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Abstract— The aim of this paper is to   introduce   and study  a 

new  class c0 ((Smn , || . ||mn), 
–

 , u
–

 )  of double sequences with 

their terms in a normed space S as a  generalization of the 

familiar sequence space c0 . We investigate the condition in 

terms of  
–

   and u
–

  so that a class is contained in or equal to 

another class of same kind and thereby derive the conditions of 

their equality. We further explore some of the preliminary 

results that characterize the linear  topological   structures  of  

the space  c0 ((Smn , || . ||mn), 
–

 , u
–

 ) when topologized it  with 

suitable natural  paranorm . 

Keywords: Sequence space, Double sequence, 

Paranormed space, GK-space. 

 

I.INTRODUCTION 

We begin with recalling some notations and basic 

definitions that are used in this paper.  

Let S be a normed space over C  , the field of  complex    

numbers.  Let  (S) denotes  the linear space of all 

sequences  s
–

  = (sk  ) with sk   S , k   1 with  usual 

coordinate wise operations .We shall denote  (C) by  . 

Any subspace S of  is then called a sequence space. A 

normed space valued sequence space or a generalized 

sequence space is a linear space of sequences with their 

terms in a normed space.  Several workers like   Kamthan 

and Gupta [6], Khan [7],  Kolk [8], Köthe [9], Maddox [11], 

Malkowski and Rakocevic  [13], Pahari [16,17,18], Ruckle  

[21]  etc. have introduced and studied some properties of 

vector and scalar valued single sequence spaces, when 

sequences are taken from a Banach space.  

        The theory of single sequence spaces has also been 

extended to the spaces of double sequences and studied by 

several workers. Boos Leiger [3], Gupta and Kamthan [4], 

Milovidov and Povolotzki [14], Morics [15], Rao [20]  and 

many others   have made their significant contributions and 

enriched the theories in this direction. In the recent years, 

Savas [22], Subramanian et al [23] and many others have 

introduced and studied various types of double sequence 

spaces using orlicz function. 

   The notion of convergence of   a single sequence (an) 

leads to various notions of convergence for a double 

sequence (amn) by using many senses. The double sequence 

(amn) in various sequence spaces c0, c, , p depending upon 

the mode of m and n tending to infinity lead to several 

spaces, see Maddox [12]. 

         A paranormed space (S, G) is a linear space S with zero 

element together with a function G : S  R+  (called  a 

paranorm on S) which satisfies the following axioms: 

   PN1:  G () = 0;  PN2: G () = G (–)  for all   S; 

            PN3: G ( +  )   G () + G ( )  for all ,   S; and 

             PN4: Scalar multiplication is continuous.       

        Note that the continuity of scalar multiplication is  

         equivalent to    

         (i)   if  G (n) → 0  and   n  as     n → ∞, then  

                G (n n)  0 as  n → ∞ , and  

          (ii)  if n  0 as n  and   be any element in S, then   

                 G (n )  0, see Wilansky [24]. 

            A paranorm is called total if    G () = 0 implies  = 

 The concept of paranorm is closely related to linear metric 

space; see Wilansky [24] and its studies on sequence spaces 

were initiated by Maddox [10] and many others. Basariv and 

Altundag [1], Bhardwaj and Bala  [2], Khan [7], Parasar and 

Choudhary [19],   and many others further studied various 

types of  paranormed sequence spaces . 

Concerning  K–property of scalar sequence  spaces, see 

Kamthan and Gupta [6], GAK–space have been defined for 

vector valued sequence spaces and also they are defined for 

Banach space valued function  space, see Gupta and 

Patterson [5]. We now introduce the following definition for 

double sequence spaces: 

Let V(Smn) be a class of sequences { s
–

 = (smn), smn  Smn ; m, 

n  1}.The topological sequence space (V(Smn), ) equipped 

with the linear topology   is said to be a GK-space if the 

map Pij : V(Smn)  Sij, defined by  Pij (s
–

) = sij is continuous 

for each i, j  1. 
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II.THE CLASS c0 ((Smn , || . ||mn), 
–

 , u
–

 ) OF DOUBLE 

SEQUENCES 

Let u
–

 = (umn) and  v
–

 = (vmn) be any double sequences of 

strictly positive real numbers and 
–
= (mn) and 

–
 = (mn) be 

double sequences of non-zero complex numbers. Let  (Smn, || 

. ||mn) ,m, n  1 be normed space over the field C of complex 

numbers with zero element .We now introduce and study 

the following class of Banach space valued double 

sequences: 

c0 ((Smn , || . ||mn), 
–

 , u
–

 )  = {s
–

 = (smn): smn  Smn, m, n  1, and 

 || mn smn ||
umn

mn
  0 as m + n  }.   

