On bĝ – Continuous Maps and bĝ – Open Maps in Topological Spaces

R. Subasree Assistant Professor of Mathematics, Chandy College of Engineering, Thoothukudi, TN, India

Abstract

Recently the author[19] defined $b\hat{g}$ -Closed sets and studied many basic properties. In this paper a new class of maps namely $b\hat{g}$ - Continuous map and $b\hat{g}$ - Open map were introduced in Topological Spaces and we find some of its basic properties. Further a new class of $b\hat{g}$ - homeomorphisms are also introduced and studied some of their relationship among other homeomorphisms.

1. Introduction

In 1996, Andrijevic[14] introduced one such new version called b-open sets. Levine[5] introduced the concept of generalized closed sets and studied their properties. By considering the concept of g-closed sets many concepts of topology have been generalized and interesting results have been obtained by several mathematician. Veerakumar[12] introduced ĝ-closed sets. Recently R.Subasree and M.MariaSingam[19] introduced bĝ-closed sets.

Balachandran et al[17] introduced the concept of generalized continuous maps in topological spaces. The purpose of this paper is to introduce a new version of maps called bĝ–continuous map and bĝ–open map. Moreover we introduce the concept of bĝ– homeomorphism and we investigated the properties of all such transformations.

2. Preliminaries

Throughout this paper (X, τ) (or simply X) and (Y, σ) (or simply Y) represents topological spaces on which no separation axioms are assumed unless otherwise mentioned. Let us recall the following definitions.

Definition 2.1 : A subset A of a space (X,τ) is called a i)Semi–open set if $A \sqsubseteq cl[Int(A)]$

ii) α -open set if $A \sqsubseteq Int[cl(Int (A))]$

 $\begin{array}{c} \text{If } \mathbf{A} = \inf[\mathbf{C}(\inf(\mathbf{A}))] \\ \text{If } \mathbf{A} = \inf[\mathbf{C}(\inf(\mathbf{A}))]$ \{If } \mathbf{A} = \inf[\mathbf{C}(\inf(\mathbf{A}))] \{If } \mathbf{A} = \inf[\mathbf{C}(\inf(\mathbf{A}))]

ii) b-open set if $A \sqsubseteq cl[Int (A)] \bigcup Int [cl(A)]$

The complement of a semi-open (resp. α -open, b-open) set is called semi-closed (resp. α -closed, b-closed) set.

The intersection of all semi-closed (resp. α -closed, b-closed) sets of X containing A is

M. Maria Singam Associate Professor of Mathematics V.O. Chidambaram College Thoothukudi TN, India

called the semi-closure (resp. α -closure, bclosure) and is denoted by scl(A) (resp. α cl(A), bcl(A)). The family of all semi-open (resp. α -open, b-open) subsets of a space X is denoted by SO(X), (resp. α O(X), bO(X)).

Definition 2.2: A subset A of a space (X,τ) is called a

- i) **generalized closed** (briefly gclosed) set[5] if $cl(A) \equiv U$ whenever $A \equiv U$ and U is open set in (X, τ) .
- ii) **semi-generalized closed** (briefly sg-closed) set[2] if $scl(A) \sqsubseteq U$ whenever $A \sqsubseteq U$ and U is a semi-open set in (X,τ) .
- iii) **generalized** semi-closed (briefly gs-closed) set[1] if $scl(A) \sqsubseteq U$ whenever $A \sqsubseteq U$ and U is open set in (X,τ) .
- iv) **a-generalized closed** (briefly αg -closed) set[7] if $\alpha cl(A) \sqsubseteq U$ whenever $A \sqsubseteq U$ and U is open set in (X, τ) .
- v) **generalized** α -closed (briefly g α -closed) set[6] if α cl(A) \sqsubseteq U whenever A \sqsubseteq U and U is α -open set in (X, τ).
- vi) δ -generalized closed (briefly δ g-closed) set[3] if $cl\delta(A) \equiv U$ whenever $A \equiv U$ and U is open set in (X, τ) .
- vii) $\hat{\mathbf{g}}$ -closed set[12] if cl(A) $\sqsubseteq U$ whenever $A \sqsubseteq U$ and U is a semi-open set in (X, τ) .
- viii) $a\hat{g}$ -closed set[9] if α cl(A) \sqsubseteq U whenever A \sqsubseteq U and U is \hat{g} -open set in (X, τ).
- ix) **gb-closed** set[15] if $bcl(A) \sqsubseteq U$ whenever $A \sqsubseteq U$ and U is open set in (X,τ) .

The complement of a g-closed(resp. sgclosed, gs-closed, α g-closed, α g-closed, δ gclosed, \hat{g} –closed and α \hat{g} –closed) set is called g-open (resp. sg-open, gs-open, α g-open, gaopen, δ g-open, \hat{g} –open and α \hat{g} –open) set .

