On bg - Continuous Maps and bĝ - Open Maps in Topological Spaces

R. Subasree
Assistant Professor of Mathematics,
Chandy College of Engineering, Thoothukudi, TN, India

Abstract

Recently the author[19] defined bg-Closed sets and studied many basic properties. In this paper a new class of maps namely bg- Continuous map and $b \hat{g}-$ Open map were introduced in Topological Spaces and we find some of its basic properties. Further a new class of $b \hat{g}-$ homeomorphisms are also introduced and studied some of their relationship among other homeomorphisms.

1. Introduction

In 1996, Andrijevic[14] introduced one such new version called b-open sets. Levine[5] introduced the concept of generalized closed sets and studied their properties. By considering the concept of g -closed sets many concepts of topology have been generalized and interesting results have been obtained by several mathematician. Veerakumar[12] introduced $\hat{\mathrm{g}}$-closed sets. Recently R.Subasree and M.MariaSingam[19] introduced bĝ-closed sets.

Balachandran et al[17] introduced the concept of generalized continuous maps in topological spaces. The purpose of this paper is to introduce a new version of maps called $\mathrm{b} \hat{\mathrm{g}}$-continuous map and $\mathrm{b} \hat{\mathrm{g}}$-open map. Moreover we introduce the concept of $b \hat{g}-$ homeomorphism and we investigated the properties of all such transformations.

2. Preliminaries

Throughout this paper (X, τ) (or simply X) and (Y, σ) (or simply Y) represents topological spaces on which no separation axioms are assumed unless otherwise mentioned. Let us recall the following definitions.

Definition 2.1 : A subset A of a space (X, τ) is called a
i) Semi-open set if A $\subseteq c l[I n t(A)]$
ii) $\alpha-$ open set if $\mathrm{A} \subseteq \operatorname{Int[cl(\operatorname {Int}(A))]}$
ii) b -open set if $\mathrm{A} \subseteq \mathrm{cl}[\operatorname{Int}(\mathrm{A})] \cup \operatorname{Int}[\mathrm{cl}(\mathrm{A})]$

The complement of a semi-open (resp. $\alpha-$ open, b -open) set is called semi-closed (resp. α-closed, $\mathrm{b}-$ closed) set.

The intersection of all semi-closed (resp. α closed, b-closed) sets of X containing A is

M. Maria Singam
Associate Professor of Mathematics
V.O. Chidambaram College
Thoothukudi
TN, India

called the semi-closure (resp. α-closure, bclosure) and is denoted by $\operatorname{scl}(\mathrm{A})$ (resp. $\operatorname{\alpha cl}(\mathrm{A}), \operatorname{bcl}(\mathrm{A}))$. The family of all semi-open (resp. α-open, b-open) subsets of a space X is denoted by $\mathrm{SO}(\mathrm{X})$, (resp. $\alpha \mathrm{O}(\mathrm{X}), \mathrm{bO}(\mathrm{X})$).

Definition 2.2: A subset A of a space (X, τ) is called a
i) generalized closed (briefly gclosed) $\operatorname{set}[5]$ if $\operatorname{cl}(A) \sqsubseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ).
semi-generalized closed (briefly sg-closed) set[2] if $\operatorname{scl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is a semi-open set in (X, τ).
iii) generalized semi-closed (briefly gs-closed) set[1] if $\operatorname{scl}(\mathrm{A}) \sqsubseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open set in (X, τ).
iv) $\boldsymbol{\alpha}$-generalized closed (briefly αg-closed) $\operatorname{set}[7]$ if $\alpha \mathrm{cl}(\mathrm{A}) \sqsubseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open set in (X, τ).
generalized a-closed (briefly g α-closed) $\operatorname{set}[6]$ if $\alpha c l(A) \subseteq U$ whenever $A \subseteq U$ and U is α open set in (X, τ).
vi) δ-generalized closed (briefly δg-closed) $\operatorname{set}[3]$ if $\operatorname{cl} \delta(\mathrm{A}) \subseteq \mathrm{U}$ whenever $A \subseteq U$ and U is open set in (X, τ).
$\hat{\mathbf{g}}$-closed $\operatorname{set}[12]$ if $\mathrm{cl}(\mathrm{A}) \sqsubseteq \mathrm{U}$ whenever $A \subseteq U$ and U is a semi-open set in (X, τ).
viii) $\boldsymbol{\alpha} \hat{g}$-closed set[9] if $\operatorname{\alpha cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $A \subseteq U$ and U is \hat{g}-open set in (X, τ).
ix) \quad gb-closed set[15] if bcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ).

The complement of a g-closed(resp. sgclosed, gs-closed, α-closed, g α-closed, $\delta \mathrm{g}$ closed, $\hat{\mathrm{g}}$-closed and $\alpha \hat{\mathrm{g}}$-closed) set is called g -open (resp. sg-open, gs-open, $\alpha \mathrm{g}$-open, $\mathrm{g} \alpha$ open, $\delta \mathrm{g}$-open, $\hat{\mathrm{g}}$-open and $\alpha \hat{\mathrm{g}}$-open) set .