Further, by u
–

 = (umn)   ,  wemean sup umn <   We 

denote A() = max(1, ||) and the zero  element of this  class 

by  
–

  = (mn) for all m,n . 

III. SOME CONTAINMENT RELATIONS 

In this section   we investigate the conditions in terms of u
–

  

and  
–

, so that a class  c0 ((Smn , || . ||mn), 
–

 , u
–

 ) is contained in 

or equal to another class of same kind and thereby derive the 

conditions of their equality.  

Theorem 3.1: For any 
–

 = (mn), c0 ((Smn , || . ||mn), 
–

 , u
–

 )   

  c0 ((Smn , || . ||mn), 
–

 , v
–

 ) if and only if  
lim inf

m + n  
  

vmn

 umn
 > 

0. 

Proof: For the sufficiency of the condition, suppose that  

the condition hold, and  s
–

 = (smn)  c0 ((Smn , || . ||mn), 
–

 , u
–

 ) . 

Then there exists  a constant K > 0 such that    vmn > K umn for 

 all 

 sufficiently  large  values of m,n. Further || mn smn  ||
umn

mn
  < 1 

for  all sufficiently large values of m,n and so  

 || mn smn ||
umn

mn
     || mn smn ||

umn

mn
 )

K 
for all sufficiently large 

values of m,n  which implies that s
–

  c0 ((Smn , || . ||mn), 
–

 , v
–

 

). Hence  

 c0 ((Smn , || . ||mn), 
–

 , u
–

 )   c0 ((Smn , || . ||mn), 
–

 , v
–

 ).  

For the necessity of the condition suppose the inclusion 

holds, but 
lim inf

m + n  
 

vmn

 umn
 = 0. Then there exist 

subsequences (m(k)) of (m) and (n(k)) of (n) respectively 

such that   

k vm(k) n(k) < u m(k) n(k), k  1. 

   Now taking  zmn  Smn with ||zmn||mn = 1, we define a 

sequence s
–

 = (smn) by 

smn  = 




–1

mn
   k 

–1/ umn
  zmn ‚ m = m(k) ‚  n = n(k) ‚ k  1 and

‚ otherwise.
  

 Then we see that s
–

  c0 ((Smn , || . ||mn), 
–

 , u
–
 ) . Since    

 ||  m(k) n(k) s m(k) n(k) ||
um(k)n(k)

m(k)n(k)
  = 

1

k
, k 1  and   |mn smn|

v
mn

mn
 = 

, otherwise. But for each k  1, 

  ||  m(k) n(k)   s m(k) n(k) ||
um(k)n(k)

m(k)n(k)
 = k

 –vm(k) n(k)
/ 

um(k) n(k)  

                                                                         
> k 

–1/k 
> e

–1/2
 

 shows that s
–

  c0 ((Smn , || . ||mn), 
–

 , u
–

 ) , a 

contradiction. This cmpletes the proof. 

        Theorem 3.2:  For any 
–

 = (mn) , c0 ((Smn , || . ||mn), 
–

 , v
–

 

)  c0 ((Smn , || . ||mn), 
–

 , u
–
 ) if and only if 

            
lim sup

m + n  
     

vmn

 umn
 < .  

          Proof: 

          Let the condition hold, and s
–

 = (smn)  c0 ((Smn , || . 

||mn), 
–

 , v
–

 ) . Then  there exists a constant L > 0  such 

that vmn < L umn for all sufficiently large values of m,n. 

Further || mn  smn  ||
umn

mn
   0 as m + n  together 

with  

          || mn smn  ||
umn

mn
   (|| mn smn ||

vmn

mn
)

1/L
for all sufficiently large 

values of m, n implies that  s
–

  c0 ((Smn , || . ||mn), 
–

 , u
–
 

)  and hence   

             c0 ((Smn , || . ||mn), 
–

 , v
–

 ) c0 ((Smn , || . ||mn), 
–

 , u
–

 . 

 Conversely let the inclusion hold but   
lim sup

m + n  
  

vmn

 umn
  = Then there exists subsequences (m(k)) of 

(m) and (n(k)) of (n) respectively for each k 1;  

            v m(k) n(k) < k u m(k) n(k). 