Definition 2.3: A function f: $(X,\tau) \rightarrow (Y, \sigma)$ is called

- i) **Continuous**[12] if $f^{-1}(V)$ is closed in (X,τ) for every closed set V in (Y, σ)
- ii) **g-continuous** [17] if $f^{-1}(V)$ is g-closed in (X,τ) for every closed set V in (Y, σ)
- iii) $\hat{\mathbf{g}}$ -continuous[20] if $f^{-1}(V)$ is $\hat{\mathbf{g}}$ -closed in (\mathbf{X}, τ) for every closed set V in (\mathbf{Y}, σ)
- iv) ag -continuous[7] if $f^{-1}(V)$ is αg -closed in (X, τ) for every closed set V in (Y, σ)
- v) $\alpha \hat{g}$ -continuous if $f^{-1}(V)$ is $\alpha \hat{g}$ -closed in (X, τ) for every closed set V in (Y, σ)
- vi) **b** -continuous [25] if $f^{-1}(V)$ is b -closed in (X, τ) for every closed set V in (Y, σ)
- vii) **gb-continuous**[25] if $f^{-1}(V)$ is gb-closed in (X,τ) for every closed set V in (Y, σ)
- viii) gs-continuous[22] if $f^{-1}(V)$ is gs -closed in (X, τ) for every closed set V in (Y, σ)
- ix) **sg-continuous**[24] if $f^{-1}(V)$ is sg-closed in (X, τ) for every closed set V in (Y, σ)

Definition 2.4: A function f: $(X,\tau) \rightarrow (Y, \sigma)$ is called a

- i) **open map**[12] if f(V) is open in (Y, σ) for every open set V in (X, τ)
- ii) **g-open map**[23] if f(V) is g-open in (Y, σ) for every open set V in (X, τ)
- iii) $\hat{\mathbf{g}}$ -open map[12] if f(V) is $\hat{\mathbf{g}}$ -open in (Y, σ) for every open set V in (X, τ)
- iv) gs-open map[21] if f(V) is gs-open in (Y,σ) for every open set V in (X,τ)
- v) **sg- open map**[21] if f(V) is sg-open in (Y,σ) for every open set V in (X,τ)

Definition 2.5: A function f: $(X,\tau) \longrightarrow (Y, \sigma)$ is called a

- i) **Homeomorphism**[12] if f is both continuous map and open map.
- ii) **g-homeomorphism**[23] if f is both gcontinuous map and g-open map.
- iii) **ĝ-homeomorphism**[12] if f is both ĝcontinuous map and ĝ-open map.
- iv) **sg-homeomorphism**[22] if f is both sgcontinuous map and sg-open map.
- v) gs-homeomorphism[22] if f is both gscontinuous map and gs-open map

3. bĝ – Continuous functions

We introduce the following definitions:

Definition 3.1: A function f: $(X,\tau) \longrightarrow (Y, \sigma)$ is said to be bg – continuous map if $f^{-1}(V)$ is bg-closed in (X,τ) for every closed set V of (Y, σ) . **Example 3.2:**Let X=Y={a,b,c} $\tau = \{X, \Phi, \{a\}\}$ and $\sigma = \{Y, \Phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$

Define a function f: $(X,\tau) \longrightarrow (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c. Then f is b \hat{g} - continuous, since the inverse images of a closed sets {b}, {b,c}, {a,c}, {c} in (Y, σ) are {b},{b,c}, {a,c}, {c} respectively which are $b\hat{g}$ - Closed in (X, τ).

Theorem 3.3:Every continuous map is bĝ – continuous.

Proof: Let V be a closed set in (Y, σ) . Since f is continuous, then $f^{-1}(V)$ is closed in (X,τ) . Since from[19] Remark 3.23 "Every closed set is bĝ – Closed". Then $f^{-1}(V)$ is bĝ – Closed in (X,τ) . Hence f is bĝ – continuous.

Remark 3.4: The converse of the above theorem need not be true.

(i.e) Every $b\hat{g}$ – continuous need not be a continuous map as shown in the following example.

Example 3.5:Let X=Y={a,b,c}

 $\tau = \{X, \Phi, \{a\}\} \text{ and } \sigma = \{Y, \Phi, \{b\}\}$ Define a function f: $(X, \tau) \longrightarrow (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c.

Then f is $b\hat{g}$ – continuous, but not continuous, since the inverse image of a closed set {a,c} in (Y, σ) is {a,c} which is $b\hat{g}$ – closed but not closed in (X, τ).

Theorem 3.6:Every g-continuous map is bĝ – continuous.

Proof: Let V be a closed set in (Y, σ) . Since f is g-continuous, then $f^{-1}(V)$ is g-closed in (X,τ) . Since from[19] Proposition 3.6, "Every g-closed set is b \hat{g} – Closed". Then $f^{-1}(V)$ is b \hat{g} –Closed in (X,τ) . Hence f is b \hat{g} -continuous.

Remark 3.7: The converse of the above theorem need not be true.

(i.e) Every $b\hat{g}$ – continuous need not be a gcontinuous map as shown in the following example.

Example 3.8: Let $X=Y=\{a,b,c\}$

 $\tau = \{X, \Phi, \{a\}, \{b\}, \{a,b\}\} \text{ and } \sigma = \{Y, \Phi, \{a,c\}\}$ Define a function f: $(X,\tau) \longrightarrow (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c.

Then f is $b\hat{g}$ – continuous, but not gcontinuous, since the inverse image of a closed set {b} in (Y, σ) is {b} which is $b\hat{g}$ – closed but not g-closed in (X, τ). **Theorem 3.9:**Every b-continuous map is bg – continuous.

Proof: Let V be a closed set in (Y, σ) . Since f is b-continuous, then $f^{-1}(V)$ is b-closed in (X,τ) . Since from[19] Proposition 3.3, "Every b-closed set is b \hat{g} – Closed". Then $f^{-1}(V)$ is b \hat{g} –Closed in (X,τ) .Hence f is b \hat{g} – continuous.

Remark 3.10: The converse of the above theorem need not be true.