Definition 2.3: A function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ is called
i) Continuous[12] if $f^{-1}(V)$ is closed in (X, τ) for every closed set V in (Y, σ)
ii) $\quad \mathbf{g}$-continuous [17] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V in (Y, σ)
iii) $\quad \hat{\mathbf{g}}$-continuous[20] if $f^{-1}(V)$ is $\hat{\mathrm{g}}$-closed in (X, τ) for every closed set V in (Y, σ)
iv) $\quad \alpha g$-continuous[7] if $f^{-1}(V)$ is αg-closed in (X, τ) for every closed set V in (Y, σ)
v) $\quad \alpha \hat{\mathbf{g}}-$ continuous if $f^{-1}(V)$ is $\alpha \hat{g}$-closed in
(X, τ) for every closed set V in (Y, σ)
vi) $\quad \mathbf{b}$-continuous [25] if $f^{-1}(V)$ is \mathbf{b}-closed in
(X, τ) for every closed set V in (Y, σ)
vii) gb-continuous[25] if $f^{-1}(V)$ is gb-closed in (X, τ) for every closed set V in (Y, σ)
viii) gs-continuous[22] if $f^{-1}(V)$ is gs-closed in
(X, τ) for every closed set V in (Y, σ)
ix) $\mathbf{s g}$-continuous[24] if $f^{-1}(V)$ is sg-closed in (X, τ) for every closed set V in (Y, σ)

Definition 2.4: A function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ is called a
i) open map[12] if $f(V)$ is open in (Y, σ) for every open set V in (X, τ)
ii) g-open map[23] if $f(V)$ is g-open in (Y, σ) for every open set V in (X, τ)
iii) $\hat{\mathbf{g}}$-open map[12] if $f(V)$ is $\hat{\mathrm{g}}$-open in (Y, σ) for every open set V in (X, τ)
iv) gs-open map[21] if $f(V)$ is gs-open in (Y, σ) for every open set V in (X, τ)
v) $\mathbf{s g}$ - open map[21] if $f(V)$ is $s g$-open in (Y, σ) for every open set V in (X, τ)

Definition 2.5: A function $f:(X, \tau) \longrightarrow(Y, \sigma)$ is called a
i) Homeomorphism[12] if f is both continuous map and open map.
ii) g-homeomorphism[23] if f is both $g-$ continuous map and g -open map.
iii) $\hat{\mathbf{g}}$-homeomorphism[12] if f is both $\hat{g}-$ continuous map and $\hat{\mathrm{g}}$-open map.
iv) sg-homeomorphism[22] if f is both $s g-$ continuous map and sg-open map.
v) gs-homeomorphism[22] if f is both gscontinuous map and gs-open map

3. $\mathbf{b} \hat{g}$ - Continuous functions

We introduce the following definitions:
Definition 3.1: A function $f:(X, \tau) \longrightarrow(Y, \sigma)$ is said to be bg - continuous map if $f^{-1}(\mathrm{~V})$ is bg -closed in (X, τ) for every closed set V of (Y, σ).
Example 3.2: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ $\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}\}\}$ and

$$
\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{~b}\},\{\mathrm{a}, \mathrm{c}\}\}
$$

Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by
$\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$. Then f is $\mathrm{b} \hat{\mathrm{g}}-$ continuous, since the inverse images of a closed sets $\{\mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{c}\}$ in (Y, σ) are $\{b\},\{b, c\},\{a, c\},\{c\}$ respectively which are bg - Closed in (X, $\tau)$.

Theorem 3.3: Every continuous map is $b \hat{g}-$ continuous.
Proof: Let V be a closed set in (Y, σ). Since f is continuous, then $f^{-1}(\mathrm{~V})$ is closed in (X, τ). Since from[19] Remark 3.23 "Every closed set is $\mathrm{bg}-$ Closed". Then $f^{-1}(\mathrm{~V})$ is $\mathrm{b} \hat{g}-$ Closed in (X, τ). Hence f is $b \hat{g}-$ continuous.

Remark 3.4: The converse of the above theorem need not be true.
(i.e) Every bg - continuous need not be a continuous map as shown in the following example.

Example 3.5:Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}\}\}$ and $\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{b}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$.

Then f is $b \hat{g}$ - continuous, but not continuous, since the inverse image of a closed set $\{\mathrm{a}, \mathrm{c}\}$ in (Y, σ) is $\{\mathrm{a}, \mathrm{c}\}$ which is $\mathrm{bg}-$ closed but not closed in (X, τ).

Theorem 3.6:Every g-continuous map is bg continuous.
Proof: Let V be a closed set in (Y, σ). Since f is g-continuous, then $f^{-1}(\mathrm{~V})$ is g-closed in (X, τ). Since from[19] Proposition 3.6, "Every g-closed set is bg - Closed". Then $f^{-1}(\mathrm{~V})$ is bg -Closed in (X, τ). Hence f is $\mathrm{b} \hat{\mathrm{g}}$ continuous.