 Thus for zmn  Smn with ||zmn||mn = 1 the sequence 

             s
–

 = (smn) defined as 

smn  = 




–1

mn
   k –1/vmn z

mn ‚ m = m(k) ‚  n = n(k) ‚ k  1 and

‚ otherwise.
  

 is in c0 ((Smn , || . ||mn), 
–

 , u
–
 ) but for each k  1,  

             ||  m(k) n(k) s m(k) n(k)  ||
um(k)n(k)

m(k)n(k)
   =  k–vm(k) n(k)/um(k) n(k)          

                          > k
 –1/k

  

                           > e
–1/2

. 

              This shows that s
–

  c0 ((Smn ,||. ||mn), 
–

 , u
–

 ),  

           a contradiction. This completes the proof. 
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           Theorem 3.3: For any 
–

 = (mn),c0 ((Smn , || . ||mn), 
–

 , u
–

 

)  = c0 ((Smn , || . ||mn), 
–

 , v
–

 )  if and only if 

            0  <   
lim inf

m + n  
  

vmn

 umn
    

lim sup

m + n  
  

vmn

 umn
  < .                

Theorem 3.4: For any u
–

  = (umn), c0 ((Smn , || . ||mn), 
–

 , u
–

 ) 

 c0 ((Smn , || . ||mn), 
–

 , u
–
 )  

                 if and only if   
lim inf

m + n  
   




mn

mn

umn

 > 0. 

Proof: 

          For the sufficiency of the condition, suppose that   

lim inf

m + n  
    




mn

mn

umn

   > 0 and s
–

 = (smn)  

         c0 ((Smn , || . ||mn), 
–

 , u
–

 ) . Then there exists a constant   

K > 0 such  that   K < 




mn

mn

umn 

for sufficiently large 

values of m, n.  Thus  

           K || mn  smn ||
umn

mn
   < || mn smn ||

umn

mn
   for all sufficiently 

large 

          values of m, n and so || mn smn ||
umn

mn
  0 implies that 

      ||mn smn ||
umn

mn
  0 and hence  s

–
 c0 ((Smn , || . ||mn), 

–
 , u

–
 ). 

This proves that  

c0 ((Smn , || . ||mn), 
–

 , u
–

 )   c0 ((Smn , || . ||mn), 
–

 , u
–
 ) . 

 For the necessity, suppose that 

          
lim inf

m + n  
  





mn

mn

umn

=0. Then there exist 

subsequences (m(k)) of (m) and (n(k)) of (n) 

respectively such that for each k  1, k |  m(k) n(k) 

|
u

m(k)n(k)
 < | m(k) n(k) |

u
m(k)n(k)

. 

 Now for zmn  Smn with ||zmn||mn = 1, define the 

sequence s
–

 = (smn) by 

smn
  = 







–1

mn
   k –1/ umn  

zmn
 ‚ m = m(k) ‚  n = n(k) ‚ k  1 and

‚ otherwise.

  

  Now, ||  m(k) n(k)  s m(k) n(k) ||
um(k)n(k)

m(k)n(k)
 = 

1

k
, k  1  

           and    || mn smn ||
umn

mn
  = 0, otherwise. 

 But for each k  1, 

         ||  m(k) n(k) s m(k) n(k) ||
um(k) n(k)

m(k)n(k)
   

         =  ||  m(k) n(k) 
–1

m(k)n(k)
 k 

–1/ um(k)n(k)
 u m(k) n(k)  z m(k) n(k) ||

um(k) n(k)

m(k)n(k)
 

         = 




 m(k) n(k)

 m(k) n(k)

um(k) n(k)

. 
1

k
 > 1 

 which shows that  s
–

  c0 ((Smn , || . ||mn), 
–

 , u
–
 )  but  s

–
 

 c0 ((Smn , || . ||mn), 
–

 , u
–

 ),  a contradiction. This 

completes the proof. 

Theorem 3.5: For any u
–
 = ( umn), c0 ((Smn , || . ||mn), 

–
 , u

–
 ) 

 c0 ((Smn , || . ||mn), 
–

 , u
–

 )  

if and only if  
lim sup

m + n  
   




mn

mn

umn

   . 