(i.e) Every $b\hat{g}$ – continuous need not be a bcontinuous map as shown in the following example.

Example 3.11:Let $X=Y=\{a,b,c\}$ $\tau = \{X, \Phi, \{a\}\}$ and $\sigma = \{Y, \Phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ Define a function f: $(X,\tau) \longrightarrow (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c.

Then f is b \hat{g} -continuous, but not bcontinuous, since the inverse image of a closed set {a,c} in (Y, σ) is {a,c} which is b \hat{g} – Closed but not b-closed in (X, τ).

Theorem 3.12: Every gb-continuous map is bg – continuous.

Proof: Let V be a closed set in (Y, σ) . Since f is gb-continuous, then $f^{-1}(V)$ is gb-closed in (X,τ) . Since from[19] Proposition 3.18, "Every gb-closed set is bĝ – Closed". Then $f^{-1}(V)$ is bĝ – Closed in (X,τ) . Hence f is bĝ – continuous.

Corollary 3.13:The converse of the above theorem is also true.

(i.e) Every $b\hat{g}$ – continuous is gb-continous. **Proof:** Let V be a closed set in (Y, σ). Since f is b \hat{g} -continuous, then $f^{-1}(V)$ is b \hat{g} -closed in (X, τ). Since from[19] Corollary 3.19, "Every b \hat{g} -closed set is gb– Closed". Then $f^{-1}(V)$ is gb– Closed in (X, τ). Hence f is gbcontinuous.

Remark 3.14: The following example shows the relationship between $b\hat{g}$ – continuous map and gb-continuous map.

bĝ – continuous

gb-continous

Example 3.15:Let $X=Y=\{a,b,c\}$ $\tau = \{X, \Phi, \{a,c\}\}$ and $\sigma = \{Y, \Phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ Define a function f: $(X,\tau) \rightarrow (Y, \sigma)$ by $\begin{array}{l} f(a) = a, \ f(b) = b, \ f(c) = c. \\ \textbf{b} \hat{g} \textbf{-closed set} \ in \ X = \{X, \ \Phi, \ \{a\}, \ \{b\}, \ \{c\}, \\ \{a,b\}, \ \{b,c\}\} \\ \textbf{gb-closed set} \ in \ X = \{X, \ \Phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \\ \{b,c\}\} \\ \textbf{closed sets} \ in \ Y = \{Y, \ \Phi, \{b\}, \{c\}, \{a,c\}, \{b,c\}\} \\ \textbf{Clearly} \ f \ is \ both \ b \hat{g} - continuous \ and \\ \textbf{gb-continuous.} \end{array}$

Theorem 3.16: Every \hat{g} -continuous map is $b\hat{g}$ – Continuous.

Proof: Let V be a closed set in (Y, σ) . Since f is \hat{g} -continuous, then $f^{-1}(V)$ is \hat{g} -closed in (X,τ) . Since from[19] Proposition 3.9, "Every \hat{g} -closed set is $\hat{bg} - \hat{closed}$ ". Then $f^{-1}(V)$ is $\hat{bg} - \hat{closed}$ in (X,τ) . Hence f is $\hat{bg} - \hat{closed}$.

Remark 3.17: The converse of the above theorem need not be true.

(i.e) Every $b\hat{g}$ – continuous need not be \hat{g} -continuous map as shown in the following example.

Example 3.18:Let X=Y={a,b,c}

closed but not \hat{g} -closed in (X, τ).

 $\tau = \{X, \Phi, \{a,c\}\} \text{ and } \\ \sigma = \{Y, \Phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\} \\ \text{Define a function f: } (X,\tau) \longrightarrow (Y, \sigma) \text{ by } \\ f(a) = b, f(b) = a, f(c) = a. \\ b\hat{\sigma} \text{ closed set in } X = \{X, \Phi, \{a\}, \{b\}, \{c\}, \{a,b\}\} \\ f(a) = b, f(b) = a, f(c) = a. \\ b\hat{\sigma} \text{ closed set in } X = \{X, \Phi, \{a\}, \{b\}, \{c\}, \{a,b\}\} \}$

bĝ-closed set in $X = \{X, \Phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}$

 \hat{g} -closed set in X = {X, Φ , {b}, {a,b}, {b,c}} Then f is $\hat{b}\hat{g}$ - continuous, but not \hat{g} continuous, since the inverse image of a

closed set $\{b,c\}$ in (Y, σ) is $\{a\}$ which is $b\hat{g}$ –

Theorem 3.19:Every gs-continuous map is bg – continuous.

Proof: Let V be a closed set in (Y, σ) . Since f is gs-continuous, then $f^{-1}(V)$ is gs-closed in (X,τ) . Since from[19] Proposition 3.12 "Every gs-closed set is b \hat{g} – Closed". Then $f^{-1}(V)$ is b \hat{g} – closed in (X,τ) . Hence f is b \hat{g} – Continuous.

Remark 3.20: The converse of the above theorem need not be true.

(i.e) Every $b\hat{g}$ – continuous need not be gscontinuous map as shown in the following example.