Remark 3.7: The converse of the above theorem need not be true.
(i.e) Every bĝ - continuous need not be a gcontinous map as shown in the following example.

Example 3.8: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{a}, \mathrm{c}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$.

Then f is $b \hat{g}$ - continuous, but not g continuous, since the inverse image of a closed set $\{b\}$ in (Y, σ) is $\{b\}$ which is $b \hat{g}-$ closed but not g-closed in (X, τ).

Theorem 3.9:Every b-continuous map is bg continuous.
Proof: Let V be a closed set in (Y, σ). Since f is b-continuous, then $f^{-1}(\mathrm{~V})$ is b-closed in (X, τ). Since from[19] Proposition 3.3, "Every b -closed set is bg - Closed". Then $f^{-1}(\mathrm{~V})$ is $\mathrm{b} \hat{g}$-Closed in (X, τ). Hence f is $\mathrm{b} \hat{g}$ continuous.

Remark 3.10: The converse of the above theorem need not be true.
(i.e) Every bg - continuous need not be a bcontinous map as shown in the following example.

Example 3.11:Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{X, \Phi,\{a\}\}$ and
$\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}\}$
Define a function $f:(X, \tau) \longrightarrow(Y, \sigma)$ by $f(a)=a, f(b)=b, f(c)=c$.

Then f is bg -continuous, but not b continuous, since the inverse image of a closed set $\{\mathrm{a}, \mathrm{c}\}$ in (Y, σ) is $\{\mathrm{a}, \mathrm{c}\}$ which is $\mathrm{b} \hat{g}$ - Closed but not b-closed in (X, τ).

Theorem 3.12: Every gb-continuous map is bg - continuous.
Proof: Let V be a closed set in (Y, σ). Since f is gb-continuous, then $f^{-1}(\mathrm{~V})$ is gb-closed in (X, τ). Since from[19] Proposition 3.18, "Every gb-closed set is bg - Closed". Then $f^{-1}(\mathrm{~V})$ is $\mathrm{b} \hat{g}-$ Closed in (X, τ). Hence f is bg - continuous.

Corollary 3.13:The converse of the above theorem is also true.
(i.e) Every bg - continuous is gb-continous.

Proof: Let V be a closed set in (Y, σ). Since f is $b \hat{g}$-continuous, then $f^{-1}(\mathrm{~V})$ is $b \hat{g}$-closed in (X, τ). Since from[19] Corollary 3.19, "Every bg -closed set is gb - Closed". Then $f^{-1}(\mathrm{~V})$ is $\mathrm{gb}-\mathrm{Closed}$ in (X, τ). Hence f is $\mathrm{gb}-$ continuous.

Remark 3.14: The following example shows the relationship between bg - continuous map and gb-continous map.

Example 3.15:Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}, \mathrm{c}\}\}$ and
$\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by
$\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$.
bĝ-closed set in $X=\{X, \Phi,\{a\},\{b\},\{c\}$, $\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\}$
gb-closed set in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}$,

$$
\{b, c\}\}
$$

closed sets in $\mathrm{Y}=\{\mathrm{Y}, \Phi,\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
Clearly f is both $b \hat{g}$-continuous and gb-continuous.

Theorem 3.16: Every \hat{g}-continuous map is bg - Continuous.
Proof: Let V be a closed set in (Y, σ). Since f is $\hat{\mathrm{g}}$-continuous, then $f^{-1}(\mathrm{~V})$ is $\hat{\mathrm{g}}$-closed in (X, τ). Since from[19] Proposition 3.9, "Every \hat{g}-closed set is bg - Closed". Then $f^{-1}(\mathrm{~V})$ is $\mathrm{b} \hat{g}-$ Closed in (X, τ). Hence f is $\mathrm{b} \hat{\mathrm{g}}$ - Continuous.

Remark 3.17: The converse of the above theorem need not be true.
(i.e) Every bg - continuous need not be \hat{g} continous map as shown in the following example.

Example 3.18:Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}, \mathrm{c}\}\}$ and
$\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by
$\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{a}$.
bĝ-closed set in $X=\{X, \Phi,\{a\},\{b\},\{c\},\{a, b\}$, \{b,c\}\}
$\hat{\mathbf{g}}$-closed set in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\}$
Then f is $\mathrm{b} \hat{\mathrm{g}}$ - continuous, but not $\hat{\mathrm{g}}$ continuous, since the inverse image of a closed set $\{b, c\}$ in (Y, σ) is $\{a\}$ which is $b \hat{g}-$ closed but not \hat{g}-closed in (X, τ).

Theorem 3.19:Every gs-continuous map is bg - continuous.

Proof: Let V be a closed set in (Y, σ). Since f is gs-continuous, then $f^{-1}(\mathrm{~V})$ is gs-closed in (X, τ). Since from[19] Proposition 3.12 "Every gs-closed set is bg - Closed". Then $f^{-1}(\mathrm{~V})$ is $\mathrm{b} \hat{g}$ - closed in (X, τ). Hence f is $\mathrm{b} \hat{g}-$ Continuous.