Proof:  

     Let the condition hold, and  s
–

 = (smn)  c0 ((Smn , || . ||mn), 
–

 

, u
–

 ) . Then there exists  0 < L <  such that 

         |mn|
umn

 < L|mn|
umn

,   for all sufficiently large values of 

m,n and so  || mn smn ||
umn

mn
     || mn smn ||

umn

mn
 

           implies that s
–

  c0 ((Smn , || . ||mn), 
–

 , u
–

 ) . This shows 

that  c0 ((Smn , || . ||mn), 
–

 , u
–
 )  c0 ((Smn , || . ||mn), 

–
 , u

–
 ) 

. 

 Conversely let  

              c0 ((Smn , || . ||mn), 
–

 , u
–
 )   c0 ((Smn , || . ||mn), 

–
 , u

–
 )  

             but 
lim sup

m + n  
 




mn

mn

umn

= .Then there exist 

subsequences (m(k)) of (m) and n(k)) of (n) 

respectively such that for each k  1 

|  m(k) n(k) |
um(k)n(k)    

> k | m(k) n(k) |
um(k)n(k)

. 

 Now taking zmn  Smn, such that || zmn ||mn = 1, we 

define the sequence  s
–

 = (smn) by 

smn  = 




–1

mn
   k 

–1/ umn  zmn ‚ m = m(k) ‚  n = n(k) ‚ k  1 and

‚ otherwise.
  

             Then, || m(k) n(k)  s m(k) n(k) ||
um(k)n(k)

m(k)n(k)
 = 

1

k
,   k  1 and   

          || mn smn  ||
umn

mn
 = 0, otherwise 

 shows that s
–

  c0 ((Smn , || . ||mn), 
–

 , u
–
 ). But on the 

other hand 

            ||  m(k) n(k)  s m(k) n(k) ||
um(k)n(k)

m(k)n(k)
  > 1, for all k = 1 

  implies that  s
–

  c0 ((Smn ,||.||mn),
–

 , u
–
 ) ,a 

contradiction. This completes the proof.  

 On combining Theorems 3.4 and 3.5 we get : 

Theorem 3.6: For any u
–

 = (umn),  c0 ((Smn , || . ||mn), 
–

 , u
–

 )  

 = c0 ((Smn , || . ||mn), 
–

 , u
–
 )  if and only if    

0 <   
lim inf

m + n  
   




mn

mn

umn

  
lim sup

m + n  
  




mn

mn

umn

  < . 
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IV. LINEAR TOPOLOGICAL STRUCTURES           

     OF   c0 ((Smn , || . ||mn), 
–
 , u

–
 ) 

 

In this section, we shall investigate some results that 

characterize the linear topological structure of  

c0 ((Smn , || . ||mn), 
–

 , u
–

 )  when topologized it  with suitable 

natural  paranorm . As far as the   linear space structure of   

c0 ((Smn , || . ||mn), 
–

 , u
–

 ) over the field   C   of complex 

numbers  is concerned,  we throughout take the 

coordinatewise operations i.e., for s
–

 = (smn), t
–

 = (tmn) and 

scalar ,  

 s
–

 + t
–

 = (smn + tmn) and  s
–

 = (smn) 

and we see below that   u
–

      is necessary and sufficient 

condition for linearity of c0 ((Smn , || . ||mn), 
–

 , u
–

 ).   

 Theorem 4.1:  c0 ((Smn , || . ||mn), 
–

 , u
–
 )  forms a  linear space 

over the set of complex number C    if and only   if  u
–

 = 

(umn)  . 

Proof: 

  For the sufficiency of the condition, assume that   

 u
–

 = (umn)    and     s
–

 = (smn), t
–

 = (tmn)  c0 ((Smn , || . 

||mn), 
–

 , u
–

 ),   m, n  1.So that  || mn smn ||
umn

mn
  0 

and ||mn tmn ||
umn

mn
  0 as m + n  . 

Then  we have   

 || mn (smn + tmn) ||
umn

mn
    || mn smn ||

umn

mn
  + || mn tmn ||

umn

mn
  

                                                0 , as m + n . 

     Hence  s
–

 + t
–

  c0 ((Smn , || . ||mn), 
–

 , u
–

 ). 

Also it is clear that for any scalar , s
–

  c0 ((Smn , || . ||mn), 
–

 , 

u
–

 ) , since 

      || mn smn  ||
umn

mn
      = ||

umn  || mn smn ||
umn

mn
     

A()|| mn smn ||
umn

mn
   

 0 as m + n . 