Example 3.21:Let $X=Y=\{a,b,c\}$ $\tau = \{X, \Phi, \{a,c\}\}$ and $\sigma = \{Y, \Phi, \{a\}, \{a,b\}\}$ Define a function f: $(X,\tau) \longrightarrow (Y, \sigma)$ by $\begin{array}{l} f(a) = c, \ f(b) = a, \ f(c) = a. \\ \textbf{bg-closed set in } X = \{X, \ \Phi, \ \{a\}, \ \{b\}, \ \{c\}, \\ \{a,b\}, \ \{b,c\}\} \end{array}$

gs-closed set in $X = \{X, \Phi, \{b\}, \{a,b\}, \{b,c\}\}$ Then f is b \hat{g} – continuous, but not gscontinuous, since the inverse image of a closed set {c} in (Y, σ) is {a} which is b \hat{g} – closed but not gs-closed in (X, τ).

Theorem 3.22:Every sg-continuous map is bĝ – continuous.

Proof: Let V be a closed set in (Y, σ) . Since f is sg-continuous, then $f^{-1}(V)$ is sg-closed in (X,τ) . Since from [19] Remark 3.23 "Every sg-closed is gs-closed" and from [19] proposition (3.12) "Every gs-closed set is b \hat{g} – closed", we have "Every sg-closed set is b \hat{g} – closed". Hence $f^{-1}(V)$ is b \hat{g} – closed in (X,τ) . Thus f is b \hat{g} – Continuous.

Remark 3.23: The converse of the above theorem need not be true.

(i.e) Every $b\hat{g}$ – continuous need not be sgcontinuous map as shown in the following example.

Example 3.24:Let X=Y={a,b,c}

 $\tau = \{X, \Phi, \{a\}\} \text{ and } \sigma = \{Y, \Phi, \{a,b\}, \{c\}\}$ Define a function f: $(X,\tau) \longrightarrow (Y, \sigma)$ by f(a) =a, f(b) = b, f(c) = c. **bĝ-closed set** in X = \{X, \Phi, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}

sg-closed set in $X = \{X, \Phi, \{b\}, \{c\}, \{b,c\}\}$

Then f is $b\hat{g}$ – continuous, but not sg-continuous, since the inverse image of a closed set {a,b} in (Y, σ) is {a,b} which is $b\hat{g}$ – closed but not sg-closed in (X, τ).

Theorem 3.25:Every αg-continuous map is bĝ – continuous.

Proof: Let V be a closed set in (Y, σ) . Since f is α g-continuous, then $f^{-1}(V)$ is α g-closed in (X,τ) . Since from[19] Proposition [3.15] "Every α g-closed is $b\hat{g}$ – closed", we have $f^{-1}(V)$ is $b\hat{g}$ – closed in (X,τ) . Thus f is $b\hat{g}$ – Continuous.

Remark 3.26: The converse of the above theorem need not be true.

(i.e) Every $b\hat{g}$ – continuous need not be αg -continuous map as shown in the following example.

Example 3.27:Let $X=Y=\{a,b,c\}$ $\tau = \{X, \Phi, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \Phi, \{b\}\}$ Define a function f: $(X,\tau) \longrightarrow (Y, \sigma)$ by f(a) =a, f(b) = b, f(c) = b. **bĝ-closed set** in X = {X, Φ , {a}, {b}, {c}, {a,c}, {b,c}} **ag-closed set** in X = {X, Φ , {c}, {a,c}, {b,c}} Then f is bĝ - continuous, but not

 αg -continuous, since the inverse image of a closed set $\{a,c\}$ in (Y, σ) is $\{a\}$ which is $b\hat{g}$ – closed but not αg -closed in (X,τ) .

Theorem 3.28:Every αĝ-continuous map is bĝ – continuous.

Proof: Let V be a closed set in (Y, σ) . Since f is $\alpha \hat{g}$ -continuous, then $f^{-1}(V)$ is $\alpha \hat{g}$ -closed in (X,τ) . Since from[19] Proposition [3.20] "Every $\alpha \hat{g}$ -closed is $\hat{b} \hat{g}$ - closed", we have $f^{-1}(V)$ is $\hat{b} \hat{g}$ - closed in (X,τ) . Thus f is $\hat{b} \hat{g}$ - Continuous.

Remark 3.29: The converse of the above theorem need not be true.

(i.e) Every $b\hat{g}$ – continuous need not be $\alpha\hat{g}$ -continuous map as shown in the following example.

Example 3.30:Let $X=Y=\{a,b,c\}$ $\tau = \{X, \Phi, \{a\}, \{b,c\}\}$ and $\sigma = \{Y, \Phi, \{a\}, \{b\}, \{a,b\}\}$ Define a function f: $(X,\tau) \longrightarrow (Y, \sigma)$ by f(a) =a, f(b) = b, f(c) = c. **bĝ-closed set** in $X = \{X, \Phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$ **aĝ-closed set** in $X = \{X, \Phi, \{a\}, \{b,c\}\}$ Then f is bĝ – continuous, but not α ĝcontinuous, since the inverse image of a closed set $\{c\}$ in (Y, σ) is $\{c\}$ which is bĝ –

Remark 3.31:The following diagram shows the relationships of $b\hat{g}$ – continuous map with other known existing maps. A \longrightarrow B represents A implies B but not conversely.

closed but not $\alpha \hat{g}$ -closed in (X, τ).

4 Applications

Remark 4.1: The composition of two $b\hat{g}$ – continuous functions need not be $b\hat{g}$ – continuous. For we consider the following example.