Remark 3.20: The converse of the above theorem need not be true.
(i.e) Every bg - continuous need not be gscontinous map as shown in the following example.

Example 3.21: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by
$\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{a}$.
bg-closed set in $X=\{X, \Phi,\{a\},\{b\},\{c\}$, $\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\}$
gs-closed set in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\}$
Then f is $\mathrm{b} \hat{g}$ - continuous, but not gscontinuous, since the inverse image of a closed set $\{c\}$ in (Y, σ) is $\{\mathrm{a}\}$ which is $\mathrm{bg}-$ closed but not gs-closed in (X, τ).

Theorem 3.22:Every sg-continuous map is bg - continuous.

Proof: Let V be a closed set in (Y, σ). Since f is sg-continuous, then $f^{-1}(\mathrm{~V})$ is sg-closed in (X, τ). Since from [19] Remark 3.23 "Every sg-closed is gs-closed" and from [19] proposition (3.12) "Every gs-closed set is bg closed", we have "Every sg-closed set is bg closed". Hence $f^{-1}(\mathrm{~V})$ is bg - closed in (X, τ). Thus f is $\mathrm{b} \hat{\mathrm{g}}-$ Continuous.

Remark 3.23: The converse of the above theorem need not be true.
(i.e) Every bg - continuous need not be sgcontinous map as shown in the following example.

Example 3.24:Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}\}\}$ and $\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by
$\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$.
bĝ-closed set in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}$, $\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
sg-closed set in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$ Then f is bg - continuous, but not sg-continuous, since the inverse image of a closed set $\{\mathrm{a}, \mathrm{b}\}$ in (Y, σ) is $\{\mathrm{a}, \mathrm{b}\}$ which is $\mathrm{b} \hat{\mathrm{g}}$ - closed but not sg-closed in (X, τ).

Theorem 3.25:Every αg-continuous map is $b \hat{g}$ - continuous.

Proof: Let V be a closed set in (Y, σ). Since f is α-continuous, then $f^{-1}(\mathrm{~V})$ is αg-closed in (X, τ). Since from[19] Proposition [3.15] "Every $\alpha \mathrm{g}$-closed is bg - closed", we have $f^{-1}(\mathrm{~V})$ is $\mathrm{bg} \hat{g}$ - closed in (X, τ). Thus f is $\mathrm{bg}-$ Continuous.

Remark 3.26: The converse of the above theorem need not be true.
(i.e) Every bg - continuous need not be α gcontinous map as shown in the following example.

Example 3.27:Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ $\tau=\{X, \Phi,\{a\},\{b\},\{a, b\}\}$ and
$\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{b}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{b}$.
$\mathbf{b} \hat{g}-c l o s e d ~ s e t ~ i n ~ X ~=~ X X, ~ \Phi, ~\{a\},\{b\},\{c\}$, $\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
$\boldsymbol{\alpha g}$-closed set in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
Then f is $b \hat{g}$ - continuous, but not αg-continuous, since the inverse image of a closed set $\{\mathrm{a}, \mathrm{c}\}$ in (Y, σ) is $\{\mathrm{a}\}$ which is $\mathrm{bg}-$ closed but not α g-closed in (X, τ).

Theorem 3.28: Every $\alpha \hat{g}$-continuous map is $b \hat{g}$ - continuous.

Proof: Let V be a closed set in (Y, σ). Since f is $\alpha \hat{g}$-continuous, then $f^{-1}(\mathrm{~V})$ is $\alpha \hat{\mathrm{g}}$-closed in (X, τ). Since from[19] Proposition [3.20] "Every $\alpha \hat{g}$-closed is $b \hat{g}$ - closed", we have $f^{-1}(\mathrm{~V})$ is $\mathrm{b} \hat{\mathrm{g}}$ - closed in (X, τ). Thus f is $\mathrm{bg}-$ Continuous.

Remark 3.29: The converse of the above theorem need not be true.
(i.e) Every bg - continuous need not be $\alpha \hat{g}$ continous map as shown in the following example.

Example 3.30:Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$.
$\mathbf{b} \hat{\mathbf{g}}$-closed set in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\}$, $\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
$\boldsymbol{\alpha} \hat{g}$-closed set in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$
Then f is bg - continuous, but not $\alpha \hat{\mathrm{g}}$ continuous, since the inverse image of a closed set $\{\mathrm{c}\}$ in (Y, σ) is $\{\mathrm{c}\}$ which is $\mathrm{b} \hat{\mathrm{g}}-$ closed but not $\alpha \hat{g}$-closed in (X, τ).

Remark 3.31:The following diagram shows the relationships of $b \hat{g}$ - continuous map with other known existing maps. $\mathrm{A} \longrightarrow \mathrm{B}$ represents A implies B but not conversely.

