sbĝ-continuous, $g^{-1}(V)$ is sbĝ-closed in (Y,σ) . Since f is sbĝ-irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is sbĝ-closed in (X,τ) . Hence, $g \circ f$ is contra sbĝ-continuous.

7. REFERENCES

- [1] D. Andrijevic, "On b-open sets", Mat. Vesnik., 48(1996), no. 1-2, 59-64.
- [2] S.P.Arya and T.M.Nour, "Characterizations of S-Normal spaces", Indian J.Pure Appl. Math., Vol 21(1990).
- [3] K.Bala Deepa Arasi and S.Navaneetha Krishnan, "On sbg-closed sets in Topological Spaces", International Journal of Mathematical Archieve-6(10), 2015, 115-121.
- [4] K.Bala Deepa Arasi and S.Navaneetha Krishnan, "On sbg-continuous functions and sbg-homeomorphisms in Topological Spaces", International Research Journal of Mathematics, Engineering and IT, Vol.3, Issue 1, January 2016.
- [5] P.Bhattacharya and B.K.Lahiri, Semi-generalized closed sets in Topology, Indian J. Math., 29(1987), 375-382.
- [6] J.Dontchev, T.Noiri, "Contra Semi-continuous functions", Math. Pannon 10(2), 1999, 159-168.
- [7] J.Dontchev, "Contra Continuous functions and strongly S-closed spaces", International Journal of Math Science, 19(1996), 3.3-310.
- [8] S.Jafari and T.Noiri, "Contra α-continuous functions between Topological Spaces", Iranian International Journal of Science, 2(2), 2001, 153-167.
- [9] Metin Akdag, Alkan Ozkan, "Some Properties of contra gbcontinuous functions", Journal of New results in Science I (2012), 40-49
- [10] N Levine, "Semi-open sets and semi-continuity in topological spaces", Amer.Math. Monthly, 70(1963), 36-41.
- [11] ONjastad, "On some classes of nearly open sets", Pacific J Math., 15(1965),
- [12] J.H.Park, "Strongly θ b-continuous functions", Acta Math Hungar, 110, No.4, 347-359, 2006.
- [13] O.Ravi, M.Lellis Thivagar & R.Latha, "Properties of Contra sgcontinuous maps", Gen. Math. Notes, Vol.4, No.1, May 2011, pp 70-84
- [14] Stone.M,Application of the theory of Boolean rings to general topology, Trans. Amer. Maths. Soc., 41(1937) 374-481.
- [15] R.Subasree and M.Maria Singam, "On contra bĝ-continuous functions in Topological spaces", International Journal of Mathematical Archieve-5(12), 2014, 66-74.
- [16] D.Vidhya and R.Parimelazhagan, "g*b-Homeomorphisms and Contra g*b-continuous maps in topological spaces", International Journal of Computer Applications, Vol.58-No.14, November 2012.