Example 4.2: Let X={a,b,c} $\tau = \{X, \Phi, \{a\}, \{b\}, \{a,b\}\}, \sigma = \{X, \Phi, \{b\}\} \text{ and } \eta = \{X, \Phi, \{a\}\}$ Define a function f: $(X,\tau) \longrightarrow (X, \sigma)$ by f(a) =a, f(b) = b, f(c) = c and Define a function g: $(X,\sigma) \longrightarrow (X,\eta)$ by g(a) =b, g(b) = c, g(c) = a. Clearly f and g are $b\hat{g}$ - continuous. But for a closed set {b,c} in (X,η) $(f \circ g)^{-1}$ {b,c} = $g^{-1}[f^{-1}{b,c}] = g^{-1}{b,c}$ = {a,b} which is not $b\hat{g}$ - closed in (X,τ) . Hence f \circ g is not $b\hat{g}$ -continuous.

Definition 4.3: A function f: $(X,\tau) \longrightarrow (Y, \sigma)$ is said to be $b\hat{g}$ – irresolute if $f^{-1}(V)$ is $b\hat{g}$ -closed in (X,τ) for every $b\hat{g}$ -closed set V of (Y, σ) .

Remark 4.4: The composition of two $b\hat{g}$ –irresolute functions is again $b\hat{g}$ – irresolute.

5 bĝ – open maps and bĝ – closed maps We introduce the following definitions: Definition 5.1: Let X and Y be two topolo

Definition 5.1: Let X and Y be two topological spaces. A map f: $(X,\tau) \longrightarrow (Y, \sigma)$ is called bg –open map if the image of every open set in X is bg-open in (Y, σ) .

Definition 5.2: Let X and Y be two topological spaces. A map f: $(X,\tau) \longrightarrow (Y, \sigma)$ is called $b\hat{g}$ – closed map if the image of every closed set in X is $b\hat{g}$ -closed in (Y, σ) .

Theorem 5.3: Every open map is b \hat{g} -open map. **Proof:** Let f: $(X,\tau) \longrightarrow (Y, \sigma)$ is a open map and V be a open set in X, then f(V) is a open set in Y. Since[19] Proposition(3.3), "Every open set is b \hat{g} -open set", we have f(V) is a b \hat{g} -open set in Y. Thus f is b \hat{g} -open map.

Remark 5.4: The converse of the above theorem need not be true.

(i.e) Every bĝ-open map need not be a open map as shown in the following example.

Example 5.5: Let $X=Y=\{a,b,c\}$ $\tau = \{X, \Phi, \{a,c\}\}$ and $\sigma = \{Y, \Phi, \{b\}\}$ Define a function f: (X,τ) (Y, \blacktriangleright) by f(a) = b, f(b) = b, f(c) = c.**Open sets** in $X = \{X, \Phi, \{a,c\}\}$ **bĝ- open set** in $Y = \{Y, \Phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}$

Here f is $b\hat{g}$ – open map, but not a open map, since the image of a open set {a,c} in (X, τ) is {b,c} which is $b\hat{g}$ – open but not open in (Y, σ) .

Theorem 5.6: Every g-open map is bĝ-open map.

Proof: Let f: $(X,\tau) \longrightarrow (Y, \sigma)$ is a g-open map and V be a open set in X, then f(V) is a g-open set in Y. Since from[19] Proposition(3.6), "Every g-open set is bgopen set", we have f(V) is a bg-open set in Y. Thus f is a bg-open map.

Remark 5.7: The converse of the above theorem need not be true.

(i.e) Every bĝ–open map need not be a g–open map as shown in the following example.

Example 5.8: Let $X=Y=\{a,b,c\}$ $\tau = \{X, \Phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ and $\sigma = \{Y, \Phi, \{a,c\}\}$ Define a function f: $(X,\tau) \longrightarrow (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = b. **Open sets** in $X = \{X, \Phi, \{a\}, \{b\}, \{a,c\}, \{a,c\}\}\}$ **bĝ- open set** in $Y = \{Y, \Phi, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$

g-open set in $Y = \{Y, \Phi, \{a\}, \{c\}, \{a,c\}\}$ Here f is b \hat{g} - open map, but not a gopen map, since the image of a open set $\{a,c\}$

open map, since the image of a open set $\{a,c\}$ in (X,τ) is $\{a,b\}$ which is $b\hat{g}$ – open but not g– open in (Y,σ) .

Theorem 5.9: Every ĝ–open map is bĝ–open map.

Proof: Let f: $(X,\tau) \longrightarrow (Y, \sigma)$ is a \hat{g} -open map and V be a open set in X, then f(V) is a

 \hat{g} - open set in Y. Since from[19] Proposition(3.9), "Every \hat{g} -open set is $\hat{b}\hat{g}$ open set", we have f(V) is a $\hat{b}\hat{g}$ -open set in Y. Thus f is a $\hat{b}\hat{g}$ -open map.

Remark 5.10: The converse of the above theorem need not be true.

(i.e) Every bĝ–open map need not be a ĝ–open map as shown in the following example.

Example 5.11: Let $X=Y=\{a,b,c\}$ $\tau = \{X, \Phi, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \Phi, \{a\}\}$ Define a function f: $(X,\tau) \longrightarrow (Y, \sigma)$ by f(a) =a, f(b) = b, f(c) = c. **Open sets** in $X = \{X, \Phi, \{a\}, \{b\}, \{a,b\}\}$ **bĝ- open sets** in $Y = \{Y, \Phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}\}$ **ĝ-open sets** in $Y = \{Y, \Phi, \{a\}\}$

Here f is $b\hat{g}$ – open map, but not a \hat{g} – open map, since the image of a open set $\{a,b\}$ in (X,τ) is $\{a,b\}$ which is $b\hat{g}$ – open set but not \hat{g} -open set in (Y, σ) .