4 Applications

Remark 4.1: The composition of two bg continuous functions need not be bg - continuous.
For we consider the following example.
Example 4.2: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}, \sigma=\{\mathrm{X}, \Phi,\{\mathrm{b}\}\}$ and $\eta=\{X, \Phi,\{a\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{X}, \sigma)$ by
$\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$ and
Define a function $\mathrm{g}:(\mathrm{X}, \sigma) \longrightarrow(\mathrm{X}, \eta)$ by
$g(a)=b, g(b)=c, g(c)=a$.
Clearly f and g are $b \hat{g}$ - continuous.
But for a closed set $\{b, c\}$ in (X, η)
$(f \circ g)^{-1}\{\mathrm{~b}, \mathrm{c}\}=g^{-1}\left[f^{-1}\{b, c\}\right]=g^{-1}\{b, c\}$ $=\{a, b\}$ which is not $b \hat{g}-$ closed in (X, τ). Hence fog is not bg -continuous.

Definition 4.3: A function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ is said to be $b \hat{g}$ - irresolute if $f^{-1}(\mathrm{~V})$ is bg-closed in (X, τ) for every $\mathrm{b} \hat{\mathrm{g}}$-closed set V of (Y, σ).

Remark 4.4: The composition of two bg -irresolute functions is again bg - irresolute.

5 bg - open maps and by - closed maps

We introduce the following definitions:
Definition 5.1: Let X and Y be two topological spaces. A map $f:(X, \tau) \longrightarrow(Y, \sigma)$ is called $b \hat{g}$-open map if the image of every open set in X is bg-open in (Y, σ).

Definition 5.2: Let X and Y be two topological spaces. A map $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ is called $\mathrm{b} \hat{\mathrm{g}}-$ closed map if the image of every closed set in X is b \hat{g}-closed in (Y, σ).

Theorem 5.3: Every open map is bĝ-open map.
Proof: Let $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ is a open map and V be a open set in X, then $f(V)$ is a open set in Y. Since[19] Proposition(3.3), "Every open set is bĝopen set", we have $f(V)$ is a b \hat{g}-open set in Y. Thus f is $\mathrm{b} \hat{\mathrm{g}}$-open map.

Remark 5.4: The converse of the above theorem need not be true.
(i.e) Every bĝ-open map need not be a open map as shown in the following example.

Example 5.5: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{b}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \quad(\mathrm{Y}, \stackrel{\infty}{ })$ by
$\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$.
Open sets in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{a}, \mathrm{c}\}\}$
$\mathbf{b} \hat{\mathbf{g}}-$ open set in $\mathrm{Y}=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\}$, \{a,b\},\{b,c\}\}

Here f is $\mathrm{b} \hat{g}$ - open map, but not a open map, since the image of a open set $\{\mathrm{a}, \mathrm{c}\}$ in (X, τ) is $\{b, c\}$ which is $b \hat{g}-$ open but not open in (Y, σ).

Theorem 5.6: Every g-open map is $b \hat{g}$-open map.
Proof: Let $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ is a $\mathrm{g}-$ open map and V be a open set in X, then $f(V)$ is a g-open set in Y. Since from[19] Proposition(3.6), "Every g -open set is $\mathrm{b} \hat{\mathrm{g}}$ open set", we have $f(V)$ is a $b \hat{g}-$ open set in Y. Thus f is a $b \hat{g}-$ open map.

Remark 5.7: The converse of the above theorem need not be true.
(i.e) Every bg-open map need not be a g-open map as shown in the following example.

Example 5.8: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{X, \Phi,\{a\},\{b\},\{a, b\},\{a, c\}\}$ and $\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{a}, \mathrm{c}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{b}$.
Open sets in $X=\{X, \Phi,\{a\},\{b\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}\}$ $\mathbf{b} \hat{\mathbf{g}}-$ open set in $\mathrm{Y}=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{c}\}$, $\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
g-open set in $\mathrm{Y}=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}$
Here f is bg - open map, but not a $\mathrm{g}-$ open map, since the image of a open set $\{a, c\}$ in (X, τ) is $\{a, b\}$ which is $b \hat{g}-$ open but not $g-$ open in (Y, σ).

Theorem 5.9: Every $\hat{\mathrm{g}}$-open map is $b \hat{\mathrm{~g}}$-open map.
Proof: Let $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ is a $\hat{\mathrm{g}}-$ open map and V be a open set in X, then $f(V)$ is a $\hat{\mathrm{g}}_{-}$open set in Y. Since from[19] Proposition(3.9), "Every $\hat{\mathrm{g}}$-open set is $\mathrm{b} \hat{\mathrm{g}}-$ open set", we have $f(V)$ is a $b \hat{g}-$ open set in Y. Thus f is a $b \hat{g}$-open map.
Remark 5.10: The converse of the above theorem need not be true.
(i.e) Every bg-open map need not be a $\hat{\mathrm{g}}$-open map as shown in the following example.