Conversely if  u
–

  = (umn)   then there exist subsequences 

(m(k)) of (m) and (n(k)) of (n)  respectively  such that   

 u m(k) n(k) > k for each k  1. 

Now taking zmn  Smn with ||zmn||mn = 1, we a  define 

sequence s
–

 = (smn) by 

smn  = 




–1

mn
 k 

–1/ umn
  zmn ‚ m = m(k) ‚  n = n(k) ‚ k  1 and

‚ otherwise.
  

Then for each m = m(k) ‚  n = n(k) ‚ k  1, we have  

         || mn smn ||
umn

mn
   =  ||  m(k) n(k)  s m(k) n(k) ||

um(k)n(k)

m(k)n(k)
  

                                         = 
1

k
, k  1   

          and    || mn smn ||
umn

mn
  = 0, otherwise, 

 shows that  s
–

  c0 ((Smn , || . ||mn), 
–

 , u
–

 ) .But on the 

otherhand, for each m = m(k) ‚  n = n(k) ‚ k  1and 

for scalar  = 2 we have 

               || mn ( smn) ||
umn

mn
   =  ||  m(k) n(k) 2 s m(k) n(k) ||

um(k) n(k)

m(k)n(k)
    

                                             > 
2

k

k
 1 

 showing that  s
–

   c0 ((Smn , || . ||mn), 
–

 ,u
–

 ), a 

contradiction. This completes the proof. Hence c0 

((Smn , || . ||mn), 
–

 , u
–

 )  is a linear space if and only if u
–

  

= (umn)   . 

    Consider  u
–

  = (umn)    and  s
–

  c0 ((Smn , || . ||mn), 
–

 , u
–

 )   

     ,we define 

G, u(s
–

) = supmn|| mn smn ||
umn

mn
                              (4.1) 

Theorem 4.2 : Let u
–

 = (umn)     and  Smn be a normed 

space for each m,n  1. Then  (c0 ((Smn , || . ||mn), 
–

 , u
–

 ) , G,u)  

forms 

 a total paranormed space. 

    Proof: 

It can be  easily verified that G,u  defined by (4.1) satisfy 

following properties of paranormed space. 

PN1:  G,u(s
–

)  0 and G,u(s
–

) = 0 if and only if s
–

 = 
–

 

PN2: G,u(s
–

 + t
–

)  G,u(s
–

)  + G ,u( t
–

) 

PN3: G,u(s
–

)  A() G,u(s
–

) where   C. 

             Throughout the proof  of the  theorem,  G,u  will be 

denoted by  G. Here we prove the continuity of scalar  

 multiplication i.e., PN4. Further for continuity of scalar 

multiplication, it is sufficient to show that  

     (a) if s
–

 
(k)

  
–

 in G and k   as k   

     (b) if k  0 as k   and s
–

  c0 ((Smn , || . ||mn), 
–

 , u
–

 )   

then k s
–

  
–

 in  G as k  . 

 Now (a) is easily proved if we suppose that |k| L 

for all k  1 and consider, 

           G(k s
–

 
(k)

)  supm,n|k|
umn sup m,n|| mn smn ||

umn

mn
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 A(L) G (s
–

 
(k)

). 

 Now let s
–

  c0 ((Smn , || . ||mn), 
–

 , u
–

 ) , |k|  1 for all k 

 N and  > 0. Then there exists K such that 

           || mn smn ||
umn

mn
     < ,  for all m + n  K   

         and hence   

 ||k mn smn ||
umn

mn
 < , for all m + n  K and k  N. 

          Now choose N1 so that  |k|
umn  || mn smn ||

umn

mn
 < , for all  

           k  N1, and 2  m + n K. 

          Thus G (k s
–

)   for all  k  max(N, N1) which proves  

          (b). Hence G  forms a total paranorm on  

            c0 ((Smn), 
–

 , u
–

, || . ||mn). 

      Theorem 4.3 : Let u
–

 = (umn)     and  Smn be a normed 

space for each m, n  1. Then 

        (c0 ((Smn , || . ||mn), 
–

 , u
–

 ) , G,u)  is a GK-space.      

Proof:  

 For each m,n  1, the continuity of linear map  

 Pij : c0 ((Smn , || . ||mn), 
–

 , u
–

 )   Sij where Pij (s
–

) = sij  

follows from   || Pij (s
–

)||  |ij|
–1 

[G(s
–

)]
1/uij and so  

c0 ((Smn , || . ||mn), 
–

 , u
–

 )  is a GK-space.                  
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