Theorem 5.12: Every sg-open map is a bgopen map.

Proof: Let f: $(X,\tau) \longrightarrow (Y, \sigma)$ is a sg-open map and V be a open set in X, then f(V) is a sg- open set in Y. Since from[19] Remark(3.23), "Every sg-open set is bg-open set", we have f(V) is a bg-open set in Y. Thus f is a bg-open map.

Remark 5.13: The converse of the above theorem need not be true.

(i.e) Every bg-open map need not be sg-open map as shown in the following example.

Example 5.14: Let $X=Y=\{a,b,c\}$ $\tau = \{X, \Phi, \{a, c\}\}$ and $\sigma = \{Y, \Phi, \{a\}\}$ Define a function f: $(X,\tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = b.**Open sets** in $X = \{X, \Phi, \{a,c\}\}$ **b** \hat{g} - **open sets** in Y = {Y, Φ , {a}, {b}, {c},

 $\{a,b\},\{a,c\}\}$

sg-open sets in $Y = \{Y, \Phi, \{a\}, \{a,b\}, \{a,c\}\}$ Here f is bg - open map, but not a sg-open map, since the image of a open set $\{a,c\}$ in (X,τ) is $\{b\}$ which is $b\hat{g}$ – open set but not sg-open set in (Y, σ) .

Theorem 5.15: Every gs-open map is a bgopen map.

Proof: Let f: $(X,\tau) \longrightarrow (Y, \sigma)$ is a gs-open map and V be a open set in X, then f(V) is a gs- open set in Y. Since from[19] Proposition(3.12),"Every gs-open set is bgopen set", we have f(V) is a bg-open set in Y. Thus f is a bg-open map.

Remark 5.16: The converse of the above theorem need not be true.

(i.e) Every bg-open map need not be a gsopen map as shown in the following example.

Example 5.17: Let $X=Y=\{a,b,c\}$ $\tau = \{X, \Phi, \{a\}, \{b,c\}\} \text{ and } \sigma = \{Y, \Phi, \{a,c\}\}$ Define a function f: $(X,\tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c.**Open sets** in $X = \{X, \Phi, \{a\}, \{b,c\}\}$ **bĝ– open sets** in $Y = \{Y, \Phi, \{a\}, \{c\},$ $\{a,b\},\{a,c\},\{b,c\}\}$ gs-open sets in $Y = \{Y, \Phi, \{a\}, \{c\}, \{a,c\}\}$

Here f is bg – open map, but not a gs-open map, since the image of a open set

 $\{b,c\}$ in (X,τ) is $\{b,c\}$ which is $b\hat{g}$ – open set but not gs-open set in (Y, σ) .

Remark 5.18: The following diagram shows the relationships of bg – open map with other known existing open maps. A -➡ B represents A implies B but not conversely.

1.	bĝ – open map	2. Open map
3.	g-open map	4. ĝ – open mar

4. ĝ – open map

5. sg-open map 6. gs – open map

bĝ – Homeomorphisms

6

Definition 6.1: A bijection f: $(X,\tau) \longrightarrow (Y,\sigma)$ is called a bg – homeomorphism if f is both $b\hat{g}$ – continuous map and $b\hat{g}$ – open map.

Example 6.2: Let $X=Y=\{a,b,c\}$ $\tau = \{ X, \Phi, \{a\} \} \text{ and } \sigma = \{ Y, \Phi, \{b\} \}$ Define a function f: $(X,\tau) \longrightarrow (Y, \sigma)$ by f(a) = c, f(b) = a, f(c) = b. $\{a,c\},\{b,c\}\}$ **bĝ**-open sets in Y = $\{Y, \Phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$ sg –closed sets in $X = \{X, \Phi, \{b\}, \{c\}, \{b, c\}\}$ sg –open sets in Y = $\{Y, \Phi, \{b\}, \{a, b\}, \{b, c\}\}$ Here the inverse image of a closed set $\{a,c\}$ in Y is $\{a,b\}$ which is $b\hat{g}$ –closed in X

and the image of a open set $\{a\}$ in X is $\{c\}$ which is bg -open in Y . Hence f is bg homeomorphism.

Theorem 6.3: Every homeomorphism is a bg homeomorphism

Proof: Follows from theorem 3.3 "Every Continuous map is bg - continuous" and from theorem 5.3 "Every open map is bg - open map.

Remark 6.4:The converse of the above theorem need not be true.

(i.e) Every bĝ-homeomorphism need not be a homeomorphism as shown in the following example.

Example 6.5: Let $X=Y=\{a,b,c\}$ $\tau = \{X, \Phi, \{a\}, \{b,c\}\}$ and $\sigma = \{Y, \Phi, \{a,c\}\}$ Define a function f: $(X,\tau) \longrightarrow (Y, \sigma)$ by f(a) =a, f(b) = b, f(c) = c. **bĝ**-closed sets in X = $\{X,\Phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$ open sets in Y = $\{Y,\Phi, \{a,c\}\}$ closed sets in X = $\{X,\Phi, \{a\}, \{b,c\}\}$ **bĝ**-open sets in Y = $\{Y,\Phi, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$

Here the inverse image of a closed set $\{b\}$ in Y is $\{b\}$ which is b \hat{g} -closed in X but not closed in X and the image of a open set $\{a\}$ in X is $\{a\}$ which is b \hat{g} -open in Y but not open in Y.