Example 5.11: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{a}\}\}$ Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$.
Open sets in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$
$\mathbf{b} \hat{\mathbf{g}}-$ open sets in $\mathrm{Y}=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\}$, $\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}\}$
$\hat{\mathbf{g}}-$ open sets in $\mathrm{Y}=\{\mathrm{Y}, \Phi,\{\mathrm{a}\}\}$

Here f is $\mathrm{b} \hat{\mathrm{g}}$ - open map, but not a $\hat{\mathrm{g}}_{-}$ open map, since the image of a open set $\{a, b\}$ in (X, τ) is $\{\mathrm{a}, \mathrm{b}\}$ which is $\mathrm{b} \hat{\mathrm{g}}$ - open set but not $\hat{\mathrm{g}}$-open set in (Y, σ).

Theorem 5.12: Every sg -open map is a $b \hat{g}-$ open map.
Proof: Let $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ is a sg-open map and V be a open set in X, then $f(V)$ is a sg- open set in Y. Since from[19] Remark(3.23), "Every sg-open set is b $\hat{\mathrm{g}}$-open set", we have $f(V)$ is a $b \hat{g}$-open set in Y. Thus f is a bg -open map.

Remark 5.13: The converse of the above theorem need not be true.
(i.e) Every $b \hat{g}$-open map need not be sg -open map as shown in the following example.

Example 5.14: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{a}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by
$\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{b}$.
Open sets in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{a}, \mathrm{c}\}\}$
$\mathbf{b} \hat{\mathbf{g}}_{-}$open sets in $\mathrm{Y}=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\}$, \{a,b\},\{a,c\}\}
sg-open sets in $\mathrm{Y}=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}\}$
Here f is $\mathrm{b} \hat{g}$ - open map, but not a sg-open map, since the image of a open set $\{a, c\}$ in (X, $\tau)$ is $\{b\}$ which is $b \hat{g}-$ open set but not sg-open set in (Y, σ).

Theorem 5.15: Every gs-open map is a $b \hat{g}-$ open map.
Proof: Let $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ is a gs-open map and V be a open set in X, then $f(V)$ is a gs- open set in Y. Since from[19] Proposition(3.12),"Every gs-open set is bg ${ }_{-}$ open set", we have $f(V)$ is a $b \hat{g}-$ open set in Y. Thus f is a $b \hat{g}$-open map.

Remark 5.16: The converse of the above theorem need not be true.
(i.e) Every b_{g}-open map need not be a gsopen map as shown in the following example.

Example 5.17: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{a}, \mathrm{c}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by
$\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$.
Open sets in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$
$\mathbf{b} \hat{\mathbf{g}}^{-}$open sets in $\mathrm{Y}=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{c}\}$, $\{a, b\},\{a, c\},\{b, c\}\}$
gs-open sets in $\mathrm{Y}=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}$
Here f is $\mathrm{b} \hat{g}$ - open map, but not a
gs-open map, since the image of a open set
$\{b, c\}$ in (X, τ) is $\{b, c\}$ which is $b \hat{g}-$ open set but not gs-open set in (Y, σ).

Remark 5.18: The following diagram shows the relationships of b \hat{g} - open map with other known existing open maps. $\mathrm{A} \longrightarrow \mathrm{B}$ represents A implies B but not conversely.

1. $\quad \mathrm{b} \hat{\mathrm{g}}$ - open map
2. Open map
3. g -open map
4. $\hat{\mathrm{g}}$ - open map
5. sg-open map
6. gs - open map

6 b \hat{g} - Homeomorphisms

Definition 6.1: A bijection f: $(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ is called a $b \hat{g}$ - homeomorphism if f is both bg - continuous map and bg - open map.

Example 6.2: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}\}\}$ and $\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{b}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by
$\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{b}$.
$\mathbf{b} \hat{\mathbf{g}}$-closed sets in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}$, $\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
bg -open sets in $\mathrm{Y}=$
$\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\}$
sg -closed sets in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
sg -open sets in $\mathrm{Y}=\{\mathrm{Y}, \Phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\}$
Here the inverse image of a closed set $\{\mathrm{a}, \mathrm{c}\}$ in Y is $\{\mathrm{a}, \mathrm{b}\}$ which is $\mathrm{b} \hat{g}$-closed in X and the image of a open set $\{a\}$ in X is $\{c\}$ which is $b \hat{g}$-open in Y. Hence f is $b \hat{g}-$ homeomorphism.

Theorem 6.3: Every homeomorphism is a bg homeomorphism
Proof: Follows from theorem 3.3 "Every Continuous map is $b \hat{g}$ - continuous" and from theorem 5.3 "Every open map is $b \hat{g}$ - open map.

Remark 6.4:The converse of the above theorem need not be true.
(i.e) Every $\mathrm{b} \hat{\mathrm{g}}$-homeomorphism need not be a homeomorphism as shown in the following example.

Example 6.5: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{a}, \mathrm{c}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by
$\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$.
beg -closed sets in X
$=\{X, \Phi,\{a\},\{b\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
open sets in $\mathrm{Y}=\{\mathrm{Y}, \Phi,\{\mathrm{a}, \mathrm{c}\}\}$
closed sets in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$
bg -open sets in $\mathrm{Y}=$
$\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
Here the inverse image of a closed set
$\{b\}$ in Y is $\{b\}$ which is $b \hat{g}$-closed in X but not closed in X and the image of a open set $\{\mathrm{a}\}$ in X is $\{\mathrm{a}\}$ which is $\mathrm{b} \hat{g}$-open in Y but not open in Y.