Hence f is $b\hat{g}$ – homeomorphism, but not a homeomorphism, since f is not a openmap and not a continuous map.

Theorem 6.6:Every sg–homeomorphism is a bĝ – homeomorphism

Proof: Follows from theorem 3.22 "Every sgcontinuous map is $b\hat{g}$ – continuous" and by theorem 5.12 "Every sg-open map is $b\hat{g}$ – open map.

Remark 6.7:The converse of the above theorem need not be true.

(i.e) Every bĝ-homeomorphism need not be a sg-homeomorphism as shown in the following example.

Example 6.8: Let $X=Y=\{a,b,c\}$ $\tau = \{X, \Phi, \{a\}\}$ and $\sigma = \{Y, \Phi, \{b\}\}$ Define a function f: $(X,\tau) \longrightarrow (Y, \sigma)$ by f(a) =c, f(b) = a, f(c) = b. **bĝ**-closed sets in $X = \{X, \Phi, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$ **bĝ**-open sets in $Y = \{Y, \Phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}$ sg -closed sets in $X = \{X, \Phi, \{b\}, \{c\}, \{b,c\}\}$ sg -open sets in $Y = \{Y, \Phi, \{b\}, \{c\}, \{b,c\}\}$ Here the inverse image of a closed set

 $\{a,c\}$ in Y is $\{a,b\}$ which is $b\hat{g}$ –closed in X but not sg–closed in X and the image of a open set $\{a\}$ in X is $\{c\}$ which is $b\hat{g}$ –open in Y but not sg–open in Y.

Hence f is $b\hat{g}$ – homeomorphism, but not sg-homeomorphism, since f is not sgcontinuous and sg-open map. **Theorem 6.9:**Every gs–homeomorphism is a bĝ – homeomorphism

Proof: Follows from theorem 3.19 "Every gscontinuous map is $b\hat{g}$ – continuous" and by theorem 5.15 "Every gs-open map is $b\hat{g}$ – open map.

Remark 6.10:The converse of the above theorem need not be true.

(i.e) Every bĝ-homeomorphism need not be a gs-homeomorphism as shown in the following example.

Example 6.11: Let $X=Y=\{a,b,c\}$ $\tau = \{X, \Phi, \{a,c\}\}$ and $\sigma = \{Y, \Phi, \{a\}, \{b,c\}\}$ Define a function f: $(X,\tau) \longrightarrow (Y, \sigma)$ by f(a) =a, f(b) = b, f(c) = c. **bĝ -closed sets** in X = $\{X, \Phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}$ **bĝ -open sets** in Y = $\{Y, \Phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$ gs -closed sets in X = $\{X, \Phi, \{b\}, \{a,b\}, \{b,c\}\}$ gs -open sets in Y = $\{Y, \Phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$

Here the inverse image of a closed set $\{a\}$ in Y is $\{a\}$ which is b \hat{g} -closed in X but not gs-closed in X hence f is not gscontinuous, however f is a gs-open map. Hence f is a b \hat{g} -homeomorphism but not gshomeomorphism.

Theorem 6.12:Every g-homeomorphism is a bĝ – homeomorphism

Proof: Follows from theorem 3.6 "Every gcontinuous map is $b\hat{g}$ – continuous" and by theorem 5.6 "Every g-open map is $b\hat{g}$ – open map.

Remark 6.13:The converse of the above theorem need not be true.

(i.e) Every bĝ-homeomorphism need not be a g-homeomorphism as shown in the following example.

Example 6.14: Let $X=Y=\{a,b,c\}$ $\tau = \{X, \Phi, \{a\}, \{a,b\}\}$ and $\sigma = \{Y, \Phi, \{a,c\}\}$ Define a function f: $(X,\tau) \longrightarrow (Y, \sigma)$ by f(a) =a, f(b) = b, f(c) = c. **bĝ**-closed sets in X= $\{X,\Phi, \{b\}, \{c\}, \{a,c\}, \{b,c\}\}$ **bĝ**-open sets in Y = $\{Y,\Phi, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$ **g**-closed sets in $X = \{X,\Phi, \{c\}, \{a,c\}, \{b,c\}\}$ **g**-open sets in $Y = \{Y,\Phi, \{a\}, \{c\}, \{a,c\}\}$ Hara the inverse inverse inverse a close

Here the inverse image of a closed set $\{b\}$ in Y is $\{b\}$ which is $b\hat{g}$ -closed in X but not g-closed in X and for the image of a

open set $\{a,b\}$ in X is $\{a,b\}$ which is $b\hat{g}$ –open in Y but not g–open in Y hence f is not g– continuous and g–open map. Thus f is a $b\hat{g}$ – homeomorphism but not g–homeomorphism.

Theorem 6.15: Every ĝ–homeomorphism is a bĝ – homeomorphism

Proof: Follows from theorem 3.16 "Every \hat{g} - continuous map is $b\hat{g}$ – continuous" and by theorem 5.9 "Every \hat{g} -open map is $b\hat{g}$ – open map".

Remark 6.16:The converse of the above theorem need not be true.

(i.e) Every bĝ-homeomorphism need not be a ĝ-homeomorphism as shown in the following example.