Hence f is $\mathrm{b} \hat{\mathrm{g}}$ - homeomorphism, but not a homeomorphism, since f is not a openmap and not a continuous map.

Theorem 6.6:Every sg-homeomorphism is a bg - homeomorphism
Proof: Follows from theorem 3.22 "Every sgcontinuous map is bg - continuous" and by theorem 5.12 "Every sg-open map is bg open map.

Remark 6.7:The converse of the above theorem need not be true.
(i.e) Every bĝ-homeomorphism need not be a sg-homeomorphism as shown in the following example.

Example 6.8: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}\}\}$ and $\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{b}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by
$\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{b}$.
beg -closed sets in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}$, $\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
$\mathbf{b} \hat{\mathbf{g}}$-open sets in $\mathrm{Y}=$ $\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\}$
sg -closed sets in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
sg -open sets in $\mathrm{Y}=\{\mathrm{Y}, \Phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\}$
Here the inverse image of a closed set $\{\mathrm{a}, \mathrm{c}\}$ in Y is $\{\mathrm{a}, \mathrm{b}\}$ which is $\mathrm{b} \hat{g}$-closed in X but not sg -closed in X and the image of a open set $\{a\}$ in X is $\{c\}$ which is $b \hat{g}$-open in Y but not sg-open in Y.

Hence f is bg - homeomorphism, but not sg -homeomorphism, since f is not sg_{-} continuous and sg-open map.

Theorem 6.9: Every gs-homeomorphism is a bg - homeomorphism
Proof: Follows from theorem 3.19 "Every gscontinuous map is $b \hat{g}$ - continuous" and by theorem 5.15 "Every gs-open map is bg open map.

Remark 6.10:The converse of the above theorem need not be true.
(i.e) Every bĝ-homeomorphism need not be a gs-homeomorphism as shown in the following example.

Example 6.11: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by
$\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$.
$\mathbf{b} \hat{\mathbf{g}}$-closed sets in $\mathrm{X}=$
$\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\}$
$\mathbf{b g}$-open sets in $\mathrm{Y}=$
$\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
gs -closed sets in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\}$
gs -open sets in $\mathrm{Y}=$
$\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
Here the inverse image of a closed set $\{a\}$ in Y is $\{a\}$ which is b \hat{g}-closed in X but not gs-closed in X hence f is not gscontinuous, however f is a gs-open map. Hence f is a bg -homeomorphism but not gshomeomorphism.

Theorem 6.12:Every g-homeomorphism is a bg - homeomorphism
Proof: Follows from theorem 3.6 "Every gcontinuous map is $b \hat{g}-$ continuous" and by theorem 5.6 "Every g-open map is bg - open map.

Remark 6.13:The converse of the above theorem need not be true.
(i.e) Every bĝ-homeomorphism need not be a g -homeomorphism as shown in the following example.

Example 6.14: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{a}, \mathrm{c}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by
$\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$.
bg -closed sets in $\mathrm{X}=$
$\{\mathrm{X}, \Phi,\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
bg -open sets in $\mathrm{Y}=$ $\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
\mathbf{g}-closed sets in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
\mathbf{g}-open sets in $\mathrm{Y}=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}$
Here the inverse image of a closed set $\{b\}$ in Y is $\{b\}$ which is b \hat{g}-closed in X but not g-closed in X and for the image of a
open set $\{\mathrm{a}, \mathrm{b}\}$ in X is $\{\mathrm{a}, \mathrm{b}\}$ which is $\mathrm{b} \hat{\mathrm{g}}$-open in Y but not g-open in Y hence f is not $g-$ continuous and g -open map. Thus f is a $\mathrm{bg}-$ homeomorphism but not g-homeomorphism .

Theorem 6.15: Every \hat{g}-homeomorphism is a bg - homeomorphism
Proof: Follows from theorem 3.16 "Every \hat{g} continuous map is $b \hat{g}$ - continuous" and by theorem 5.9 "Every \hat{g}-open map is $b \hat{g}$ - open map".

Remark 6.16:The converse of the above theorem need not be true.
(i.e) Every bg-homeomorphism need not be a $\hat{\mathrm{g}}$-homeomorphism as shown in the following example.