Example 6.17: Let $X=Y=\{a,b,c\}$ $\tau = \{X, \Phi, \{a\}, \{a,b\}\}$ and $\sigma = \{Y, \Phi, \{a\}, \{b\}, \{a,b\}\}$ Define a function f: $(X,\tau) \longrightarrow (Y, \sigma)$ by f(a) =b, f(b) = a, f(c) = c. **bĝ**-closed sets in X = $\{X, \Phi, \{b\}, \{c\}, \{a,c\}, \{b,c\}\}\}$ **bĝ**-open sets in Y = $\{Y, \Phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\}\}\}$ **ĝ**-open sets in X = $\{X, \Phi, \{c\}, \{b,c\}\}\}$ **ĝ**-open sets in Y = $\{Y, \Phi, \{a\}, \{b\}, \{a,b\}\}$ Luca the inverse of the set of t

Here the inverse image of a closed set $\{b,c\}$ in Y is $\{a,c\}$ which is $b\hat{g}$ -closed in X but not \hat{g} -closed in X, hence f is not \hat{g} continuous, however f is a \hat{g} -open in Y. Thus f is a $b\hat{g}$ -homeomorphism but not \hat{g} homeomorphism.

Remark 6.18: The following diagram shows the relationships of $b\hat{g}$ – homeomorphism with other known existing homeomorphisms.

A \longrightarrow B represents A implies B but not conversely.

- 1. bĝ –homeomorphism
- 2. homeomorphism
- **3.** g homeomorphism
- **4.** \hat{g} homeomorphism
- 5. sg homeomorphism
- 6. gs homeomorphism

7 REFERENCES

[1] S.PArya and T Nour, Characterizations of S-normal spaces, *Indian J.Pure.Appl.MAth.*,21(8)(1990), 717-719.

[2] P Bhattacharya and B.K Lahiri, Semi-generalized closed sets in topology, *Indian J.Math.*, 29(1987), 375-382.

[3] JDontchev and M Ganster, On δgeneralized closed sets and T3/4-spaces, *Mem.Fac.Sci.KochiUniv.Ser.A*, *Math.*, 17(1996),15-31.

[4] N Levine, Semi-open sets and semicontinuity in topological spaces *Amer Math. Monthly*, 70(1963), 36-41.

[5] N Levine, Generalized closed sets in topology *Rend.Circ.Mat.Palermo*, 19(1970) 89-96.

[6] H Maki, R Devi and K Balachandran, Generalized α-closed sets in topology, *Bull.FukuokaUni.Ed part III*, 42(1993), 13-21.

[7] H Maki, R Devi and K Balachandran, Associated topologies of Generalized α closed sets and α -generalized closed sets, *Mem.Fac. Sci.Kochi Univ. Ser. A. Math.*, 15(1994), 57-63.

[8] A.S.Mashhour, M. E Abd El-Monsef and S.N. El-Debb, On precontinuous and weak precontinuous mappings, *Proc.Math. andPhys.Soc. Egypt* 55(1982), 47-53.

[9] M. E Abd El-Monsef, S.Rose Mary and M. LellisThivagar, On $\alpha \hat{g}$ -closedsets in topological spaces, *Assiut University Journal of Mathematics and Computer Science*, Vol 36(1), P-P.43-51(2007).

[10] ONjastad, On some classes of nearly open sets, *Pacific J Math.*, 15(1965), 961-970.

- [11] M Stone, Application of the theory of Boolian rings to general topology, *Trans. Amer. Math. Soc.*, 41(1937), 374-481.
- [12] M.K.R.S. Veera Kumar, ĝ-closed sets in topological spaces, *Bull. Allah Math.Soc*, 18(2003), 99-112.
- [13] N.V. Velicko, H-closed topological spaces, *Amer. Math.Soc. Transl.*, 78(1968), 103-118.
- [14] D. Andrijevic, On b-open sets, *Mat. Vesnik* 48(1996), no. 1-2, 59-64.
- [15] Ahmad Al. Omari and Mohd.SalmiMD.Noorani, On Generalized b-closed sets, *Bull. Malaysian Mathematical Sciences Society*(2) 32(1) (2009), 19-30
- [16] M. LellisThivagar, B. Meera Devi and E. Hatir, $\delta \hat{g}$ -closed sets in Topological
- Spaces, Gen. Math. Notes, Vol 1, No.2, December 2010, PP 17-25.
- [17] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Math.12(1991), 5-13.
- [18] M. Caldas and S. Jafari, On some applications of b-open sets in topological spaces, *Kochi J.Math* 2(2007),11-19
- [19] R.Subasree, M. Maria singam, On bĝ-closed sets in topological spaces, *International journal of Mathematical Archive*, 4(7), 2013, 168-173.
- [20] Veera Kumar, ĝ-closed sets and GLC functions, Indian Journal *Math.43*(2)(2001), 231-247
- [21] R.Devi, H.Maki and K. Balachandran, Semi generalized Closed maps and generalized semi-closed maps, MEM. Fac.sci.Kochi Univ. Sec A Math 14(1993) 41-54.
- [22] R.Devi, H.Maki and K. Balachandran, Semi generalized homeomorphism and generalized semi-homeomorphism, Indian Journal of Pure and Applied Math. 26(1995) 271-284.
- [23] H. Maki , P. Sundaram and K. Balachandran, On generalized homeomorphisms in Topological Spaces , bull Fukuoka Univ Ed. Part III 40(19991) 13-21.
- [24] P. Sundaram, H.Maki and K. Balachnadran, Semi generalized continuous maos and Semi T1/2 spaces Bull. Fukuoka Univ Ed Part III 40(1991) 33-40.

[25] M. Caldas and E. Ekici, Slightly γ continuous functions Bol. Soc, Parana Mat (3)22(2004) No.2,63-74.