Example 6.17: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\tau=\{X, \Phi,\{a\},\{a, b\}\}$ and
$\sigma=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$
Define a function $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ by
$\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{c}$.
$\mathbf{b} \hat{\mathbf{g}}$-closed sets in $\mathrm{X}=$
$\{\mathrm{X}, \Phi,\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
bg -open sets in $\mathrm{Y}=$
$\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
$\hat{\mathbf{g}}$-closed sets in $\mathrm{X}=\{\mathrm{X}, \Phi,\{\mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
$\hat{\mathbf{g}}$-open sets in $\mathrm{Y}=\{\mathrm{Y}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$
Here the inverse image of a closed set $\{b, c\}$ in Y is $\{a, c\}$ which is $b \hat{g}$-closed in X but not \hat{g}-closed in X, hence f is not \hat{g} continuous, however f is a \hat{g}-open in Y . Thus f is a $\mathrm{b} \hat{\mathrm{g}}$-homeomorphism but not $\hat{\mathrm{g}}_{-}$ homeomorphism.

Remark 6.18: The following diagram shows the relationships of $b \hat{g}$ - homeomorphism with other known existing homeomorphisms.
$A \longrightarrow B$ represents A implies B but not conversely.

1. $\mathrm{b} \hat{\mathrm{g}}$-homeomorphism
2. homeomorphism
3. g - homeomorphism
4. $\hat{\mathrm{g}}$ - homeomorphism
5. sg - homeomorphism
6. gs - homeomorphism

7 REFERENCES

[1] S.PArya and T Nour, Characterizations of S-normal spaces, Indian J.Pure.Appl.MAth.,21(8)(1990), 717-719.
[2] P Bhattacharya and B.K Lahiri, Semi-generalized closed sets in topology, Indian J.Math., 29(1987), 375-382.
[3] JDontchev and M Ganster, On δ generalized closed sets and T3/4-spaces, Mem.Fac.Sci.KochiUniv.Ser.A, Math., 17(1996),15-31.
[4] N Levine, Semi-open sets and semicontinuity in topological spaces Amer
Math. Monthly, 70(1963), 36-41.
[5] N Levine, Generalized closed sets in topology Rend.Circ.Mat.Palermo, 19(1970) 89-96.
[6] H Maki, R Devi and K Balachandran, Generalized α-closed sets in topology, Bull.FukuokaUni.Ed part III, 42(1993), 13-21.
[7] H Maki, R Devi and K Balachandran, Associated topologies of Generalized α closed sets and α-generalized closed sets, Mem.Fac. Sci.Kochi Univ. Ser. A. Math., 15(1994), 57-63.
[8] A.S.Mashhour, M. E Abd El-Monsef and S.N. El-Debb, On precontinuous and weak precontinuous mappings, Proc.Math. andPhys.Soc. Egypt 55(1982), 47-53.
[9] M. E Abd El-Monsef, S.Rose Mary and M. LellisThivagar, On α g-closedsets in topological spaces, Assiut University Journal of Mathematics and Computer Science, Vol 36(1),P-P.43-51(2007).
[10] ONjastad, On some classes of nearly open sets, Pacific J Math., 15(1965), 961-970.
[11] M Stone, Application of the theory of Boolian rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-481.
[12] M.K.R.S. Veera Kumar, g-closed sets in topological spaces, Bull. Allah Math.Soc, 18(2003), 99-112.
[13] N.V. Velicko, H-closed topological spaces, Amer. Math.Soc. Transl., 78(1968), 103-118.
[14] D. Andrijevic, On b-open sets, Mat. Vesnik 48(1996), no. 1-2, 59-64.
[15] Ahmad Al. Omari and Mohd.SalmiMD.Noorani, On Generalized b-closed sets, Bull. Malaysian Mathematical Sciences Society(2) 32(1) (2009), 19-30
[16] M. LellisThivagar, B. Meera Devi and E. Hatir, δ g.closed sets in Topological
Spaces, Gen. Math. Notes, Vol 1, No.2, December 2010, PP 17-25.
[17] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Math.12(1991), 5-13.
[18] M. Caldas and S. Jafari, On some applications of b-open sets in topological spaces, Kochi J.Math 2(2007), 11-19
[19] R.Subasree, M. Maria singam, On bĝ-closed sets in topological spaces, International journal of Mathematical Archive, 4(7), 2013, 168-173.
[20] Veera Kumar, $\hat{\mathrm{g}}$-closed sets and GLC functions, Indian Journal Math.43(2)(2001), 231-247
[21] R.Devi, H.Maki and K. Balachandran, Semi generalized Closed maps and generalized semi-closed maps, MEM. Fac.sci.Kochi Univ. Sec A Math 14(1993) 41-54.
[22] R.Devi, H.Maki and K. Balachandran, Semi generalized homeomorphism and generalized semihomeomorphism , Indian Journal of Pure and Applied Math. 26(1995) 271-284.
[23] H. Maki, P. Sundaram and K. Balachandran, On generalized homeomorphisms in Topological Spaces , bull Fukuoka Univ Ed. Part III 40(19991) 13-21.
[24] P. Sundaram, H.Maki and K. Balachnadran, Semi generalized continuous maos and Semi $\mathrm{T} 1 / 2$ spaces Bull. Fukuoka Univ Ed Part III 40(1991) 33-40.
[25] M. Caldas and E. Ekici, Slightly Y continuous functions Bol. Soc, Parana Mat (3)22(2004) No.2,63-74.

